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Abstract

In this note, we introduce and characterize an efficient value for TU

games with a cooperation structure which generalizes the Owen (1977)

value for games with a coalition structure but which does not deviate too

much from the Myerson (1977) value.
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1. Introduction

Consider the TU game with the player set N = {P1, P2, P3, A} and the coalition
function given by

v (K) =

⎧⎨⎩ 1 , |K ∩ {P1, P2, P3}| > 1,
0 , |K ∩ {P1, P2, P3}| ≤ 1,

, K ⊆ N.

A is a Null player and the presence of any two of the productive players P1, P2, and

P3 already suffices to produce the worth of 1. Suppose all these players cooperate

in order to create the grand coalition’s worth of v (N) = 1. If the players do

not form any coalitions when bargaining on the distribution of v (N) , then, for

symmetry reasons, one would expect an equal split between the three productive

players. Would/should this split change if P1 and P2 formed a bargaining bloc?

What if these players could form this bloc only via the Null player A?

As an answer to questions like the first one, Owen (1977) introduces and axio-

matizes an efficient value for games with coalition structure (partition of the player

set). Hart and Kurz (1983; 1984) provide alternative axiomatizations and explore

stability issues with respect to the Owen value. In our leading example, the Owen

value assigns the payoff 1
2
to P1 and to P2 while P3 and A get nothing. Since

the players P1 and P2 already produce the grand coalition’s worth and since they

bargain as one person as well as for symmetry reasons, this fits nicely with our

intuitions.

Yet, the Owen value may not give an adequate answer to the second type of

questions. If P1 and P2 need A in order to form a bargaining bloc then one could

argue that–despite being a Null player–A should obtain a positive payoff. How-

ever, adding A to the bloc formed by P1 and P2 does not affect the Owen payoffs.

One reason for this is that coalition structures are too coarse structures. From the

coalition {P1, P2, A} alone one cannot infer whether A is necessary to connect the
productive players P1 and P2 or not. The necessity of A can be modelled by the

undirected graph

P1

• ––

A

• ––

P2

•
P3

•
(1.1)
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where P1 and P2 are connected but only via a chain of links involving A. Of course,

this transcends the world of coalition structures and leads into the realm of coope-

ration structures (undirected graphs).

Generalizing the Shapley (1953) value for TU games and the Aumann and Drèze

(1974) value for TU games with a coalition structure, Myerson (1977) introduced a

value for TU games with a cooperation structure (henceforth CO-games and CO-

value). As an alternative, Meessen (1988) suggests the position value for CO-games

which was popularized by Borm, Owen and Tijs (1992). Yet another CO-value

has been introduced by Hamiache (1999) which was discussed by Bilbao, Jiménez

and López (2006). All these CO-values have in common that they are component

efficient. In contrast to efficiency, this corresponds to the interpretation of connected

components as productive units. In the following, we focus on the Myerson value as

the most eminent one of these CO-values.

Since in our leading example the connected component {P1, P2, A} already pro-
duces v (N) , the Myerson payoffs for the graph in (1.1) actually are efficient, but this

is rather accidental. Just increase v (N) by a small amount. Moreover, for the empty

graph, the Myerson payoffs vanish due to component efficiency. Hence one would

like to have an efficient CO-value which recognizes, for example, the coordinating

role of player A in the situation above.

This is what this paper aims at. We introduce and axiomatize a CO-value that

generalizes the Owen value to the class of CO-games and which, in a sense, does not

deviate too much from the Myerson value. More specific, our CO-value coincides

with the Owen value for completely connected components and coincides with the

Myerson value for connected graphs. For the graph (1.1) in our leading example,

that CO-value assigns the payoffs ϕP1 = ϕP2 =
5
12
, ϕA =

1
6
, and ϕP3 = 0 which

meet our intuitions concerning player A.

The axiomatization involves four axioms. Besides efficiency, we require our CO-

value to assign the same payoffs for the complete graph as for the empty graph.

Further, merging connected components into single players should not affect the

component’s payoffs. Finally, we modify the Myerson fairness axiom such that the

number of components involved is not affected by removing a link. Yet, the player

set involved may shrink.

The plan of this paper is as follows: Basic definitions and notation are given in

second section. In the third section, we discuss some axioms related to CO-values.

Our CO-value is introduced and axiomatized in the fourth section. The fifth section
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explores the relation of our CO-value to the Myerson value and to the Owen value as

well as consistency properties, and touches stability issues. A few remarks conclude

the paper.

2. Basic definitions and notation

In order to avoid set theoretic complications, we assume that there is a large

enough set U that contains the names of the players. A (TU) game is a pair (N, v)
consisting of a non-empty and finite set of players N ⊂ U and a coalition function
v : 2N → R, v (∅) = 0. In general, we consider the set of all TU games, possibly

equipped with some additional structure. v (K) is called the worth of K ⊆ N ;

subsets of N are called coalitions. For ∅ 6= T ⊆ N, the game (N, uT ), uT (K) = 1
if T ⊆ K and uT (K) = 0 otherwise, is called a unanimity game. The sum v + v0

of two coalition functions on N is given by (v + v0) (K) = v (K) + v0 (K) for all

K ⊆ N ; v|N 0 denotes the restriction of v to N 0 ⊆ N. A game is called superadditive
iff v (K ∪K 0) ≥ v (K) + v (K 0) for all K,K 0 ⊆ N, K ∩K 0 = ∅.
A value is an operator ϕ that assigns payoff vectors ϕ (N, v) ∈ RN to all games

(N, v) , N ⊂ U .An order of a setN is a bijection σ : N → {1, . . . , |N |}with the inter-
pretation that i is the σ (i)th player in σ. The set of these orders is denoted byΣ (N) .

