

Institut für Hochfrequenztechnik

29.09.2009

Transparente OLED-Displays

Sami Hamwi, Patrick Görrn, Jens Meyer, Thomas Winkler, Hans-Hermann Johannes, Thomas Riedl, Wolfgang Kowalsky

Institut für Hochfrequenztechnik, Technische Universität Braunschweig

29.09.2009

→ transparente Elektroden für transparente OLEDs

- \rightarrow transparente Barriereschichten für organische Bauelemente
- \rightarrow transparente Dünnschichttransistoren für AMOLED

Transparente OLED Displays

Minority Report TM and © 2002 Twentieth Century Fox and Dreamworks, LLC.

Transparente OLED

Transparente Displays in der Medizin

- Punktion, Biopsie
- Krebstherapie, Brachytherapie
- Herzchirurgie

29.09.2009

Hardware

Transparent Organic Light Emitting Layers

guest-host systems

TCTA

Ir(ppy)₃

taylored organic layers:

+ absorption in the UV (< 400 nm)+ emission in the visible

Hardware

 \Rightarrow völlig transparente OLEDs

Transparente Leitfähige Oxide auf Organik

Organische Halbleiter sind sehr empfindlich!

- \rightarrow niedrige Prozesstemperaturen (< 80 °C)
- \rightarrow vermeide Sauerstoff + energiereiche Strahlung

Kritische Energie: C-C (3.73 eV), C=C (6.21 eV)

Typische Schädigungsprodukte: Ladungsträgerfallen nichtstrahlende Spezies

<u>aber:</u>

→ Transparente Oxide beinhalten Sauerstoff
→ Sputterdeposition, gepulste Laserdeposition
→ Teilchenenergien ~1-100 eV ?
→ UV Strahlung

 \rightarrow großes Z von Wolfram (Wirkungsquerschnitt!)

 \rightarrow thermisches Aufdampfen von WO_3

 \rightarrow WO₃ transparent, ausreichend leitfähig

 \rightarrow Rekord-Effizienz: 30 lm/W, 38 cd/A

Analyse der Partikelpenetration \rightarrow Sekundär-Ionen Massenspektroskopie

Sputterpartikel dringen ca. 40 nm tief in WO_3 ein \rightarrow Schutz für Organik

Adv. Mater. 20, 3839 (2008)

Transparente OLEDs

Indium-Zinn-Oxid (ITO) als TCO

- Indium ist selten und teuer
- Ressourcen für noch ca. 20 Jahre (US geological survey 2006)

AI dotiertes ZnO

ZnO ist billig und verfügbar !

- ZnO:Al₂O₃ (4 wt%)
- Pulsed Laser Deposition (KrF Excimer laser)
- Sputtern
- "unser" AZO auf Glas:

→ optimale Leitfähigkeit: 4000 S/cm (Hall: $n = 6 \times 10^{20}$ cm⁻³, $\mu_n = 42$ cm²/Vs)

vergl. ITO (MERCK) 4700 S/cm

→ hohe Transparenz im sichtbaren Bereich

@ 550 nm: α = 200 cm⁻¹ \rightarrow T = 98 % (1 µm Film) \rightarrow R_{sheet} = 4 Ω/sq.

Appl. Phys. Lett. 91, 041113 (2007)

AZO statt ITO als Anode bei OLEDs

	Al	
	LiF	
	Alq3	
	α-NPD	
	ITO/ <mark>AZO</mark>	
Glass substrate		

simple OLED Struktur

- 1:1 Austausch von ITO durch AZO als Anode
- \rightarrow deutlich höhere Betriebsspannungen
- \rightarrow drastisch reduzierte Effizienz
- \rightarrow Problem: Effiziente Injektion von Löchern !

