Prof. Dr. S. Hollands Prof. Dr. R. Verch Dr. J. Zahn Dr. M. Schmidt

UNIVERSITAT LEIPZIG

Inst. f. Theoretische Physik Winter Term 2017/18

Relativistic Quantum Field Theory — Problem Sheet 4 2 pages — Problems 4.1 to 4.3

Problem 4.1 [In this problem, the metric sign convention opposite to Srednicki's is used] Show that $SL(2, \mathbb{C})$ is the universal covering group of the proper orthochronous Lorentz group $\mathscr{L}^{\uparrow}_{+}$, with the covering map $\Lambda(.): SL(2, \mathbb{C}) \to \mathscr{L}^{\uparrow}_{+}$ given by

$$\Lambda_{\mu\nu}(A) = \frac{1}{2} \text{Tr}(A\sigma_{\mu}A^*\sigma_{\nu})$$

where $\sigma_0 = 1$ is the 2 × 2 unit matrix and $\sigma_1, \sigma_2, \sigma_3$ are the Pauli matrices (see Problem 4.2 below).

For the proof, proceed along the following steps:

(1) Show that there is a one-to-one correspondence between coordinate vectors $x = (x^{\mu})_{\mu=0,\dots,3}$ in Minkowski spacetime and hermitean 2×2 matrices H_x given by

$$H_x = x^\mu \sigma_\mu, \quad x^\mu = \eta^{\mu\nu} \mathrm{Tr}(H_x \sigma_\nu)$$

where $(\eta^{\mu\nu}) = (\eta_{\mu\nu}) = \text{diag}(1, -1, -1, -1)$ and the **Einstein summation is employed**, i.e. doubly appearing indices (one of them downstairs, the other upstairs) are summed over.

(2) Show that

$$\det(H_x) = \eta_{\mu\nu} x^{\mu} x^{\nu} , \quad \frac{1}{2} (\det(H_x + H_y) - \det(H_x) - \det(H_y)) = \eta_{\mu\nu} x^{\mu} y^{\nu}$$

(The 2nd equation results from the first by applying the parallellogram identity to symmetric bilinear forms such as the Minowski product $\eta(x, y) = \eta_{\mu\nu} x^{\mu} y^{\nu}$.)

(3) Use the previous findings to show that for any $A \in SL(2, \mathbb{C})$ there is some proper, orthochronous Lorentz transformation $\Lambda(A)$ such that

$$AH_xA^* = H_{\Lambda(A)x}$$
.

(4) Show that $\Lambda(A)\Lambda(B) = \Lambda(AB)$, $\Lambda(\mathbf{1}_{2\times 2}) = \mathbf{1}_{4\times 4}$, $\Lambda(A) = \Lambda(B) \Rightarrow A = \pm B$, and that the matrix $\Lambda(A)$ is given by the equation above.

You may use the fact that $SL(2, \mathbb{C})$ is simply connected to conclude that (i) $\mathscr{L}_{+}^{\uparrow}$ is not simply connected and (ii) $SL(2, \mathbb{C})$ is the universal covering group of $\mathscr{L}_{+}^{\uparrow}$. If you like, you can also show that $SL(2, \mathbb{C})$ is simply connected.

Problem 4.2 [There was an error in a previously published version of this problem]

On $S(\mathbb{R}^4, \mathbb{C}^2)$, the Schwartz functions on \mathbb{R}^4 with values in \mathbb{C}^2 , introduce for given m > 0 the form

$$(\tilde{\varphi}, \tilde{\phi})_{1,m} = \int d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \succ d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \succ d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \succ d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \succ d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \succ d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \succ d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \succ d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p), \frac{-1}{m} p^\mu \sigma_\mu \tilde{\phi}(p) \mapsto d^4p \,\delta(p_\mu p^\mu + m^2)\theta(p^0) \cdot \prec \tilde{\varphi}(p)$$