The set of players not after i in σ is denoted byKi (σ) = {j ∈ N : σ (j) ≤ σ (i)} . The
marginal contribution of i in σ is defined asMCvi (σ) := v (Ki (σ))−v (Ki (σ) \ {i}) .
The Shapley (1953) value Sh is defined by

Shi (N, v) := |Σ (N)|−1
X

σ∈Σ(N)

MCvi (σ) , i ∈ N.(2.1)

For K ⊆ N, we denote by ϕK (N, v, ·) the sum
P

i∈K ϕi (N, v, ·) .
A coalition structure for (N, v) is a partition P ⊆ 2N where P (i) denotes the

cell containing player i. We denote by hSi , S ⊆ N the atomistic partition on S,

hSi := {{i} |i ∈ S} . By P|N 0 we denote the restriction of the partition P on N

to N 0 ⊆ N, P|N 0 := {P (i) ∩N 0|i ∈ N 0} . A CS-game is a game together with a

coalition structure, (N, v,P) . A CS-value is an operator ϕ that assigns payoff vectors
ϕ (N, v,P) ∈ RN to all CS-games (N, v,P) , N ⊂ U . For any coalition structure P
on N, we define a subset

Σ (N,P) := {σ ∈ Σ (N) |∀i, j ∈ P (i) : |σ (i)− σ (j)| < |P (i)|}(2.2)
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of Σ (N) . The Owen (1977) value is given by

Owi (N, v,P) := |Σ (N,P)|−1
X

σ∈Σ(N,P)

MCvi (σ) , i ∈ N.(2.3)

Any σ ∈ Σ (N,P) uniquely determines some σ|P ∈ Σ (P) and σ|P ∈ Σ (P ) , P ∈ P
such that σ|P (P (i)) < σ|P (P (j)) iff σ (i) < σ (j) for all i, j ∈ N or σ|P (i) < σ|P (j)
iff σ (i) < σ (j) for all i, j ∈ P , respectively. For σi ∈ Σ (P (i)) and ρ ∈ Σ (P) , we
set

Σ (N,P,σi, ρ) :=
©
σ ∈ Σ (N,P) |σ|P = ρ ∧ σ|P(i) = σi

ª
.(2.4)

A cooperation structure for (N, v) is an undirected graph (N,L) , L ⊆ LN :=

{{i, j} |i, j ∈ N, i 6= j} . A typical element of L is written as ij. Given any graph
(N,L) , N splits into (maximal connected) components the set of which is denoted

by C (N,L); Ci (N,L) ∈ C (N,L) denotes the component containing i ∈ N. L|N 0 =

{{i, j} ∈ L|i, j ∈ N 0} denotes the restriction of L to N 0 ⊆ N. For any partition

P ⊆ 2N , LP denotes the graph
S
P∈P L

P which splits in the completely connected

components in C
¡
N,LP

¢
= P.

A CO-game is a game together with a cooperation structure. A CO-value is an

operator ϕ that assigns payoff vectors ϕ (N, v, L) ∈ RN to all CO-games (N, v, L) ,
N ⊂ U . The Myerson (1977) value μ is defined by

μ (N, v, L) := Sh
¡
N, vL

¢
, vL (K) :=

X
S∈C(K,L|K)

v (S) , K ⊆ N.(2.5)

3. Axioms for CO-values

In this section, we consider several axioms for CO-values with respect to bargain-

ing within the grand coalition.

Axiom 3.1 (Additivity, A). ϕ (N, v + v0, L) = ϕ (N, v, L) + ϕ (N, v0, L) .

From a mathematical viewpoint, additivity is nice axiom which is satisfied by

quite a lot of values for TU games with or without additional structures and which

is part of many axiomatizations. Nevertheless, additivity does not reflect any fairness

considerations and therefore one may wish to avoid explicit reference to this property.

Axiom 3.2 (Efficiency, E). ϕN (N, v, L) = v (N) .

We feel that the efficiency axiom presupposes the grand coalition to be the pro-

ductive unit which creates its worth v (N). This corresponds to the interpretation
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of the connected components of L as bargaining blocs which are formed via bilateral

agreements or communication channels.

Axiom 3.3 (Component efficiency, CE). For all C ∈ C (N,L) , we have

ϕC (N, v, L) = v (C) .

Component efficiency evokes another interpretation of the graph L. In order to

cooperate in the production of worth, players have to be connected via a chain of

links. Hence, the connected components C of L are the productive units which

produce their worth v (C) .

Axiom 3.4 (Fairness, F). For all ij ∈ L, we have

ϕi (N, v, L)− ϕi (N, v, L− ij) = ϕj (N, v, L)− ϕj (N, v, L− ij) .

CE and F are the original axioms that characterize the Myerson value. The very

nice fairness axiom F has strong consequences far beyond pure fairness considera-

tions. In particular, van den Nouweland (1993, pp. 28) shows that μ satisfies the

following axiom which says that (distribution of) payoffs within a component is not

affected by the players outside. In general, of course, CD and E are incompatible.

Axiom 3.5 (Component decomposability, CD). For all i ∈ N,

ϕi (N, v, L) = ϕi
¡
Ci (N,L) , v|Ci(N,L), L|Ci(N,L)

¢
.

Axiom 3.6 (Equivalence, Q). ϕ
¡
N, v, LN

¢
= ϕ (N, v, ∅) .

This axiom says that–from the bargaining viewpoint–it does not make a differ-

ence whether the players do not form any (bargaining) components (L = ∅) or they
form just one such component where all players are completely connected (L = LN).

Note that the Owen value has a similar property: The Owen payoffs for P = {N}
and P = hNi coincide. We feel that Q as a natural generalization of that property

should be satisfied by an efficient CO-value.

Axiom 3.7 (Modified fairness, MF). For all ij ∈ L,

ϕi (N, v, L)− ϕi
¡
Ni (L, ij) , v|Ni(L,ij), L|Ni(L,ij)

¢
= ϕj (N, v, L)− ϕj

¡
Nj (L, ij) , v|Nj(L,ij)L|Nj(L,ij)

¢
where

Ni (L, ij) := N\ (Ci (N,L) \Ci (N,L− ij)) .(3.1)
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MF is intended to replace the fairness axiom F. It is trivially satisfied if Ci (N,L)

does not split by removing the link ij since thenNi (L, ij) = N . Otherwise, Ci (N,L)

splits into two disjoint components. In this case, Ni (L, ij) = N\Cj (N,L− ij) , i.e.
the players in j’s component are removed from N . Hence, and this seems to be one

important thing aboutMF, all graphs involved have the same number of connected

components while the number of players may differ. We feel that this modification of

F fits nicely with the interpretation of the graph L as a device to model structured

bargaining blocs. Compare this with F. There, the player set involved is fixed at N

but removing a link may increase the number of components. Note also the role of

MF in the proof of the consistency property of the CO-value to be introduced in

Theorem 5.5. Further, compare the player set in (3.1) with those in (5.2) and (5.4).

Axiom 3.8 (Component merging, CM). For all C ∈ C (N,L) , we have

ϕC (N, v, L) = ϕC (C (N,L) , v ◦ ∪, ∅)

where v ◦ ∪ (K) = v
¡S

S∈K S
¢
for all K ⊆ C (N,L) .

CM says the distribution of worth among the components depends only on the

game between coalitions, (C (N,L) , v ◦ ∪) , which are completely disconnected. This
could be paraphrased as that merging all connected components into single players

does not affect the component’s payoffs. I.e. the inner structure of the components

does not matter in this respect. What matters is just the fact that they are con-

nected. Note that CM is very similar to Owen’s (1977) axiom A3.

Of course, instead of CM one could think of a more graph-related axiom which

requires the component’s payoffs not to be affected by inflating links, i.e. by merging

directly connected players i and j, i.e. ij ∈ L, removing the resulting loop at ij, and
identifying parallel links. Yet, this would imply CM by successively merging links.

The other way round, inflating links is equivalent to CM if one assumes invariance

under the renaming of players.

4. A generalization of the Owen value

In this section, we show that some of the axioms advocated in the previous section,

in particular E, Q, MF, and CM, already characterize a CO-value which satisfies

the remaining such axioms. Further, the non-redundancy of our axiomatization is

established.
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4.1. Uniqueness. We first consider connected graphs, i.e. all players are contained

in one bargaining bloc. In this case, one could argue that the distribution of the

grand coalition’s worth should be governed by the inner structure of that single bloc

and the fairness considerations embodied in the Myerson value. Yet, this is already

implied by E and MF.

Lemma 4.1. If a CO-value ϕ satisfies E and MF then it coincides with μ on all

connected graphs.

Proof. We first note that for connected graphsMF involves connected graphs only.

μ satisfies CE which for connected graphs becomes E. We also have

μi (N, v, L)− μj (N, v, L)

CD
= μi

¡
Ci (N,L) , v|Ci(N,L), L|Ci(N,L)

¢
− μj

¡
Cj (N,L) , v|Cj(N,L), L|Cj(N,L)

¢
= μi

¡
Ni (L, ij) , v|Ni(L,ij), L|Ni(L,ij)

¢
− μj

¡
Nj (L, ij) , v|Nj(L,ij), L|Nj(L,ij)

¢
for ij ∈ L where the second equation follows from Ci (N,L) = Ci(Ni (L, ij) ,

L|Ni(L,ij)) and the analogon for j. Hence, μ satisfies MF.
We mimic the Myerson (1977) proof of uniqueness. Suppose ϕ and ϕ̄ both satisfy

E and MF. Suppose N is a minimal player set such that ϕ and ϕ̄ differ on a

connected graph. Further, suppose L is a minimal connected graph on N such that

they do so. By CE, L contains at least one edge. If j ∈ Ci (N,L− ij) thenMF and
the minimality of L imply ϕi (N, v, L) − ϕj (N, v, L) = ϕ̄i (N, v, L) − ϕ̄j (N, v, L) .

And if j /∈ Ci (N,L− ij) then againMF and the minimality of N imply ϕi (N, v, L)

−ϕj (N, v, L) = ϕ̄i (N, v, L)−ϕ̄j (N, v, L) . Since L is connected, we have ϕi (N, v, L)
−ϕ̄i (N, v, L) = ∆ for some ∆ and all i ∈ N. E then implies ∆ = 0. Contradiction.

Applying this Lemma and again the Myerson technique, we are now able to ap-

proach the general case.

Theorem 4.2. There is at most one CO-value that satisfies E, Q, MF, and CM.

In view of their role in the proof below, one could of course mergeQ and CM into

a single axiom. However, we feel that the two axioms refer to essentially different

considerations. While Q basically is as a very weak expression of invariance with

respect to the renaming of players, CM requires the payoff of the components to be

independent of their inner structure.
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Proof. Let ϕ be a CO-value that satisfies E, Q,MF, and CM. By CM and Q, we

have

ϕC (N, v, L) = ϕC
¡
C (N,L) , v ◦ ∪, LC(N,L)

¢
for all C ∈ C (N,L) . Since

¡
C (N,L) , LC(N,L)

¢
is connected, Lemma 4.1 implies

ϕC (N, v, L) = μC
¡
C (N,L) , v ◦ ∪, LC(N,L)

¢
.(4.1)

Again, we mimic the Myerson (1977) proof of uniqueness. Suppose there were

two CO-values, ϕ and ϕ̄, that satisfy E, Q, MF, and CM. Let N be a minimal

player set such that ϕ 6= ϕ̄ and let L be a minimal graph on N such that they do so.

By E, N then contains more than one player, and by Q and Lemma 4.1, L contains

at least one link. If Ci (N,L) = {i} , then ϕi (N, v, L) = ϕ̄i (N, v, L) by (4.1). For

ij ∈ L|Ci(N,L), we have

ϕi (N, v, L)− ϕj (N, v, L)

= ϕi
¡
Ni (L, ij) , v|Ni(L,ij), L|Ni(L,ij)

¢
− ϕj

¡
Nj (L, ij) , v|Nj(L,ij)L|Nj(L,ij)

¢
= ϕ̄i

¡
Ni (L, ij) , v|Ni(L,ij), L|Ni(L,ij)

¢
− ϕ̄j

¡
Nj (L, ij) , v|Nj(L,ij)L|Nj(L,ij)

¢
= ϕ̄i (N, v, L)− ϕ̄j (N, v, L)

by MF, the minimality of N and L, and again MF. Thus, we have ϕj (N, v, L) −
ϕ̄j (N, v, L) = ϕk (N, v, L) − ϕ̄k (N, v, L) for all j, k ∈ Ci (N,L) . In view of (4.1),
this implies ϕj (N, v, L) = ϕ̄j (N, v, L) for all j ∈ Ci (N,L) . A contradiction.

4.2. Existence. We show that there exists a CO-value that combines the Owen

value (distribution between components) and the Myerson value (distribution within

components) which satisfies our set of axioms.

Theorem 4.3. There is a CO-value that satisfies E, Q, MF, and CM.

Proof. Consider the CO-value ϕ given by

ϕi (N, v, L) = |Σ (C (N,L))|−1
X

σ∈Σ(C(N,L))

μi
¡
Ci (N,L) , v

σ
Ci(N,L)

, L|Ci(N,L)
¢

(4.2)

where vσC is given by

vσC (S) = v

⎛⎜⎜⎝S ∪ [
C0∈C(N,L):
σ(C0)<σ(C)

C 0

⎞⎟⎟⎠− v
⎛⎜⎜⎝ [
C0∈C(N,L):
σ(C0)<σ(C)

C 0

⎞⎟⎟⎠ , S ⊆ C(4.3)
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for all C ∈ C (N,L) . We then haveX
i∈N

ϕi (N, v, L) = |Σ (C (N,L))|−1
X

σ∈Σ(C(N,L))

X
C∈C(N,L)

μC (C, v
σ
C , L|C)

= |Σ (C (N,L))|−1
X

σ∈Σ(C(N,L))

X
C∈C(N,L)

vσC (C)

= |Σ (C (N,L))|−1
X

σ∈Σ(C(N,L))

v (N)

= v (N)

by (4.2) and changing the order of summation, by the fact that (C,L|C) is connected
for C ∈ C (L,N) and that μ is component efficient, and by (4.3). Hence, ϕ satisfies
E.

For L = ∅, we have Ci (N,L) = {i} , hence C (N,L) ∼= N and Σ (C (N,L)) ∼=
Σ (N) , and therefore

ϕi (N, v, ∅) = |Σ (C (N,L))|−1
X

σ∈Σ(C(N,L))

μi ({i} , vσi , ∅)

= |Σ (N)|−1
X

σ∈Σ(N)

vσi (i)

= |Σ (N)|−1
X

σ∈Σ(N)

MCvi (σ)

= Shi (N, v)

by (4.2), again by the fact that ({i} , ∅) is connected and that μ is component

efficient, by (4.3) and the definition of MCvi (σ) , and by (2.1). Further, by (4.2)

and (4.3), we have ϕ
¡
N, v, LN

¢
= μ

¡
N, v, LN

¢
since

¡
N,LN

¢
is connected. Since

μ
¡
N, v, LN

¢
= Sh (N, v) (Myerson, 1977), ϕ also satisfies Q.

Next, we show that ϕ satisfies CM. In view of (4.2), it suffices to show that

μC (C, v
σ
C , L|C) = μ{C}

³
{C} , (v ◦ ∪)σ{C} , ∅

´
for all C ∈ C (N,L) and σ ∈ Σ (C (N,L)) . Since μ is component efficient and

(C,L|C) as well as ({C} , ∅) are connected for C ∈ C (N,L) in general, this is

equivalent to vσC (C) = (v ◦ ∪)
σ
{C} ({C}) which holds by (4.3).
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Finally, we show that ϕ satisfiesMF. In view of (4.2) and (4.3), it suffices to show

that

μi
¡
Ci (N,L) , v

σ
Ci(N,L)

, L|Ci(N,L)
¢
− μi

¡
Ci (N,L− ij) , vσCi(N,L), L|Ci(N,L−ij)

¢
= μj

³
Cj (N,L) , v

σ
Cj(N,L)

, L|Ci(N,L)
´
− μj

³
Cj (N,L− ij) , vσCj(N,L), L|Ci(N,L−ij)

´
holds for all ij ∈ L. Yet, this follows from μ satisfying F and CD.

Below, we show that the value defined by (4.2) and (4.3) is a generalization of the

Owen value. This may justify the notation Ow] where the musical “sharp” symbol

] is intended to indicate a graph.

4.3. Non-redundancy. Next, we show that our axiomatization is non-redundant.

Since by Theorem 4.2 and 4.3 Ow] is characterized by E, Q, MF, and CM, it

suffices to show that there are CO-values that are different from Ow] but satisfy

any three of theses axioms. The CO-value ϕ 6= Ow] given by ϕi (N, v, L) = 0 for

all i ∈ N satisfies MF, CM, and Q. From our leading example it is clear that

Ow] and Ow applied to the coalition structure C (N,L) do not coincide. Yet, the

latter satisfies E, CM, and Q. Also, the CO-value ϕ 6= Ow] given by ϕi (N, v, L)

= |N |−1 v (N) for all i ∈ N satisfies E,MF, and Q. Finally, consider the CO-value

ϕ 6= Ow] given by

ϕi (N, v, L) = μi (N, v, L) +
v (N)−

P
C∈C(N,L) v (C)

|C (N,L)| |Ci (N,L)|
.(4.4)

Since μ satisfies CE, we have

ϕCi(N,L) (N, v, L) = v (Ci (N,L)) +
v (N)−

P
C∈C(N,L) v (C)

|C (N,L)| ,(4.5)

i.e. ϕCi(N,L) (N, v, L) depends only on the worth of the components in C (N,L) and

|C (N,L)| which are not affected by considering components as players. Hence, ϕ
satisfies CM. Summing up (4.5) over C (N,L) then shows ϕN (N, v, L) = v (N) , i.e.

ϕ satisfies E. Further, we have

ϕi (N, v, L)− ϕj (N, v, L)
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(4.4)
= μi (N, v, L)− μj (N, v, L)

μ,CD
= μi

¡
Ci (N,L) , v|Ci(N,L), L|Ci(N,L)

¢
− μj

¡
Cj (N,L) , v|Cj(N,L), L|Cj(N,L)

¢
μ,F
= μi

¡
Ci (N,L− ij) , v|Ci(N,L−ij), L|Ci(N,L−ij)

¢
−μj

¡
Cj (N,L− ij) , v|Cj(N,L−ij), L|Cj(N,L−ij)

¢
μ,CD
= μi

¡
Ni (L, ij) , v|Ni(L,ij), L|Ni(L,ij)

¢
− μj

¡
Nj (L, ij) , v|Nj(L,ij), L|Nj(L,ij)

¢
(4.4)
= ϕi

¡
Ni (L, ij) , v|Ni(L,ij), L|Ni(L,ij)

¢
− ϕj

¡
Nj (L, ij) , v|Nj(L,ij)L|Nj(L,ij)

¢
which finally shows that ϕ also satisfies MF.

4.4. An example. Concluding this section, we reconsider our leading example with

the graph in (1.1). There are two orders, σ and ρ, on C (N,L) = {C, {P3}}, C =
{P1, P2, A} where σ (C) = 1 and ρ (C) = 2. By (4.3), this gives the payoff functions

vσC (S) = v (S) , S ⊆ C and

vρC (S) = v (S ∪ {P3})− v ({P3}) =

⎧⎨⎩ 1 , |S ∩ {P1, P2}| > 0
0 , |S ∩ {P1, P2}| = 0

S ⊆ C.

Straightforward calculations in accordance with (2.5) yield the Myerson payoffs

μ(P1,P2,A) (C, v
σ
C , L|C) =

µ
1

3
,
1

3
,
1

3

¶
and μ(P1,P2,A) (C, v

ρ
C , L|C) =

µ
1

2
,
1

2
, 0

¶
.

By (4.2), this gives the payoffs

Ow](P1,P2,P3,A) (N, v, L) =

µ
5

12
,
5

12
, 0,
1

6

¶
as in the Introduction where the payoff for P3 is immediate from E.

5. Properties

5.1. Relation to the Myerson value and to the Owen value. From (4.2)

and (4.3) it is easy to see that Ow] and μ coincide on connected graphs and that

Ow] inherits additivity from the Myerson value in general. The axiomatizations

for the Owen value of Owen (1977) itself as well as those of Hart and Kurz (1983)

involve the additivity axiom. Khmelnitskaya and Yanovskaya (2006) characterize the

Owen value without additivity by employing the Young (1985) marginality axiom.

Vázquez-Brage, Garćıa-Jurado and Carreras (1996) suggest a generalization of both

the Owen and the Myerson value the axiomatization of which also does not involve
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the additivity axiom. However, their value refers to TU games with both a coalition

structure and a cooperation structure. For the complete graph, this value coincides

with the Owen value, but if the coalition structure equals the set of the graph’s

components then the Myerson value results. Hence, that value and our value are

essentially different. Yet, in view of the following Theorem, our value indeed extends

the Owen value to CO-games and therefore provides another justification of the

Owen value without the additivity axiom.

Theorem 5.1. Ow]
¡
N, v, LP

¢
= Ow (N, v,P) .

Proof. Since Ci
¡
N,LP

¢
= P (i) , we have

Ow]i
¡
N, v, LP

¢
(4.2)
= |Σ (P)|−1

X
ρ∈Σ(P)

μi

³
P (i) , vρP(i), L

P(i)
´

(5.2)
= |Σ (P)|−1

X
ρ∈Σ(P)

Shi
³
P (i) , vρP(i), L

P(i)
´

(2.1)
= |Σ (P)|−1

X
ρ∈Σ(P)

|Σ (P (i))|−1
X

σi∈Σ(P(i))

MC
vρP(i)
i (σi)

(4.3),(2.4)
= |Σ (P)|−1

X
ρ∈Σ(P)

|Σ (P (i))|−1
X

σi∈Σ(P(i))

|Σ (N,P,σi, ρ)|−1
X

σ∈Σ(N,P,σi,ρ)

MCvi (σ)

(2.4)
= |Σ (N,P)|−1

X
σ∈Σ(N,P)

MCvi (σ)

(2.3)
= Owi (N, v,P)

for all i ∈ N.

Since the Owen value and the Shapley value coincide for P = {N} and P = hNi
the following property is immediate.

Corollary 5.2. Ow]
¡
N, v, LN

¢
= Ow] (N, v, ∅) = Sh (N, v) .

Finally, CM andQ then imply that the distribution of the grand coalition’s worth

between components is governed by the same principles for Ow] and Ow .

Corollary 5.3. For all C ∈ C (N,L) , Ow]C (N, v, L) = OwC (N, v,C (N,L)) .
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5.2. Consistency. Owen (1977) shows that for Ow the distribution of worth be-

tween coalitions and within coalitions is governed by the same principles. In partic-

ular, he shows that his value satisfies the following consistency property:

Theorem 5.4 (Owen 1977). For all i ∈ N, we have

Owi (N, v,P) = Owi
³
P (i) , vN,PP(i), {P (i)}

´
= Owi

³
P (i) , vN,PP(i), ∅

´
(5.1)

where the coalition function vN,PP on P ∈ P is defined by

vN,PP (S) := Ow]S
¡
N\ (P\S) , v|N\(P\S),P|N\(P\S)

¢
, S ⊆ P.(5.2)

Ow] satisfies a similar consistency property. In view of {P (i)} = P|P(i), the
following Theorem is the obvious analogon to Theorem 5.4. Since the components

of P have no inner structure, however, there is no such analogon to the second

equation in (5.1).

Theorem 5.5. We have Ow] = Ow# where the CO-value Ow# is defined by

Ow#i (N, v, L) = Ow
]
i

³
Ci (N,L) , v

N,L
Ci(N,L)

, L|Ci(N,L)
´

, i ∈ N(5.3)

where the coalition functions vN,LC on C ∈ C (N,L) are defined by

vN,LC (S) := Ow]S
¡
N\ (C\S) , v|N\(C\S), L|N\(C\S)

¢
, S ⊆ C.(5.4)

Proof. By Theorems 4.2 and 4.3, it suffices to show that Ow# satisfies E, Q, MF,

and CM. Since Ow] satisfies E and by (5.3) and (5.4), we have Ow#C (N, v, L) =

Ow]C (N, v, L) for all C ∈ C (N,L) . Therefore, Ow# inherits E and CM from Ow].

In order to show Q, we prove Ow# (N, v, ∅) = Sh (N, v) = Ow#
¡
N, v, LN

¢
. The

first equation follows from

Ow#i (N, v, ∅)
(5.3)
= Ow]i

³
{i} , vN,L{i} , ∅

´
(5.4)
= vN,L{i} ({i})

(5.4)
= Ow]i (N, v, ∅)

Thm. 5.1
= Owi (N, v, hNi) Cor. 5.2= Shi (N, v) .

By (5.3), Theorem 5.1, and (5.4), we have v
N,{N}
N (S) = vN,L

N

N (S) for all S ⊆ N.
Since

Ow#i
¡
N, v, LN

¢ (5.3)
= Ow]i

³
N, vN,L

N

N , LN
´
Thm. 5.1
= Owi

³
N, vN,L

N

N , {N}
´
,

Theorem 5.4 implies Ow#i
¡
N, v, LN

¢
= Owi (N, v, {N}) . Hence, Ow#

¡
N, v, LN

¢
=

Sh (N, v) by Theorem 5.1 and Corollary 5.2.
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Let now ij ∈ L and C := Ci (N,L) . We then have

Ow#i (N, v, L)−Ow
#
j (N, v, L)

(5.3)
= Ow]i

³
C, vN,LC , L|C

´
−Ow]j

³
C, vN,LC , L|C

´
MF
= Ow]i

³
Ci (N,L− ij) , vN,LC |Ci(N,L−ij), L|Ci(N,L−ij)

´
−Ow]j

³
Cj (N,L− ij) , vN,LC |Cj(N,L−ij), L|Cj(N,L−ij)

´
and

Ow#i
¡
Ni (L, ij) , v|Ni(L,ij), L|Ni(L,ij)

¢
−Ow#j

¡
Nj (L, ij) , v|Nj(L,ij), L|Nj(L,ij)

¢
(5.3)
= Ow]i

³
Ci (N,L− ij) , v

Ni(L,ij),L|Ni(L,ij)
Ci(N,L−ij) , L|Ci(N,L−ij)

´
−Ow]j

³
Cj (N,L− ij) , v

Nj(L,ij),L|Ni(L,ij)
Cj(N,L−ij) , L|Cj(N,L−ij)

´
.

Since Ci (N,L− ij) ⊆ C and by (5.4), we also have

vN,LC |Ci(N,L−ij) (S) = Ow
]
S

¡
N\ (C\S) , v|N\(C\S), L|N\(C\S)

¢
= v

Ni(L,ij),L|Ni(L,ij)
Ci(N,L−ij) (S)

for all S ⊆ Ci (N,L− ij) , analogously for j. Hence, Ow# satisfies MF.

In addition, Hart and Kurz (1983) show that for Ow the distribution of worth be-

tween coalitions is consistent with the distribution within coalitions in the following

sense.

Theorem 5.6 (Hart and Kurz 1983). Theorem 5.4 remains true if we replace the

coalition function vN,PP , P ∈ P by either of the following ones: For all S ⊆ P
(1)vN,PP := OwS (N, v, (P\{P}) ∪ {S, P\S})(5.5)

(2)vN,PP := OwS (N, v, (P\{P}) ∪ {S} ∪ hP\Si)(5.6)

The following conjecture tries to transfer the results of Theorem 5.6 to Ow] . In

(5.5), the component P ∈ P is split into the components S, P\S ⊆ P. In a sense, all
“links” between the players in S and those in P\S have been removed. This is the
idea of (5.7): Now, the links between players in S ⊆ C ∈ C (N,L) and C\S have
been removed indeed. The idea of (5.8) is the same except that the players in C\S
are completely connected which, of course, did not make a difference for coalition
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S L|N\(C\S) ∪ L|C\S L|N\(C\S) ∪ LC\S L|N\(C\S) (k)vN,LN (S)

{1} {23} {23} ∅ 1

{2} ∅ {13} ∅ 1
2

{3} {12} {12} ∅ 1
2

{1, 2} {12} {12} {12} 3
2

{1, 3} ∅ ∅ ∅ 3
2

{2, 3} {23} {23} {23} 1

N L L L 2

Table 5.1. Graphs and worths for the counterexample

functions. In (5.6), the players in S are also separated from those in P\S but the
players in P\S are isolated, i.e. they form singleton coalitions. (5.9) mimics this by
removing all links outside N\ (C\S) .

Conjecture 5.7. Theorem 5.5 remains true is we replace the coalition function

vN,LC , C ∈ C (N,L) by either of the following ones: For all S ⊆ C
(1)vN,LC (S) := Ow]S

¡
N, v, L|N\(C\S) ∪ L|C\S

¢
(5.7)

(2)vN,LC (S) := Ow]S
¡
N, v, L|N\(C\S) ∪ LC\S

¢
(5.8)

(3)vN,LC (S) := Ow]S
¡
N, v, L|N\(C\S)

¢
(5.9)

As the following example reveals, however, this conjecture is wrong.

