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Abstract

When studying the causal propagation of a field φ in a globally hyperbolic spacetime M ,
one often wants to express the physical intuition that φ has compact support in spacelike
directions, or that its support is a spacelike compact set. We compare a number of logically
distinct formulations of this idea, and of the complementary idea of timelike compactness,
and we clarify their interrelations. E.g., a closed set A ⊂M has a compact intersection with
all Cauchy surfaces if and only if A ⊂ J(K) for some compact set K. (However, it does
not suffice to consider only those Cauchy surfaces that partake in a given foliation of M .)
Similarly, a closed set A ⊂M is contained in a region of the form J+(Σ−) ∩ J−(Σ+) for two
Cauchy surfaces Σ± if and only if the intersection of A with J(K) is compact for all compact
K. We also treat advanced, retarded and future and past compact sets in a similar way.

1 Introduction

Suppose φ is a physical field configuration on a globally hyperbolic spacetime M , i.e. it is a
(possibly distributional) section of some vector bundle V over M . When φ satisfies a normally
hyperbolic equation of motion with compactly supported initial data, then the support of φ is
contained in J(K) for some compact K ⊂M and hence it has a compact intersection with every
Cauchy surface [1, 2]. Such solutions occur often in the physics literature and are sometimes
described as being “compactly supported on all Cauchy surfaces”. However, when φ is subject
to a gauge symmetry, the properties of φ are usually not uniquely determined by its initial data,
because one may always add gauge terms with largely uncontrolled behaviour in the future or past.
In this case it is less obvious whether the criterion of compact support on all Cauchy surfaces still
correctly encodes the physical intuition that φ is “spacelike compactly supported”. This problem
was encountered explicitly by [3] in the context of linearised general relativity. There the authors
opted for the apparently stronger criterion that φ has support in J(K) for some compact K ⊂M .

In this note we will consider several distinct formulations of the idea that φ has a spacelike
compact support and we clarify their interrelations. In particular we show the equivalence of
the two formulations above (after making them more precise). Furthermore, treating φ as a
distribution (density) and assuming it has a spacelike compact support, the natural class of smooth
testing sections of V consists of the ones which have timelike compact support. This leads us to
consider also several distinct notions of timelike compactness, in order to clarify their relations.
In addition we will take the time orientation of M into account and treat advanced, retarded and
future, resp. past, compact supports along similar lines.

First, we consider a purely geometric situation, focussing on closed subsets of M . In Sec.
2, we discuss spacelike compact sets, together with advanced and retarded sets. Sec. 3 deals
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with timelike compact sets, together with future or past compact sets. After these geometric
preliminaries we consider in Sec. 4 conditions on distribution densities φ and on test-sections f ,
that guarantee that their supports are spacelike compact. We also introduce natural topologies on
the spaces of advanced, retarded, future, past, spacelike and timelike compactly supported sections
and distribution densities, so that they become each others topological duals. We conclude our
note in Sec. 5 with the special case where φ solves a normally hyperbolic equation and we comment
on the continuity of the unique advanced and retarded fundamental solutions of such an operator
w.r.t. the topologies on sections and distributions with suitable supports.

Throughout we will use standard notions and notations from Lorentzian geometry (e.g. [4]).
Recall in particular that a Cauchy surface Σ ⊂M is a subset which is intersected exactly once by
every inextendible timelike curve. We will assume that M is globally hyperbolic, which means that
it has a Cauchy surface [5]. In addition we assume that a time-orientation for M has been fixed.
Any Cauchy surface is a topological hypersurface ([4], Lemma 14.29), but it need not be smooth.
It is connected if and only if the spacetime M is connected. As a matter of notation, we will let
C(M) denote the set of all Cauchy surfaces in M and C0(M) is the subset of all smooth spacelike
Cauchy surfaces. The space of smooth sections of the vector bundle V over M will be denoted by
Γ(M,V ), while Γ0(M,V ) denotes the space of compactly supported smooth sections, both in their
usual topologies (cf. [1]). We let D(M,V ∗) denote the space of distribution densities with values
in the dual vector bundle V ∗ of V (so that on an oriented spacetime M , Γ(M,V ∗) ⊂ D(M,V ∗) by
the natural pairing 〈φ, f〉 :=

∫
M
φ(f)dvolg, where dvolg is the volume form induced by the metric

g).

2 Spacelike compact sets

In this section we prove our main geometric result on spacelike compact sets and its corollary
on advanced and retarded sets. The technical heart of these results is contained in the following
proposition:

Proposition 2.1 Let A ⊂ M be a closed set such that A ∩ Σ is compact (in Σ, or, equivalently,
in M) for all Σ ∈ C0(M). Then there is a compact set K ⊂M such that A ⊂ J(K).

A proof of this proposition is given at the end of this section. First, however, we will discuss its
consequences for spacelike compactness.

Theorem 2.2 (Spacelike compact sets) For a closed set A ⊂M in a globally hyperbolic space-
time the following conditions are equivalent:

1. There is a compact set K ⊂M such that A ⊂ J(K).

2. For every Σ ∈ C(M), A ∩ Σ is compact.

3. For every Σ ∈ C0(M), A ∩ Σ is compact.

Note in particular that this dispels the concern of [3] Footnote ‘b’, that the first two items might
not be equivalent.

Proof: It is a well-known result in Lorentzian geometry that the first condition implies the
second ([1] Corollary A.5.4). The second implies the third trivially and the third implies the first
by Proposition 2.1. �

These results motivate the following definition:

Definition 2.3 We call a subset A ⊂M spacelike compact when A satisfies any of the equivalent
conditions of Theorem 2.2.

In Theorem 2.2 it does not suffice to consider only the Cauchy surfaces of a given foliation of
M . The following is an easy counterexample:1

1[6], Footnote 17, already gave a counterexample consisting of a set B ⊂M which has compact intersection with
all Cauchy surfaces of a given foliation, but which is not spacelike compact. However, that set B is not closed and
B seems too pathological to occur as the support of a smooth section.
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Example 2.4 Consider the Minkowski spacetime M0 in standard inertial coordinates (t,x) with
x ∈ Rd−1 for some d ≥ 2. We use the foliation of M0 by the constant t Cauchy surfaces Σt. For
the set A we choose the support of the function φ(t,x) := ψ(3e‖x‖

2

t − 3), where ψ ∈ C∞0 (R) has
support [−1, 1]. This means that

A = supp(φ) =

{
(t,x)| 2

3
≤ e‖x‖

2

t ≤ 4

3

}
.

It is easy to see that A ∩ Σt is compact for all t ∈ R. Now consider the hypersurface Σ :={
(e−‖x‖

2

,x)
}

. One may show that Σ is a spacelike Cauchy surface (cf. [5] Corollary 11). To

conclude the counterexample we note that Σ ⊂ A, so A ∩Σ = Σ, which is not compact. Hence, A
is not spacelike compact. �

Taking the time-orientation of M into account we may define refined notions of spacelike
compactness, following [7] Definition 26:

Definition 2.5 We call a subset A ⊂ M advanced, resp. retarded, when A ⊂ J−(K), resp.
A ⊂ J+(K), for some compact K ⊂M .

Advanced and retarded sets are spacelike compact. A closed set is both advanced and retarded if
and only if it is compact.

Corollary 2.6 For a closed set A ⊂M the following conditions are equivalent:

1. A is advanced (resp. retarded).

2. A ∩ J+(Σ) (resp. A ∩ J−(Σ)) is compact for every Σ ∈ C(M).

3. A ∩ J+(Σ) (resp. A ∩ J−(Σ)) is compact for every Σ ∈ C0(M).

Proof: It is well-known that the first condition implies the second ([1] Corollary A.5.4). The
second implies the third trivially. The third condition implies that A ∩ Σ is compact for every
Σ ∈ C0(M), so A ⊂ J(L) for some compact L ⊂ M , by Proposition 2.1. Furthermore, choosing
a foliation of M by spacelike Cauchy surfaces Σt (cf. [8]) and using the fact that for any t ∈ R
the set A∩ J+(Σt) (resp. A∩ J−(Σt)) is compact, we may find a T such that A ⊂ J−(ΣT ) (resp.
J+(ΣT )). Choosing K := J(L) ∩ ΣT we find A ⊂ J−(K) (resp. A ⊂ J+(K)), proving that A is
advanced (resp. retarded). �

To conclude this section we supply the proof of Proposition 2.1. We begin with a lemma, which
uses an exhaustion by compact sets ([9] Proposition 4.76):

Lemma 2.7 Let Σ ∈ C0(M) and let {Kn}n∈N be an exhaustion of Σ by compact sets, i.e. each

Kn ⊂ Σ is compact, Kn ⊂
◦
Kn+1, where ◦ denotes the open interior in the relative topology of

Σ, and ∪n∈NKn = Σ. Assume that there are sequences of points xn ∈ M and compact spacelike
acausal and smooth submanifolds Bn ⊂M with boundary, such that

1. xn ∈ Bn,

2. J(Bn) ∩ Σ ⊂
◦
Kn,

3. J(Bn+1) ∩Kn = ∅.

Then there is a Σ′ ∈ C0(M) which contains all Bn, and the set X :=
⋃

n∈N {xn} is closed, but not
compact.

Proof: We may construct a smooth spacelike Cauchy surface Σ′ ⊂ M that contains all Bn as
follows. First we define L1 := K1 and by induction we choose compact subsets Ln ⊂ Kn, n ≥ 2,

such that J(Bn) ∩ Σ ⊂
◦
Ln, but Ln ∩ Kn−1 = ∅. (This is possible, by our assumptions on Bn
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Figure 1: A schematic depiction of the geometric construction used to prove Lemma 2.7.

and Kn.) Note in particular that all Ln are pairwise disjoint. The idea is that the domain of

dependence Mn := D(
◦
Ln) provides some room around Bn to deform the Cauchy surface Σ, whilst

the Kn ensure that the Bn do not accumulate (see Figure 1).
For each n ∈ N the region Mn is a globally hyperbolic spacetime in its own right ([1] Lemma

A.5.9). Let B′n ⊂ Σ be a compact smooth submanifold with boundary, which contains the
boundary of Ln in its interior, but which does not intersect J(Bn). By Theorem 1.1 of [8] we
may choose a smooth spacelike Cauchy surface S′n of M which contains Bn ∪ B′n. Note that

Σ′n := (Σ\
◦
Ln)∪ (S′n∩Mn) is a smooth spacelike and closed hypersurface. If M is connected, then

each connected component of Σ′n is a Cauchy surface for M by Corollary 11 of [5]. Because an
inextendible timelike curve can intersect Σ′n at most once it follows that Σ′n itself is a (connected)
Cauchy surface for M and hence Sn := S′n ∩Mn must be a Cauchy surface for Mn. If M is not
connected this argument applies to each connected component of M separately and Sn is still a
Cauchy surface for Mn. We then set

Σ′ :=

(
Σ \

⋃
n∈N

◦
Ln

)
∪
⋃
n∈N

Sn.

To prove that Σ′ is a Cauchy surface for M we let γ be an arbitrary inextendible timelike curve. If

γ does not intersect Σ in some
◦
Ln, then it already intersects Σ′. Moreover, this point of intersection

is unique, as γ cannot intersect any of the Mn. On the other hand, if γ intersects some
◦
Ln, then

it cannot intersect Σ′ in Σ ∩ Σ′ or in any Sk with k 6= n. Furthermore, γ intersects Mn and the
intersection is an inextendible causal curve in Mn, which has a unique point of intersection with
Sn. Therefore, Σ′ is a Cauchy surface. Also note that Σ′ contains all Bn and that it is smooth
and spacelike, by construction.

To conclude the proof we show that X ⊂ Σ′ is closed but not compact. First suppose that
y ∈ X and let U ⊂ Σ′ be a compact neighbourhood of y. Note that J(U) ∩ Σ ⊂ KN for some
N ∈ N. By construction, KN does not intersect Ln with n > N , so D(KN ) ∩Σ′ does not contain
xn with n > N . It follows that y must be one of the points x1, . . . , xN , so X is closed. Now
consider the open cover of X consisting of the sets {Sn, n ∈ N}. Each xn is contained only in the
corresponding Sn, so there is no proper subcover. This proves in particular that there is no finite
subcover, so X ⊂ Σ′ is not compact. �

We may now prove Proposition 2.1:

Proof: We will assume that there is no set K such that A ⊂ J(K) and derive a contradiction. For
this purpose we fix a Σ ∈ C0(M) and an exhaustion of Σ by compact sets {Kj}j∈N. We consider

the set Ȧ := A \ Σ and note that Ȧ is not contained in any set of the form J(L) with compact
L ⊂ Σ (otherwise we could take K = L∪ (A∩Σ)). In particular, Ȧ 6= ∅, so we may choose x1 ∈ Ȧ
and j1 ∈ N such that x1 ∈ D(

◦
Kj1). We now proceed by induction to choose sequences of points

xn ∈ Ȧ and numbers jn ∈ N such that xn ∈ D(
◦
Kjn) and J(xn+1) ∩ Kjn = ∅. This is possible,

because for each n, Ȧ \ J(Kjn) contains some point xn+1 and the compact set J(xn+1) ∩ Σ is
contained in the interior of some Kjn+1 .
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Note that n 7→ jn is strictly increasing, so Kjn is again an exhaustion of Σ by compact sets.
Using this in Lemma 2.7 with Bn := {xn} yields a smooth spacelike Cauchy surface Σ′ containing
all xn, but for which A ∩ Σ′ ⊃ X is not compact. This is the desired contradiction. �

3 Timelike compact sets

We now turn to the complementary notion of timelike compact sets. In this case our main geo-
metric result is

Theorem 3.1 (Future and past compact sets) For a closed set A ⊂ M in a globally hyper-
bolic spacetime the following conditions are equivalent:

1. There is a Cauchy surface Σ ⊂M such that A ⊂ J+(Σ) (resp. A ⊂ J−(Σ)).

2. For every compact set K ⊂M , the set A ∩ J−(K) (resp. A ∩ J+(K)) is compact.

3. For every point p ∈M , the set A ∩ J−(p) (resp. A ∩ J+(p)) is compact.

Proof: For any compact set K ⊂M and any Cauchy surface Σ ⊂M , the sets J±(K) are closed
and the intersection J±(K) ∩ J∓(Σ) is compact (cf. [1] Lemma A.5.4, Lemma A.5.1 and the
comment above Lemma A.5.7). It then follows immediately that the first condition implies the
second. The second implies the third trivially. It only remains to show that the third condition
implies the first.

By a reversal of time-orientation it suffices to consider the case where A ∩ J−(p) is compact
for all p ∈ M . We choose a global time function t on M and a foliation M ' R × Σ by Cauchy
surfaces, so that t is the projection onto the first factor (cf. [8]). For each inextendible timelike
curve γ in M we then define

t−(γ) := min
{

0; t(x), x ∈ γ ∩ J+(A)
}

The minimum t−(γ) exists, because if x ∈ γ ∩ J+(A), then γ ∩ J+(A) ∩ J−(x) is compact and
t−(γ) is the minimum value of t on this set, or zero, whichever is smaller.

Now consider the inextendible timelike curves γp(t) := (t, p), define T−(p) := t−(γp) and
consider the embedding ψ− :Σ→M by ψ−(p) := (T−(p), p). The image Σ− of ψ− has the following
properties. Firstly, if (t, p) ∈ A, then T−(p) ≤ t by construction, so A ⊂ J+(Σ−). Secondly, Σ−
is achronal, for if there were a timelike curve γ1 between, say, (T−(p), p) and (T−(q), q) with
T−(q) ≥ T−(p), and if γ2 is a causal curve from some point x ∈ A to (T−(p), p), then the
concatenation of γ1 and γ2 can be deformed to a time-like curve from x to (T−(q), q) (cf. [4],
Corollary 14.1). Hence, T−(q) cannot be the minimum as defined, leading to a contradiction. (If
no such γ2 exists, then T−(p) = T−(q) = 0 and γ1 cannot exist either.) Thus we see that Σ−
is achronal. Finally, Σ− is a Cauchy surface. To prove this we consider an inextendible timelike
curve τ 7→ γ(τ) in M . There is a unique point p ∈ Σ such that (t−(γ), p) ∈ γ. Both when
γ ∩ J+(A) = ∅ and when γ ∩ J+(A) 6= ∅ one may see that (t−(γ), p) ∈ Σ−, by an argument
that involves the concatenation of causal curves as above, together with the definition of T−(p).
Therefore, γ intersects Σ−, and as Σ− is achronal, the point of intersection is unique. This proves
that Σ− is a Cauchy surface with A ⊂ J+(Σ−), so we established the first condition. �

Definition 3.2 We call a subset A ⊂ M future, resp. past, compact when there is a Cauchy
surface Σ ⊂ M such that A ⊂ J−(Σ), resp. A ⊂ J+(Σ). We call A timelike compact when A is
both future and a past compact.

By Theorem 3.1, our definition of future and past compact sets is equivalent to the one in [1], at
least for closed subsets of globally hyperbolic spacetimes. Using the same theorem it may easily
be shown that a set is advanced, resp. retarded, if and only if it is both spacelike compact and
future, resp. past, compact (cf. the proof of Corollary 2.6).

5



When A ⊂ M is timelike compact and we consider a foliation of M by Cauchy surfaces Σt,
it is not necessarily true that there are numbers t− < t+ such that A ⊂ J+(Σt−) ∩ J−(Σt+). A
counterexample in Minkowski spacetime can be obtained, using the notations of Example 2.4, by
choosing A to be the image of Σ0 under a non-trivial Lorentz boost. Clearly A itself is still a
Cauchy surface and hence timelike compact, but it contains points with arbitrary values of t.

Note furthermore that in order to establish timelike compactness it does not suffice that A has
a compact intersection with all inextendible causal curves. The following is a counterexample:

Example 3.3 Consider the Minkowski spacetime M0 in standard inertial coordinates (t,x) with
x ∈ Rd−1 for some d ≥ 2. The region M ′ := I+(0) ⊂ M0 is a globally hyperbolic spacetime

in its own right and the hypersurfaces ΣR :=
{
t =

√
R2 + ‖x‖2

}
, R > 0, foliate M ′ by Cauchy

surfaces. Note that M ′ cannot contain a Cauchy surface for M0, because for any x with unit norm,
the inextendible timelike curve γx(τ) := (sinh(τ), cosh(τ)x) does not enter M ′. For the set A we
choose the support of the function φ(t,x) := ψ(2

√
1 + ‖x‖2(t −

√
1 + ‖x‖2)), where ψ ∈ C∞0 (R)

has support [−1, 1]. Note that A is timelike compact in M ′ (using the foliation). However, it cannot
be timelike compact in M0, because the inextendible timelike curve γx lies entirely in J−(A) \ A.
Hence, A cannot be contained in J−(Σ) for any Cauchy surface Σ. Nevertheless, any inextendible
causal curve γ has a compact intersection with A, because if γ does not enter M ′ the intersection
is empty, while if γ does enter M ′, the intersection is compact, since A is timelike compact in M ′.
�

4 Spacelike and timelike compact supports

Now we return to the original motivation and consider a distribution density φ with values in some
vector bundle V on M . We make the following obvious definition:

Definition 4.1 A distribution density φ on M is said to have advanced, retarded or future, past,
spacelike or timelike compact support, if and only if supp(φ) is advanced, retarded or future, past,
spacelike or timelike compact, respectively.

Again, it does not suffice to consider only a particular foliation of Cauchy surfaces to obtain
spacelike compactness, nor does it suffice to assume compact intersections with all inextendible
causal curves to obtain timelike compactness. Indeed, both of the counterexamples 2.4 and 3.3
are based on the supports of smooth sections φ. However, in the spacelike case we do have the
following result:2

Theorem 4.2 Let φ be a distribution density on M and assume that either

a) φ is continuous, or

b) WF (φ) has no timelike vectors, so its restriction to all smooth spacelike Cauchy surfaces is
well-defined by microlocal arguments.

Then the following conditions are equivalent:

1. φ is spacelike compactly supported.

2. There is a compact set K ⊂M such that supp(φ|Σ) ⊂ J(K) for all Σ ∈ C(M).

3. There is a compact set K ⊂M such that supp(φ|Σ) ⊂ J(K) for all Σ ∈ C0(M).

4. supp(φ|Σ) is compact for all Σ ∈ C(M).

5. supp(φ|Σ) is compact for all Σ ∈ C0(M).

2We refer the reader to Chapter 8 of [10] for basic results and notions of microlocal analysis, such as the wave
front set WF (φ) of a distribution φ and results on the restriction of distributions to submanifolds.
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Proof: The implications ii → iii and iv → v are trivial. The implications ii → iv and iii → v
follow from the fact that J(K) ∩ Σ is compact for every compact K ⊂ M and every Cauchy
surface Σ ⊂ M ([1] Lemma A.5.4). Furthermore, i → ii follows from Theorem 2.2 and the fact
that supp(φ|Σ) ⊂ supp(φ)∩Σ. To complete the proof it suffices to prove that v → i. By Theorem
2.2 we only need to show that supp(φ) ∩ Σ is compact for all Σ ∈ C0(M). We will argue by
contradiction, so we assume that there is a smooth spacelike Cauchy surface Σ ⊂ M such that
supp(φ) ∩ Σ is not compact. We may foliate M by smooth spacelike Cauchy surfaces Σt, t ∈ R,
such that the projection t on the first factor is a global time coordinate and Σ = Σ0 (cf. [8]
Theorem 1.2).

We can find an exhaustion of Σ by compact sets Kn and a sequence of points xn ∈ Σ∩ supp(φ)

such that xn ∈
◦
Kn and xn+1 6∈ Kn, much in the same way is in the proof of Proposition 2.1.

We now write xn = (0, qn) and recall that xn ∈ supp(φ). For any open neighbourhood U ⊂ Σ of
qn and any ε > 0 we may choose a test-function χ ∈ C∞0 (U) such that the distribution density
t 7→ φ(t, χ) does not vanish identically on (−ε, ε), by Schwartz’ Kernels Theorem. Furthermore,
by assumption a) or b) this distribution is at least continuous, so there is some tn ∈ (−ε, ε) for
which φ(tn, χ) 6= 0. This entails that x′n := (tn, q

′
n) ∈ supp(φ|Σtn

) for some q′n ∈ U .

We can choose x′n arbitrarily close to xn, so in particular we can ensure that J(x′n) ∩ Σ ⊂
◦
K)

and J(x′n+1) ∩Kn = ∅. Next we can choose a compact smooth submanifold Bn ⊂ Σtn (which is

automatically spacelike and acausal) such that x′n ∈ Bn, J(Bn)∩Σ ⊂
◦
Kn and J(Bn+1)∩Kn = ∅.

With these x′n, Bn and Kn the assumptions of Lemma 2.7 are satisfied, so there is a smooth
spacelike Cauchy surface Σ′ containing all Bn and such that the set X := ∪n∈N {xn} is closed but
not compact in Σ′. Since Σ′ and Σtn coincide in a neighbourhood of xn, xn is also in supp(φ|Σ′).
In other words, supp(φ|Σ′) ⊃ X and therefore supp(φ|Σ′) is not a compact set. This contradicts
the assumptions, hence φ must have spacelike compact support. �

For any closed set B ⊂ M we may consider the space Γ(B, V ) of smooth sections of V on
M with support in B, as a closed subspace of Γ(M,V ). In analogy to Γ0(M,V ) we may then
define the spaces of sections with advanced, retarded or future, past, spacelike or timelike compact
support as inductive limits (cf. [11]):

Γa(M,V ) :=
⋃

K⊂M
Γ(J−(K), V ), Γr(M,V ) :=

⋃
K⊂M

Γ(J+(K), V ),

Γfc(M,V ) :=
⋃

Σ⊂M
Γ(J−(Σ), V ), Γpc(M,V ) :=

⋃
Σ⊂M

Γ(J+(Σ), V ),

Γsc(M,V ) :=
⋃

K⊂M
Γ(J(K), V ),

Γtc(M,V ) :=
⋃

Σ±⊂M

Γ(J+(Σ−) ∩ J−(Σ+), V ),

where K is compact and Σ,Σ± are Cauchy surfaces. (For the spacelike compact case this agrees
with Definition 3.4.6 of [1]. For smooth functions the topologies on C∞sc (M), C∞a (M) and C∞r (M)
coincide with those introduced by [12].) With these topologies, the following inclusions are con-
tinuous

Γ0(M,V ) ⊂ Γa(M,V ) ⊂ Γsc(M,V ) ⊂ Γ(M,V ), (1)

Γ0(M,V ) ⊂ Γtc(M,V ) ⊂ Γfc(M,V ) ⊂ Γ(M,V ),

and similarly with retarded, resp. past compact, instead of advanced, resp. future compact, sup-
ports.

In an analogous way we may introduce spaces of distribution densities with the same support
properties, which will be indicated by the same subscripts, e.g.

Dsc(M,V ) =
⋃

K⊂M
D(J(K), V ),
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where D(B, V ) is the space of distribution densities with support in B, as a closed linear subspace
of D(M,V ) in the usual distributional topology.

Theorem 4.3 Each of the spaces Γ∗(M,V ), where ∗ indicates any of the subscripts a, r, sc, fc,
pc, tc, is reflexive and we have

Da(M,V ∗) = Γpc(M,V )′ Dfc(M,V ∗) = Γr(M,V )′

Dr(M,V ∗) = Γfc(M,V )′ Dpc(M,V ∗) = Γa(M,V )′

Dsc(M,V ∗) = Γtc(M,V )′ Dtc(M,V ∗) = Γsc(M,V )′.

Proof: Using the continuous embeddings in (1), any φ ∈ Γ∗(M,V )′ is a distribution density. In
the case ∗ = pc, let Σ ⊂ M be any Cauchy surface. The restriction map from Γ(J+(Σ), V ) to
Γ(I+(Σ), V ) is continuous and it has a dense range, as may be shown by direct approximation,
using multiplication with suitable cut-off functions. Therefore, the restriction of φ to I+(Σ) is
continuous on Γ(I+(Σ), V ), so it has compact support. It follows that I+(Σ)∩ supp(φ) is compact
for any Σ and hence I+(Σ) ∩ supp(φ) is compact too (since J+(Σ) ⊂ I+(Σ′) for some Σ′). By
Corollary 2.6 φ has advanced support. Conversely, if φ has advanced support, then we can find a
smooth cut-off function χ ∈ C∞a (M) such that χ ≡ 1 on supp(φ). The map f 7→ χf is continuous
from Γpc(M,V ) to Γ0(M,V ) and φ(f) = φ(χf), so φ ∈ Γpc(M,V )′.

The second item in the first column is proved by reversing the time-orientation. The third
item is proved in a similar way, using Theorem 2.2 instead of Corollary 2.6. The items on the
second line are also proved in a similar way, but now using Theorem 3.1. Finally we note that
both Γ(M,V ) and Γ0(M,V ) are reflexive. The reflexivity of all Γ∗(M,V ) then follows from the
proofs above, if we interchange the roles of smooth sections and distribution densities. �

5 Consequences for normally hyperbolic operators

To conclude this note we consider the case where φ satisfies a linear, normally hyperbolic field
equation. In this case one expects that the spacelike compactness is preserved under the time
evolution, so it would suffice to consider only one Cauchy surface. To be more precise,

Proposition 5.1 If φ satisfies a normally hyperbolic equation, then the following are equivalent:

1. φ has spacelike compact support.

2. supp(φ|Σ) is compact for all Σ ∈ C(M).

3. There is a smooth spacelike Cauchy surface Σ ∈ C0(M) such that supp(φ) ∩ Σ is compact.

Proof: We have already seen in Theorem 4.2 that the first and second items are equivalent and
they both trivially imply the third. For the converse one uses the well-posedness of the Cauchy
problem and the fact that compactness of supp(φ) ∩ Σ implies that both initial data on Σ have
compact support. �

Note that in this case it does suffice to consider the Cauchy surfaces Σt which belong to a given
foliation of M and to require that supp(φ) ∩ Σt is compact. It clearly does not suffice to require
that φ|Σ has compact support for a single Σ ∈ C0(M), because the other initial datum may not
have compact support. However, it is less clear whether it suffices to require that supp(φ|Σt

) is
compact for all t ∈ R and a given foliation Σt of M .

Let P denote a normally hyperbolic operator in the vector bundle V over M and let E±

denote the unique advanced and retarded fundamental operators. It is well-known [1] that these
are continuous linear maps

E± :Γ0(M,V )→Γsc(M,V )
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such that supp(E±f) ⊂ J±(supp(f)). Using the topologies introduced in Section 4 and the
support properties it is in fact not hard to show that the maps

E+ :Γr(M,V )→Γr(M,V ) E− :Γa(M,V )→Γa(M,V )

E+ :Γpc(M,V )→Γpc(M,V ) E− :Γfc(M,V )→Γfc(M,V )

are continuous. (The proof is analogous to that of [12] Lemma 3.11). This entails e.g. that
E+ :Γ0(M,V )→Γr(M,V ) and E+ :Γtc(M,V )→Γpc(M,V ) are also continuous, by the continuous
inclusions (1). WhenM is oriented one may define the operators E+ also on distributional sections,
by duality. We then have (E±φ, f) = (φ,E∓f), which leads to continuous linear maps

E+ :Dr(M,V )→Dr(M,V ) E− :Da(M,V )→Da(M,V )

E+ :Dpc(M,V )→Dpc(M,V ) E− :Dfc(M,V )→Dfc(M,V ).
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