29.09.2009

Ursache der limitierten Lochinjektion bei OLEDs mit AZO Anode:

 Φ_{AZO} = 4.2 eV < Φ_{ITO} = 4.7 eV

 \Rightarrow höhere Injektionsbarriere für Löcher

 $E_{\rm f}$ (AZO) $\rightarrow E_{\rm HOMO}$ (α -NPD)

 \Rightarrow höhere Betriebsspannung

 \Rightarrow geringerer Luminanzwirkungsgrad

Modifikation der Austrittsarbeit durch WO₃

Metalloxide mit großer Austrittsarbeit

z.B. Wolframoxid WO₃ (Φ_{WO_3} = 6.4eV)

Leitfähigkeit sehr gering (Hopping $W^{5+} \rightarrow W^{6+}$)

 \rightarrow kein Ersatz für ITO/AZO als Elektrode

→ Verwendung als dünne Zwischenschicht

 \Rightarrow sukzessive Verschiebung der Austrittsarbeit durch dünne WO₃ Schicht \Rightarrow was passiert an der TCO/WO₃ Grenzfläche ?

WO

TCC

XPS Analyse des ITO/WO₃ Übergangs

- \rightarrow Erhöhung der Bindungsenergie In3d5/2
- \rightarrow Verringerung der Bindungsenergie W4f
- \Rightarrow Transfer von Elektronen ITO \rightarrow WO_3
- \Rightarrow Ausbildung eines Grenzflächendipols
- \Rightarrow Absenkung der Energiebarriere ITO/Organik

1:1 Austausch von ITO durch AZO als Anode

Al		
BPhen:Cs2CO3		
ТРВі		
TPBi:lr(ppy)3		
ТСТА		
WO3		
ITO/AZO		
Glass substrate		

mit WO₃ Interlayer:

- \rightarrow OLED-Effizienz <u>unabhängig</u> vom TCO
- → hohe Effizienzen (40 lm/W @ 100 cd/m²) auch für AZO Anoden !

Indium-freie transparente OLEDs

 \rightarrow Effizienz: 43 cd/A, 30 lm/W at 100 cd/m²

 \rightarrow vergleichbar zu transparenten OLEDs mit ITO Elektroden

 \rightarrow Transparenz > 80 % im Sichtbaren

Appl. Phys. Lett. 93, 073308 (2008)

- → transparente Elektroden für transparente OLEDs
- \rightarrow transparente Barriereschichten für organische Bauelemente
- \rightarrow transparente Dünnschichttransistoren für AMOLED

Dünnschichtverkapselung für transparente OLEDs

konventionelle Glasdeckel-Verkapselung:

- \rightarrow nicht flexibel
- \rightarrow teuer
- \rightarrow problematisch für transparente OLEDs
- ⇒ effiziente Dünnschichtverkapselung nötig

Institut für Hochfrequenztechnik Technische Universität Braunschweig

Atomic Layer Deposition

CVD Verfahren für extrem dichte und konforme dielektrische Schichten

Hochreaktive metallorganische Precursormoleküle z.B. für AI_2O_3 Trimethylaluminium (TMA) mit H_2O

 \rightarrow niedrige Prozesstemperaturen (< 100°C)

 \rightarrow aussichtsreiche Barriereschichten für organische Bauelemente

29.09.2009

Calcium als Sensor

Array aus Ca Pads

OLED Grenzwerte:

Permeationsraten für Wasser und Sauerstoff:

$$P_{H_20}: 10^{-6} \frac{g}{m^2 day}$$
$$P_{0_2}: 10^{-3} \frac{cm^3}{m^2 day}$$

ohne Verkapselung \rightarrow 100 nm Calcium komplett oxidiert (90 s in Luft)

Erwartung: Mit Verkapselung (WVTR=1x10⁻⁶ g/m² d) \rightarrow 700 Tage 29.09.2009

Elektrische Permeationsmessung

Foto des Sensorarrays

Abmessung des Ca-Sensors:

Fläche : 0.5 mm x 0.5 mm Dicke: 150 nm

- lithographisch strukturierte Ag Elektroden
- strukturierte Ca Pads (Schattenmasken)
- Messgröße: Widerstandsänderung

Permeationsraten von ALD Schichten

OLED Grenzwerte:

Permeationsraten für Wasser und Sauerstoff:

$$P_{H_2O}: 10^{-6} \frac{g}{m^2 day}$$
$$P_{O_2}: 10^{-3} \frac{cm^3}{m^2 day}$$

gemessene Werte für
$$Al_2O_3$$

(100 nm, ALD: 80 °C, RT)
 $P_{H_20}: 6.54 \times 10^{-6} \frac{g}{m^2 day}$
 $P_{O_2}: 1.07 \times 10^{-3} \frac{cm^3}{m^2 day}$

Properties of Al₂O₃ ALD layers

Dielectric properties ϵ_r :

- $\epsilon_r = 9$ @ 250 °C (1 Å / cycle)
- ϵ_r = 7.9 @ 80 °C (1.3 Å / cycle)

Low-temp. growth:

- \rightarrow no sign of crystallization
- \rightarrow less dense structure at low temperatures
- \rightarrow increased formation of residual AIOH species

Surf. Sci. 322, 230-242 (1995)

TEM cross section Al₂O₃ (80 °C)

Adv. Mater. 21, 1845 (2009)

Next-generation thin-film encapsulation \rightarrow Nano-laminates

Precursor for ZrO₂ preparation

Tetrakis(dimethylamido)zirconium(IV)

TDMA(Zr) heated to 75 °C 29.09.2009

cyclic deposition of Al₂O₃ and ZrO₂

 $\frac{20 \text{ cycles } Al_2O_3 (2 \text{ nm})}{20 \text{ cycles } ZrO_2 (3.8 \text{ nm})}$

Aim:

- \rightarrow increased film density
- \rightarrow forced amorphicity
- \rightarrow avoid permeation channels

Test conditions (climate cabinet): 70 °C and 70 % RH

encapsulation	permeation rate for water (g/m² day)	permeation rate for oxygen (cm³/m² day)		
Al ₂ O ₃ 100 nm @ 80 °C	3.4 x 10⁻⁴	1.5 x 10⁻¹		
Al ₂ O ₃ & ZrO ₂ 100 nm @ 80 °C	6.6 x 10⁻⁵	2.9 x 10 ⁻²		
Al ₂ O ₃ 130 nm @ 80 °C	8.8 x 10⁻⁵	3.9 x 10 ⁻²		
Al ₂ O ₃ & ZrO ₂ 130 nm @ 80 °C	4.7 x 10 ⁻⁵	2.1 x 10 ⁻²		
with $E_a = 92 \text{ kJ/mol} \rightarrow 5 \times 10^{-7} \text{ (at RT)}$ Adv. Mater. 21, 1845 (2009)				

Statistical Defects

Large area encapsulation (70 °C, 70 % RH)

100 nm Al₂O₃

100 nm $Al_2O_3 + ZrO_2$ Nanolaminate

- \rightarrow No voids observable
- \rightarrow No extended crystallites
- \rightarrow crystallites remain inside the sub-layers

ε_r = 13.3 @ 80 °C

Preliminary result:

 ε_r (Al₂O₃ in NL) > ε_r (neat Al₂O₃ @ 80 °C)

 \Rightarrow density (Al₂O₃ in NL) > density (neat Al₂O₃ @ 80 °C)

Structural Properties of NL

TEM cross section of ZrO₂/Al₂O₃ NL (80 °C)

Adv. Mater. 21, 1845 (2009)

Structural Properties of NL

Variation of the purge time between precursor dosing (growth temperature: 80 °C)

- growth starts smooth
- wavy features and onset of CVD-like growth for short purge times

Appl. Phys. Lett. 94, 233305 (2009)

ALD Encapsulation of OLEDs

encapsulation of bottom emitter

ALD Encapsulation of OLEDs

encapsulation of top emitter

- gas diffusion barrier and capping layer simultanously
 - ⇔ enhancement of nearly 100 %

ALD Encapsulation of OLEDs

Underwater OLED

Flexible Encapsulation

Thin film encapsulation of flex. OLEDs

- → transparente Elektroden für transparente OLEDs
- \rightarrow transparente Barriereschichten für organische Bauelemente
- \rightarrow transparente Dünnschichttransistoren für AMOLED

Passiv Matrix Display:

- \rightarrow zeilenweises Ansprechen der Pixel
- \rightarrow kleine Flächen/geringe Auflösung

- Pixelhelligkeit >> Displayhelligkeit
- z.B. VGA-Display (640 x 480 Pixel) 100 cd/m² → notwendige Pixelhelligkeit > 48.000 cd/m² → reduzierte Effizienz, reduzierte Lebensdauer

Lösung: Aktiv Matrix Ansteuerung

Aktiv Matrix Ansteuerung

•Introduce non linear device that improves the selection.