Example 5.8. Set N = {1, 2, 3} , L = {12, 23} and v = u{1,2} + u{1,3}. Since

L is connected, one easily obtains Ow] (N, v, L) = μ (N, v, L) =
¡
5
6
, 5
6
, 1
3

¢
. Table

5.1 lists the graphs and worths involved in Conjecture 5.7 where the payoff func-

tions coincide. Again, one easily obtains Ow# (N, v, L) = Ow]N

³
N, (k)vN,LN , L

´
=

μ
³
N,(k) vN,LN , L

´
=
¡
1, 1

2
, 1
2

¢
. I.e., Ow# 6= Ow] .

5.3. Stability issues. Employing the Owen value, Hart and Kurz (1983) study

coalition formation in CS-games by strong equilibria of simultaneous coalition for-

mation games. Yet, Hart and Kurz (1984) provide examples of TU games that

do not allow for stable coalition structures. Dutta, van den Nouweland and Tijs
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(1998) study link formation in CO-games by simultaneous link formation games

which involve the Myerson value. For superadditive games, they show that the

complete network can be supported by undominated Nash equilibria and coalition

proof Nash equilibria and that any such equilibrium yields the same payoffs. Partly,

this result rests on the following axiom which μ satisfies for superadditive games

(Myerson, 1977).

Axiom 5.9 (Link monotonicity, LM). For all i, j ∈ N,

ϕi (N, v, L+ ij) ≥ ϕi (N, v, L) .

As the following example reveals, Ow] fails this axiom.

Example 5.10. Consider the game (N, uN) , N = {1, 2, 3} which is superadditive
and the graph L = ∅. It is easy to check that we then have Ow]1

¡
N, u{1,2}, L

¢
= 1

3

but Ow]1 (N, uN , L+ 12) =
1
4
. Note that 2 /∈ C1 (N,L) .

Hence, since Ow] combines the Owen value and the Myerson value, it seems to us

that one cannot reasonably expect general stability results for Ow]. Nevertheless, in

view of (4.2) and (4.3), it is immediate that Ow] satisfies the following component

restricted version of LM for superadditive games.

Theorem 5.11 (Component restricted link monotonicity, CLM). If (N, v) is super-

additive then Ow] satisfies the following axiom: For all i ∈ N and j ∈ Ci (N,L) ,
ϕi (N, v, L+ ij) ≥ ϕi (N, v, L) .

6. Conclusion

In this paper, we introduced and advocated an efficient CO-value, Ow], which

combines the ideas underlying the Owen and the component efficient Myerson value.

In contrast to the Owen value, this value is capable to exploit the inner structure of

the bargaining blocs modelled by the connected components of a graph. This way,

Ow] may recognize e.g. the role of a coordinating player who keeps a bloc together.

As mentioned above, this may be an additional source for instability in network

formation. Nevertheless, it seems to be worthwhile to study implications of Ow] in

this regard, both in general and in specific applications.

van den Nouweland, Borm and Tijs (1992) extend the Myerson value to the class

of TU games with a conference structure (hypergraph on the player set) (henceforth

CF-games and CF-value) which we will call the Myerson CF-value. Remember, a
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hypergraph is a pair (N,H) consisting of a set N and a subset H of the power set 2N

the elements h of which are called hyperlinks or conference structures. Let C (N,H)

denote the set of connected components of (N,H) and Ci (N,H) the component

that hosts player i. Since the characterization of the Myerson CF-value is analogous

to that of the Myerson value, one may wonder whether the results of this paper

could be extended to CF-games.

Indeed, slightly adapting the arguments from this paper and van den Nouweland

et al. (1992), it is hardly more than a five-finger exercise to extend our CO-value

into a CF-value with analogous properties: In the definition, i.e. in (4.2) and (4.3),

the graph has to be replaced by a hypergraph, and in (4.2), the Myerson value has

to replaced by the Myerson CF-value. The characterization then involves extensions

of CE, Q, CF, and CM. Those of CE and CM are natural. The obvious extension

of Q would require ϕ
¡
N, v, 2N

¢
= ϕ (N, v, ∅) , but in view of the definition of the

Myerson CF-value, the complete hypergraph 2N could be replaced by the complete

graph LN as a subset of 2N . Besides CE, the Myerson CF-value is characterized by

the following modification of F: For all i, j ∈ h ∈ H, we have

ϕi (N, v,H)− ϕi (N, v,H\ {h}) = ϕj (N, v,H)− ϕj (N, v,H\ {h}) .

This translates into the following extension of MF: For all i, j ∈ h ∈ H,

ϕi (N, v,H)− ϕi
¡
Ni (H,h) , v|Ni(H,h), H|Ni(H,h)

¢
= ϕj (N, v,H)− ϕj

¡
Nj (H, h) , v|Nj(H,h), H|Nj(H,h)

¢
where

Ni (H, h) := N\ (Ci (N,H) \Ci (N,H\ {h})) .

It is easy to see that for hypergraphs containing just two-player hyperlinks the

modified axioms become the original ones.
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