where $\forall x, y \succ = \overline{x}_1 y_1 + \overline{x}_2 y_2$ for $x = (x_1, x_2)^T$, $y = (y_1, y_2)^T$ in \mathbb{C}^2 . The σ_{μ} are the Paulimatrices,

$$\sigma_0 = \mathbf{1}_{\mathbb{C}^2}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(a) Show that $(\tilde{\varphi}, \tilde{\phi})_{1,m}$ has the properties of a scalar product, apart from positive-definedness; however, $(\tilde{\varphi}, \tilde{\varphi})_{1,m} \geq 0$ holds (but $(\tilde{\varphi}, \tilde{\varphi})_{1,m} = 0$ can occur for $\tilde{\varphi} \neq 0$).

(b) Show that $U_{(A,a)}$ defined by

$$U_{(A,a)}\tilde{\varphi}(p) = e^{ip_{\mu}a^{\mu}}A\tilde{\varphi}(\Lambda(A^{-1})p)$$

is a (continuous) unitary representation of $\widetilde{\mathscr{P}}_{+}^{\uparrow}$, the universal covering group of the proper, orthochronous Poincaré group, on the Hilbert space $\mathfrak{h}_{1,m}$ obtained as completion of $\mathcal{S}(\mathbb{R}^4, \mathbb{C}^2)$ with respect to the scalar product $(., .)_{1,m}$. (Strictly, one has to first divide out all $\tilde{\varphi}$ with $(\tilde{\varphi}, \tilde{\varphi})_{1,m} = 0.$)

If you are ready for a challenge, you can try to show that the representation is irreducible.

Problem 4.3

For $\tilde{\varphi}$ in $\mathcal{S}(\mathbb{R}^4, \mathbb{C}^2)$, define

$$\tilde{\chi}(p) = \frac{1}{m} p^{\mu} \sigma_{\mu} \tilde{\varphi}(p) \quad (p \in \mathbb{R}^4)$$

and define also

$$\varphi(x) = \int \frac{d^3p}{2\omega_{\underline{p}}} e^{-i(\underline{p}\cdot\underline{x}-\omega_{\underline{p}}x^0)} \tilde{\varphi}(\omega_{\underline{p}},\underline{p})$$

where $\omega_{\underline{p}} = \sqrt{|\underline{p}|^2 + m^2}$, $\underline{p} \cdot \underline{x}$ is the Euclidean scalar product between 3-dimensional vectors \underline{p} and $\underline{x}, x = (x^0, \underline{x}) \in \mathbb{R}^4$; m > 0 is a constant. The definition of $\chi(x)$ is analogous.

(a) Show that, with $\sigma^j = \sigma_j$ for j = 1, 2, 3,

$$i(\sigma_0\partial_0 + \sigma^j\partial_j)\varphi(x) = m\chi(x), \quad i(\sigma_0\partial_0 - \sigma^j\partial_j)\chi(x) = m\varphi(x) \quad (x \in \mathbb{R}^4).$$

(b) On writing

$$\psi(x) = \begin{pmatrix} \varphi(x) \\ \chi(x) \end{pmatrix}, \quad \gamma^0 = \begin{pmatrix} 0 & \sigma_0 \\ \sigma_0 & 0 \end{pmatrix}, \quad \gamma^j = \begin{pmatrix} 0 & -\sigma_j \\ \sigma_j & 0 \end{pmatrix}$$

so that each $\psi(x)$ is an element in \mathbb{C}^4 and the γ^{μ} are complex 4×4 matrices, show that the equations for φ and χ in (a) can be written in the form

$$i\gamma^{\mu}\partial_{\mu}\psi(x) = m\psi(x) \quad (x \in \mathbb{R}^4)$$

This is called the **Dirac equation**. The matrices γ^{μ} are called **Dirac matrices**.

(c) Show that

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2\eta^{\mu\nu}\mathbf{1}_{4\times4}$$