•Storage of data values on capacitor so that pixel duty cycle is 100%

•Improve brightness of display by a factor of N (# of rows) over passive matrix drive

•Display element could be LC, EL, OLED, FED etc

Yeh & Gu

Silizium Elektronik nicht geeignet für transparente AMOLED Displays UDC: (semi-)transparentes Aktiv Matrix Display \rightarrow Transparenz 20%

Transparente Treiberelektronik

für Transparente Aktiv Matrix Displays

Materialsystem

Material	Dopant or compound
SnO ₂	Sb, F, As, Nb, Ta
In_2O_3	Sn, Ge, Mo, F, Ti, Zr, Hf, Nb, Ta, W, Te
ZnO	Al, Ga, B, In, Y, Sc, F, V, Si, Ge, Ti, Zr, Hf
CdO	In, Sn
ZnO–SnO ₂	$Zn_2SnO_4, ZnSnO_3$
$ZnO-In_2O_3$	$Zn_2In_2O_5$, $Zn_3In_2O_6$
In ₂ O ₃ –SnO ₂	$In_4Sn_3O_{12}$
CdO-SnO ₂	Cd_2SnO_4 , $CdSnO_3$
CdO-In ₂ O ₃	CdIn ₂ O ₄
$MgIn_2O_4$	
$GaInO_3$, $(Ga, In)_2O_3$	Sn, Ge
CdSb ₂ O ₆	Y
ZnO–In ₂ O ₃ –SnO ₂	$Zn_2In_2O_5-In_4Sn_3O_{12}$
CdO-In ₂ O ₃ -SnO ₂	CdIn ₂ O ₄ -Cd ₂ SnO ₄
ZnO-CdO-In ₂ O ₃ -SnO ₂	

ZnO-SnO₂: billig, ungiftig

große Bandlücke (~ 3eV) → durchsichtig

Abscheidung mittels PLD bzw. Sputtern

Clusteranlage für die gepulste Laser-Deposition von Metall-Oxid basierten Halbleitern und Bauelementen (TFTs)

PLD Prinzip

PLD Plume

Bottom-Gate Stuktur

Kanal: 30 nm $(ZnO)_x (SnO_2)_{1-x}$ (ZTO)

Drain-Source Elektroden: ZnO:AI (AZO)

- TEM: ZTO amorphe Struktur
- Transparenz > 80 %

Transparente TFTs auf Glas

TEM Querschnitt

TEM Aufnahmen: Dr. Thomas Weimann Peter Hinze

Sauerstoff im Oxid

PLD Plum

Zufuhr von atomarem vs. molekularem Sauerstoff

Analyse der Optischen Absorption

- viele "sub-bandgap" Zustände
- "sub-bandgap" Zustände als flache Donatoren

 \rightarrow ZTO Ladungsträgerdichten (Hall-Messung):

molekularer O : $n = 10^{19} \text{ cm}^{-3}$

atomarer O : $n = 2 \times 10^{16} \text{ cm}^{-3}$

Natur der Defektzustände → Sauerstofffehlstellen

TFT Charakteristika

Sauerstoffpartialdruck beim Prozess: 2x10⁻⁴ mbar

ZnO-SnO₂ Abscheidung mit molekularem und atomarem Sauerstoff

 \rightarrow massive Hysterese bei TFTs \rightarrow Defektzustände

 \rightarrow erhöhter "aus"-Strom

 \rightarrow zu negativen U_{gs} verschobene Schwelle $U_{thr} \rightarrow$ erhöhte Ladungsträgerdichte Appl. Phys. Lett. (in preparation)

ZTO-TTFTs auf Glas

TTFT Ausgangs-Charakteristik

TTFT Transfer-Charakteristik

$$\begin{split} I_{\text{on}}/I_{\text{off}} &= 10^6 \\ \mu_{\text{FE,SAT}} &= 13 \text{ cm}^2/\text{Vs} \end{split}$$

(vergl. α -Si: $\mu_{FE,SAT}$ = 1 cm²/Vs)

$$U_{th} = -1..1 V$$

→ keine Hysterese messbar → unempfindlich gegen sichtbares Licht → extrem stabil !

> Appl. Phys. Lett. **90**, 063502 (2007) Appl. Phys. Lett. **91**, 193504 (2007) phys. stat. sol. (rrl) **1**, 175 (2007)

Grundlage hoher Ladungsträgerbeweglichkeit

Überlapp ausgedehnter *ns* Orbitale \Rightarrow hohe Beweglichkeit in amorphen Schichten

Amorphous

Amorphous

Stabilität des analogen Treiber-TFTs:

Verschiebung der TFT Charakteristika \Rightarrow Drift der Pixelhelligkeit

a-Si TFT Instabilität – Geisterbilder

AMOLED Display mit Si TFT backplane

Originalbild (Stress der TFTs)

Homogenes Graubild mit "Ghost image"

Lee et al. IEEE Electron Device Lett. 27, 830 (2006)

Verschiebung der Schwellspannung nach 10 h Gate-bias Stress (U_g =10 V)

29.09.2009

Verschiebung der Schwelle V_{thr} nach 10 h Gate-Bias-Stress V_g = 10 V

[Zn]:[Sn] Kompositionen mit hoher Stabilität der TFTs

29.09.2009

1000 h Lebensdauermessung

nach 1000 h: DV_{th} = 320 mV bei Strombelastung 100 × I_{OLED}

Vergl. α -Si TFT DV_{th} = 2 V schon nach 5 h

⇒ bislang weltweit stabilste TFTs mit amorphem Kanalmaterial

phys. stat. sol. (rrl) **1**, 175 (2007) *Appl. Phys. Lett.* **90**, 063502 (2007)

TTFTs und Transparente OLEDs

Aktives OLED Pixel, getrieben durch einen TTFT

Drain AZO Kontakt \rightarrow OLED Kathode

TTFTs und Transparente OLEDs

Transmission 70 % im sichtbaren Spektralbereich (OLED+TFT)

OLED "aus": $U_g < 0 \text{ V}, U_g = 5 \text{ V} \rightarrow 600 \text{ cd/m}^2$

TTFTs und Transparente OLEDs

Baustein transparenter AMOLED Displays

P. Görrn et al., Adv. Mater. 18, 738 (2006)

 $W/L=100~\mu m/10~\mu m$

pixel area: $180 \times 240 \ \mu m^2$

transmissivity 80 %

ZTO Pixeldriver

Requirement:

full HD (1,920x1,080 pixels) + 100 Hz refresh

frame-time 10 ms

max. pixel charging time $\sim 10 \ \mu s$

Time Constant for Charging

Pulsewidth of data and select pulses 10 μs

 $U_{c}(t) = U_{c,max}(1 - \exp(-t/\tau))$

at t = τ : C is charged to 63 %

Time constant τ for the charging of *C* : 5 µs

 I_{pixel} =1 μ A \rightarrow 880 cd/m² (@ 38 cd/A)

29.09.2009

US-DOD specs.: day-light perception of see-through displays: 5,000 cd/m²

charging time 10 μ s:

 I_{pixel} up to 4.8 $\mu A \rightarrow$ 4,224 cd/m² (@ 38 cd/A OLED efficiency) within 10 ms: 1,700 cd/m² \rightarrow 1,676 cd/m² ~ (1.4 %)

Zusammenfassung

Transparente Elektroden für transparente OLEDs

Transparente Dünnschichtverkapselung mittels ALD

ZnO-basierte transparente Dünnschichttransistoren

DC bias stress: U_{ds} =10 V, U_{gs} =10 V, I_{ds} = 188 μ A

Exzellente Stabilität unter Stress (1000 h)

Transparente Treiber (100 Hz, full HD, >4,000 cd/m²)

Danksagung

Partner im Bereich: Transparente OLEDs+Displays:

