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We investigate whether a symmetric, second order Wick polynomial T of a free scalar
field, including derivatives, is essentially self-adjoint on the natural (Wightman)
domain in a quasi-free (i.e., Fock space) Hadamard representation. Our results apply
to arbitrary spacetime dimensions d ≥ 2, but we do restrict our attention to the case
where T is smeared with a test-function from a particular class S, namely the class
of sums of squares of test-functions. (This class of smearing functions is smaller
than the class of all non-negative test-functions – a fact which follows Hilbert’s
theorem.) Combining techniques from microlocal and functional analysis we prove
that T is essentially self-adjoint if it is a Wick square (without derivatives). In the
presence of derivatives we prove the weaker result that T is essentially self-adjoint
if its compression to the one-particle Hilbert space is essentially self-adjoint. For
the latter result, we use Wüst’s theorem and an application of Konrady’s trick in
Fock space. In the presence of derivatives, we also prove that one has some control
over the spectral projections of T, by describing it as the strong graph limit of a
sequence of essentially self-adjoint operators. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3703516]

I. INTRODUCTION

In quantum physics, an observable is given by a self-adjoint operator in a Hilbert space. For
unbounded operators the condition of self-adjointness is somewhat technical and rather difficult to
prove, but unfortunately this problem can hardly be circumvented in quantum field theory, where
unbounded operators are ubiquitous. Moreover, in the case of quantum field theories on curved
spacetimes the Hilbert space representation is not fixed a priori, but instead it depends on the choice
of an algebraic state on an abstract *-algebra of observables. When trying to prove self-adjointness
results, one therefore has to try and accommodate several choices: the choice of spacetime, the
choice of state, which fixes the Hilbert space representation through the GNS-construction, and
finally the choice of operator.

To our knowledge, the previous literature has been rather restrictive in these three aspects. It
concerns mostly the field itself or the Wick square and it relies either on the Wightman axioms in
Minkowski spacetime or on the properties of a ground state of a free field.4, 12,1 The goal of this
paper is to prove some results which aim for generalisations in all three aspects, making use of the
microlocal spectrum condition6 and focussing on second order Wick polynomials with derivatives.
(For remarks concerning the (generalised) free field itself in curved spacetime, see Ref. 27). This
includes such physically relevant operators as the components of the stress-energy-momentum tensor
of a free scalar field. The essential self-adjointness of local energy densities (as a component of the
stress tensor) would be an important step towards the development of a local and covariant version
of the useful H-bounds11 in Minkowski spacetime, which estimate the local singular behaviour of a
quantum field in terms of the Hamiltonian operator H.
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Let T denote a second order Wick polynomial (with derivatives) on an arbitrary, globally
hyperbolic spacetime of dimension d ≥ 2, represented in a quasi-free Hadamard state. Then we will
demonstrate the following results. First we show in Lemma 5.1 that the problem at hand is local in
the following sense: if O ⊂ M is an open region that contains the supports of all the test-functions
occurring in T, then T restricts to the Hilbert space generated from O. If these restrictions are
essentially self-adjoint for all relatively compact O ⊂ M, then T itself is essentially self-adjoint too.
Second, if T is smeared with a function of class S, the class of sums of squares of test-functions, then
T is essentially self-adjoint as soon as its compression to the one-particle Hilbert space is essentially
self-adjoint. This is the content of Theorem 5.4. Third we show in Theorem 5.3 that if T is smeared
with a function of class S, then T has a self-adjoint extension which is the strong graph limit of
a specific sequence of self-adjoint operators. This result provides a certain amount of control over
the spectral projections of this self-adjoint extension. To actually prove essential self-adjointness we
prove that the compression of T to the one-particle Hilbert space is essentially self-adjoint when the
operator T is the Wick square (without derivatives) of a free scalar field, smeared with a real-valued
test-function. Hence, when the test-function is in S, the essential self-adjointness of the Wick square
follows from Theorem 5.4. This constitutes a substantial generalisation with respect to the class of
spacetimes and representations considered in comparison with the literature.

We emphasise that our results do not make any use of the fact that the singularities in the
two-point distribution of a free scalar field get weaker as d decreases. An alternative strategy would
be to consider small d and try to exploit the weaker singularities. We comment on this strategy in
our conclusions in Sec. VI, especially in the extreme case d = 1, in which case the free scalar field
reduces to a harmonic oscillator and the Hadamard two-point distributions are smooth functions.

The remainder of this paper is organised as follows: after a review of some basic terminology and
estimates for abstract Fock spaces in Sec. II, we review in Sec. III the self-adjointness results that we
will need in an abstract setting. In particular we prove a useful application of Konrady’s trick to Fock
space and a monotone graph limit theorem. In Sec. IV we set the stage for our physical applications
by reviewing the GNS-representations of a (quasi-free) Hadamard state of a (generalised) free field
and defining its Wick polynomials. Sec. V contains the main results described above and their proofs
and includes a remark on the class S of smearing functions. We conclude our paper with some
discussion in Sec. VI.

II. REVIEW OF FOCK SPACE

Because quasi-free states lead to representations with a Fock space structure we will first recall
some information on Fock spaces that will be needed later on. Most of the following constructions
are entirely standard and follow Sec. 5.2 of Ref. 5.

Let K be a complex Hilbert space with inner product 〈, 〉 (complex linear in the second entry).
The (full, unsymmetrised) Fock space is defined as the direct sum of the Hilbert tensor products

H :=
∞⊕

n=0

H(n), H(n) := K⊗n,

where K⊗0 := C. We call H(n) the n-particle subspace and we denote by F the subspace of finite
particle vectors, i.e., the elements ⊕∞

n=0ψn with only finitely many non-zero summands. We let Pn

denote the orthogonal projection operators onto the summands H(n).
For each u ∈ K one defines a linear creation operator a∗(u) :F →F and annihilation operator

a(u) :F →F by

a∗(u)(v1 ⊗ . . . ⊗ vn) := √
n + 1u ⊗ v1 ⊗ . . . ⊗ vn

a(u)(v1 ⊗ . . . ⊗ vn) := √
n〈u, v1〉v2 ⊗ . . . ⊗ vn

on H(n) and a(u)|H(0) := 0. Both are densely defined linear operators in H. Notice that

‖a∗(u)Pn‖ = √
n + 1‖u‖K, ‖a(u)Pn‖ = √

n‖u‖K,
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where the first follows from the definition and the second from the fact that a(u)Pn + 1 is the adjoint
of the bounded operator a*(u)Pn.

The symmetric (or bosonic) Fock space is defined similarly as

H+ :=
∞⊕

n=0

H(n)
+ , H(n)

+ := K⊗s n,

where ⊗s denotes the symmetrised tensor product. It is often convenient to view H(n)
+ ⊂ H(n) as a

subspace, with a canonical projection operator P+ , n defined as the bounded linear extension of

P+,n(v1 ⊗ . . . ⊗ vn) := 1

n!

∑
π∈Sn

vπ(1) ⊗ . . . ⊗ vπ(n),

where Sn is the group of permutations of the set {1, . . . , n}. Similarly, H+ can be viewed as a
subspace of H with the projection operator P+ :H→H+ defined as P+ := ⊕∞

n=0 P+,n .
Annihilation and creation operators on the symmetric Fock space are defined on the dense

domain F+ := P+F in H+ by identifying

a+(u) := a(u)P+, a∗
+(u) := P+a∗(u)P+,

where we notice that a(u) preserves the symmetry. The symmetrisation also enforces the commutation
relations [a+(u), a∗

+(v)] = 〈u, v〉I , and [a+(u), a+(v)] = 0 = [a∗
+(u), a∗

+(v)] for any u, v ∈ K.
As P+ , n = P+ Pn = PnP+ we have:

‖a+(u)P+,n‖ ≤ ‖a(u)Pn‖ = √
n‖u‖K,

‖a∗
+(u)P+,n‖ ≤ ‖a∗(u)Pn‖ = √

n + 1‖u‖K.

The following more detailed estimate30 will be of some use in subsequent sections. In it we use K to
denote the conjugate Hilbert space of a Hilbert space K, so there is a complex anti-linear bijection
j :K→K such that 〈u, v〉 = 〈 j(v), j(u)〉. Note that K1 ⊗ K2 = K1 ⊗ K2.

Proposition 2.1: For n ≥ m the multilinear map

Ã(l,m;n) : (u1, . . . , ul , v1, . . . , vm) �→ a∗
+(u1) · · · a∗

+(ul)a+( j(v1)) · · · a+( j(vm))P+,n

from K×l × K×m
to the space B(H+) of bounded linear operators on the symmetric Fock space

gives rise (by definition of the tensor product) to a unique linear map A(l,m;n) :K⊗l ⊗ K⊗m →B(H+)
which is bounded, with ‖A(l,m;n)‖ ≤

√
n!(n−m+l)!

(n−m)! .

The operators in the range of A(l, m; n) are Hilbert-Schmidt operators from H(n)
+ to H(n−m+l)

+ .

Proof: First we notice that without symmetrisation we have for all N, l and all u(i)
j ∈ K:∥∥∥∥∥

N∑
i=1

a∗(u(i)
1 ) · · · a∗(u(i)

l )P+,n

∥∥∥∥∥
2

= (n + l)!

n!

∥∥∥∥∥
N∑

i=1

u(i)
1 ⊗ · · · ⊗ u(i)

l

∥∥∥∥∥
2

K⊗l

,

by direct computation. For any finite sum F = ∑
i u(i)

1 · · · u(i)
l we use ‖P+ ‖ ≤ 1 and (a∗

+)⊗l(F)
= P+(a∗)⊗l(F)P+ to find

‖(a∗
+)⊗l(F)P+,n‖ ≤

√
(n + l)!

n!
‖F‖K⊗l .

By continuous extension this must hold for all F ∈ K⊗l . If G := ∑
i v

(i)
1 · · · v(i)

m ∈ K⊗m
and G ′

:= ∑
i v(i)

m · · · v(i)
1 (with reversed order), then ‖G‖K⊗m = ‖G ′‖K⊗m = ‖ j⊗m G ′‖K⊗m . Taking the adjoint

(a∗
+(u)Pn)∗ = a+(u)Pn+1 we therefore have

‖a⊗m
+ (G)P+,n+m‖ = ‖(a∗

+)⊗m( j⊗m G ′)P+,n‖ ≤
√

(n + m)!

n!
‖G‖K⊗m .
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We have now proved the result for the cases m = 0 or l = 0. For the general case we let
F ∈ K⊗l ⊗ K⊗m

and write it in terms of a Schmidt decomposition,31 F = ∑∞
i=1 fi ⊗ gi , where

the fi ∈ K⊗l are orthonormal and gi ∈ K⊗m
. We compute for any ψ ∈ H(n)

+ :

∥∥∥∥∥
∞∑

i=1

(a∗
+)⊗l( fi )a

⊗m
+ (gi )ψ

∥∥∥∥∥
2

=
∥∥∥∥∥P+

∞∑
i=1

(a∗)⊗l( fi )a
⊗m(gi )ψ

∥∥∥∥∥
2

≤
∥∥∥∥∥

∞∑
i=1

(a∗)⊗l( fi )a
⊗m(gi )ψ

∥∥∥∥∥
2

= (n − m + l)!

(n − m)!

∞∑
i, j=1

〈 fi , f j 〉K⊗l · 〈a⊗m(gi )ψ, a⊗m(g j )ψ〉

= (n − m + l)!

(n − m)!

∞∑
i=1

‖ fi‖2
K⊗l · ‖a⊗m(gi )ψ‖2

≤ n!(n − m + l)!

(n − m)!2

∞∑
i=1

‖ fi‖2
K⊗l · ‖gi‖2

K⊗m · ‖ψ‖2

= n!(n − m + l)!

(n − m)!2
‖F‖2

K⊗l⊗K⊗m · ‖ψ‖2

which proves the desired estimate for A(l, m; n). �
We call a polynomial in creation and annihilation operators normally ordered when all annihi-

lation operators occur to the right of all creation operators. We remark that for non-normally ordered
expressions the factor in Proposition 2.1 may change, but is at most (n+l)!√

n!(n−m+l)!
.

III. GENERAL SELF-ADJOINTNESS RESULTS

In this section we collect some mathematical results that allow us to conclude that an operator is
(essentially) self-adjoint. In order to formulate these results we first need to introduce some further
concepts.

Let H be a complex Hilbert space and X :D→H a linear operator with a dense domain D ⊂ H.

Definition 3.1: A vector ψ ∈ H is called an analytic vector for X if and only if there exists a
constant c > 0 such that for all n ∈ N we have Xnψ ∈ D and ‖Xnψ‖ ≤ cn + 1n!.

The set of analytic vectors for X is a vector space and if X is bounded then all vectors are
analytic.

Now we have (see e.g., Theorem X.39 in Ref. 24):

Theorem 3.2 (Nelson’s theorem): A symmetric operator X on a Hilbert space, whose domain
contains a dense set of analytic vectors, is essentially self-adjoint.

A direct application of Nelson’s theorem to the Fock space setting is:

Proposition 3.3: Let T = ∑∞
n=0

∑
0≤l≤p≤2 A(l,p−l;n)(F (l,p−l)) be an operator on a symmetric

Fock space H+, which is a normally ordered polynomial of order ≤2 smeared with elements
F (l,m) ∈ K⊗l ⊗ K⊗m

and defined as a strong limit on F+. Then every vector in F+ is an analytic
vector for T and if T is symmetric then it is essentially self-adjoint on F+.

Proof: First notice that T is well-defined by Proposition 2.1. Now define the subspaces L(n)

:= ⊕n
m=0 H

(m)
+ in H+ and notice that TL(n) ⊂ L(n+2) for all n ≥ 0. Again by Proposition 2.1 we

can estimate ‖T |L(n)‖ ≤ c(n + 2) for some positive constant c which is independent of n. Repeated
application of this estimate yields

‖T m |L(n)‖ ≤ cm�m−1
j=0 (n + 2 j + 2) ≤ cm(n + 2)mm!,
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because n + 2j + 2 ≤ (n + 2)(j + 1). This proves that all vectors in the domain are analytic and
essential self-adjointness follows from Nelson’s theorem. �

A general strategy to conclude (essential) self-adjointness is to consider perturbations or suitable
limits of operators which are already known to be (essentially) self-adjoint. A useful result for
perturbations is the following (cf. Theorem X.14 in Ref. 24)

Theorem 3.4 (Wüst’s theorem): Let X be an essentially self-adjoint operator on a Hilbert
space H with dense domain D and let Y be a symmetric operator with domain D satisfying

‖Yψ‖ ≤ ‖Xψ‖ + b‖ψ‖
for some b ≥ 0 and all ψ ∈ D. Then X + Y is essentially self-adjoint on D.

Actually, the formulation of this theorem in Ref. 24 requires X to be self-adjoint (i.e., X must
also be closed). However, given the estimate on D, both operators X and Y can be uniquely extended
to the domain of X and the estimate remains valid.

Unfortunately it is sometimes hard to prove that the perturbation Y is small with respect to X,
as Wüst’s theorem requires. For this purpose we will apply an argument, known as Konrady’s trick
(Sec. X.2 in Ref. 24), which applies to the Fock space setting as follows:

Theorem 3.5: Let N denote the number operator, defined on F+ by N |H(n)
+

:= nI . Let Xn be a

positive, essentially self-adjoint operator onH(n)
+ with dense domainDn and let X := ⊕∞

n=0 Xn be the
essentially self-adjoint operator with domain D, which is the algebraic direct sum D := ⊕∞

n=0 Dn.
If Y is a symmetric operator with domain D and c, d ≥ 0 are constants satisfying

‖Yψ‖ ≤ d‖Nψ‖ + d‖ψ‖, Re(〈Nψ, (X + Y )ψ〉) ≥ −c〈ψ, (N + I )ψ〉 (1)

for all ψ ∈ D, then X + Y is essentially self-adjoint on D.

Recall that positivity of Xn means that 〈ψ , Xnψ〉 ≥ 0 for all ψ ∈ Dn . Usually X is the second
quantisation of an essentially self-adjoint operator on H(1)

+ , cf. Sec. VIII.10, Ex. 2. in Ref. 24

Proof: First note that X is positive, because the Xn are. Furthermore, by construction,
X N = N X = √

N X
√

N ≥ 0 on D and hence also (X + dN)2 ≥ d2N2.
Applying Konrady’s trick we note that the operator X + dN is essentially self-adjoint on D,

because all Xn + dnI are essentially self-adjoint on Dn ⊂ H(n)
+ . By the assumption and the previous

estimate we then find for all ψ ∈ D that

‖Yψ‖ ≤ d‖Nψ‖ + d‖ψ‖ ≤ ‖(X + d N )ψ‖ + d‖ψ‖.
By Wüst’s Theorem 3.4, the operator X + Y + dN is then essentially self-adjoint on D. The point
of Konrady’s trick is now the following estimate, which follows from the assumptions:

‖(X + Y + d N )ψ‖2 ≥ ‖(X + Y )ψ‖2 + ‖d Nψ‖2 − 2cd〈ψ, (N + I )ψ〉
≥ (‖d Nψ‖ − c‖ψ‖)2 − (c2 + 2cd)‖ψ‖2

for all ψ ∈ D. Thus we see by an elementary estimate that

‖d Nψ‖ ≤ ‖(X + Y + d N )ψ‖ + c′‖ψ‖
for c′ = c + √

c2 + 2cd and another application of Wüst’s Theorem 3.4 now proves that X + Y
= (X + Y + dN) − dN is essentially self-adjoint on D. �

The usefulness of Theorem 3.5 lies in the fact that the required estimates may be easier to
establish than the ones needed for Wüst’s theorem.

Finally we will prove a result that concerns limits of self-adjoint operators. This will be relevant
in Sec. V for second order Wick polynomials, which can be described as a coincidence point limit
of self-adjoint operators. The monotone graph limit theorem below does not allow us to conclude
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essential self-adjointness of the limit on a certain domain, but it does provide a self-adjoint extension
for which we have some control over the spectral projections. First we need a lemma:

Lemma 3.6: If X2 ≥ X1 ≥ 0 are self-adjoint operators with a common core D, then (X1

+ I)− 1 ≥ (X2 + I)− 1 ≥ 0.

Proof: By the spectral theorem (Sec. VIII.3 in Ref. 24), the operators Si := (Xi + I )
1
2 are

well-defined and injective on D. In fact, the given domain is a core, because the domain of Si |D
contains the domain of Xi, which, in turn, is a core for Si, again by the spectral theorem. As 0 is
not in the spectrum of Si, its range on D is dense in H. Now let Y := S1S−1

2 on S2D. Then ‖Yψ‖
≤ ‖ψ‖, so Y is densely defined and bounded. It follows that 0 ≤ Y Y ∗ ≤ I , where Y ∗ = S−1

2 S1. This
implies that 0 ≤ (X2 + I)− 1 ≤ (X1 + I)− 1 on S1D and hence on all of H. �

Theorem 3.7 (Monotone graph limit theorem): Let Xn be a sequence of self-adjoint operators
on a Hilbert space H with a common core D and assume that Xn + 1 ≥ Xn ≥ 0 on D for all n. If the
Xn converge strongly to an operator X on D, then there is a self-adjoint extension Y of X such that
Xn → Y in the strong resolvent sense, i.e. (Xn + λI)− 1 converges strongly to (Y + λI)− 1 for each
λ ∈ C \ R.

Convergence in the strong resolvent sense entails that the spectral projections of Xn converge
strongly to those of Y for all intervals (a, b) ⊂ R, as long as a and b are not in the pure point spectrum
of Y (Theorem VIII.24 in Ref. 24).

Proof: We let Rn := (Xn + I)− 1, so that Rn ≥ Rn + 1 ≥ 0 by Lemma 3.6. It follows from
Lemma 5.1.4 in Ref. 18 that there is a positive bounded operator R such that Rn → R strongly.
Because of this and the strong convergence Xn → X on D we can apply the graph limit theorem
X.65 of Ref. 24 to find a self-adjoint operator Y with R = (Y + I)− 1. Thus, Xn → Y in the strong
resolvent sense. By Theorem VIII.26 of Ref. 24, the operator Y is the strong graph limit of the Xn,
which is an extension of X. We refer to Ref. 24 for a definition of the strong graph limit and only
note that Y may be a proper extension of the closure X , so X need not be essentially self-adjoint (see
also the example below the Trotter-Kato Theorem VIII.22 of Ref. 24). �

IV. QUASI-FREE HADAMARD STATES FOR A SCALAR QUANTUM FIELD

We now want to consider a general framework for quantum field theory on a curved spacetime
and the Fock spaces that are associated to quasi-free states. For this purpose we fix a (globally
hyperbolic) spacetime M = (M, g), where M is a spacetime manifold of arbitrary dimension
d ≥ 2 and g a Lorentzian metric. We define the tensor algebra

UM :=
∞⊕

n=0

C∞
0 (M)⊗n,

where we take the algebraic direct sum and tensor product and we set C∞
0 (M)⊗0 := C. This algebra

is the polynomial *-algebra generated by an identity I and the symbols �( f ) with f ∈ C∞
0 (M),

where f �→�( f ) is the obvious complex linear map into the summand C∞
0 (M)⊗1 of degree 1, and the

*-operation is defined by anti-linear extension of �( f )∗ := �( f̄ ). Given an algebraic state ω on
UM , we can construct the associated GNS-representation πω on the Hilbert space Hω with cyclic
vector �ω and dense invariant domain Dω := πω(UM )�ω.

Let ω2 ∈ D′(M×2) be a distribution which is of positive type, in the sense that ω2( f , f ) ≥ 0
whenever f ∈ C∞

0 (M). Notice that 2ω2 is a semi-definite inner product on C∞
0 (M), so we may obtain

a Hilbert space K2ω2 by dividing out the null-space of test-functions f such that 2ω2( f̄ , f ) = 0 and
then taking the Hilbert space completion.32 We denote the canonical projection map C∞

0 (M) → K2ω2

by κ and we warn the reader that complex conjugation on C∞
0 (M) generally does not descend

to a well-defined (R-linear) map on the subspace κ(C∞
0 (M)) of K2ω2 , because κ( f ) = 0 does

not necessarily imply that κ( f ) = 0. We also introduce the map κ :C∞
0 (M)→K2ω2 defined by
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κ( f ) := j−1(κ( f̄ )), where j :Kω2 →Kω2 is the anti-linear bijection. Note that κ is linear (and not
anti-linear) and that

〈κ( f ), κ(g)〉 = ω2( f , g). (2)

For the Hilbert space K2ω2 we can construct the symmetric Fock space H+ as in Sec. II. For
convenience we define

α∗
+( f ) := a∗

+(κ( f )), α+( f ) := a+( j(κ( f )))

for each f ∈ C∞
0 (M) and we set furthermore

�′( f ) := 1√
2

(α+( f ) + α∗
+( f )) (3)

as a densely defined operator on the subspace F+ of H+. Note that �′( f ) is complex linear in f.
Let D denote the linear space generated by polynomials in the operators �′( f ) acting on the

Fock vacuum vector �. Then one has (see also Sec. 3.2 of Ref. 19)

Proposition 4.1: There is a unique quasi-free state ω onUM with the given two-point distribution
ω2 and its GNS-representation (Hω, πω,Dω,�ω) is given by Hω := H+, �ω := �, Dω := D and
πω(�( f )) := �′( f )|D.

Proof: The equality 〈�, πω(A)�〉=ω(A) where ω is the quasi-free state with the given ω2 follows
from the commutation relations between creation and annihilation operators. (This also proves the
existence of this quasi-free state.) The other properties which characterise the GNS-representation
can be inferred,33 e.g., from Proposition 5.2.3 in Ref. 5. �

For any vector ψ ∈ Dω one can now show that ( f, g) �→〈ψ , �′( f )�′(g)ψ〉 is a distribution on
M× 2, which means that f �→�′( f )ψ is an Hω-valued distribution (cf. Ref. 28). In order to describe
Wick polynomials (including derivatives) in terms of Hilbert space-valued distributions we first need
to recall some notions from microlocal analysis (see Ref. 16).

To any distribution u on M one can associate the wave front set W F(u) ⊂ T ∗M , which describes
the singularities of u. A point (x, k) ∈ W F(u) should be thought of as a singularity at x in the direction
k �= 0. (The wave front set is invariant under positive re-scaling of k). If Z denotes the zero section
of T*M and � ⊂ T ∗M \ Z is a closed conic subset, i.e., if � is invariant under positive re-scaling at
every point in M, then we denote by D′

�(M) the linear space of distributions whose wave front set
is contained in �. This space can be endowed with a notion of convergence for sequences, known
as the Hörmander pseudo-topology (we refer to Ref. 16 for its detailed definition). The space of
test-functions C∞

0 (M) is dense in D′
�(M) in this pseudo-topology. Given two closed conic subsets

�,�′ ⊂ T ∗M \ Z such that �∩− �′ = ∅ (where − denotes the multiplication of vectors by − 1,
defined pointwise in the cotangent space) one can uniquely extend the (pointwise) product from
C∞

0 (M) × C∞
0 (M) to D′

�(M) × D′
�′ (M) in a sequentially continuous way. This result is known as

Hörmander’s criterion for the multiplication of distributions.
Now we make an additional assumption on ω, namely that it satisfies the microlocal spectrum

condition.6 For a quasi-free state this means that ω2 is of (generalised) Hadamard form,23, 27 i.e., that

W F(ω2) ⊂ (V − \ Z) × (V + \ Z), (4)

where V ± are the fiber bundles of future ( + ) and past ( − ) pointing causal covectors on the
spacetime M. The free scalar field is known to have quasi-free Hadamard states in any globally
hyperbolic spacetime.12 The microlocal spectrum condition allows one to prove the following

Lemma 4.2: For each l, m, the K⊗l
2ω2

⊗ K⊗m
2ω2

-valued distribution

(κ⊗l ⊗ κ⊗m)( f1, . . . , fl , h1, . . . , hm) := κ( f1) ⊗ . . . ⊗ κ( fl) ⊗ κ(h1) ⊗ . . . ⊗ κ(hm)

on M× (l + m) has a wave front set contained in (V +)×l × (V −)×m and it can be extended in a unique
way to D′

�(M×(l+m)), if � ∩ ((V +)×l × (V −)×m) = ∅, using the Hörmander pseudo-topology.

Downloaded 16 Apr 2012 to 128.135.100.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



042502-8 Ko Sanders J. Math. Phys. 53, 042502 (2012)

The definition of the distribution κ⊗l ⊗ κ⊗m on M× (l + m) uses the Schwartz kernel theorem
(c.f., Theorem 5.2.1 in Ref. 16 for the scalar case). The estimates of the wave front sets of κ⊗l and
κ⊗l and the extension to D′

� follow from Eq. (2) and the results in Sec. 8.2 of Ref. 16 extended to the
case of Hilbert space-valued distributions (using e.g., Proposition 2.2 in Ref. 28 or Theorem A.1.3
in Ref. 26).

Lemma 4.2 can be combined with Proposition 2.1 in order to smear polynomials in α∗
+ and α +

with certain distributions which still yield well-defined operators on F+ ⊂ Hω. However, an even
stronger estimate on the wave front set can be obtained by exploiting the smaller domain Dω:

Theorem 4.3: For each ψ ∈ Dω and l, m, the Hilbert space-valued distribution

A(l,m)
ψ ( f1, . . . , fl , h1, . . . , hm) := α∗

+( f1) · · · α∗
+( fl)α+(h1) · · · α+(hm)ψ

on M× (l + m) has a wave front set contained in (V +)×l × Z×m. It can be extended in a unique way to
D′

�(M×(l+m)), if � ∩ (
(V +)×(l+m) ∪ (V −)×(l+m)

) = ∅, using the Hörmander pseudo-topology.

Here we follow the convention to exclude both future and past pointing vectors from �, to
ensure that the commutation relations still make sense (see, Refs. 9 and 13).

Proof: First we consider the case l = 0. The wave front set of the Hω-valued distribution A(0,m)
ψ

can be estimated by considering

w(h′
1, . . . , h′

m, h1, . . . , hm) := 〈A(0,m)
ψ (h′

1, . . . , h′
m), A(0,m)

ψ (h1, . . . , hm)〉.

Writing ψ = ∑N
i=0 ψi ∈ Dω with ψ0 ∈ C and representing ψ i as a symmetric function in C∞

0 (M×i )
for i > 0 we can see from the definition of the creation and annihilation operators that w is smooth,
because it is a finite sum of terms of the form∫

M×2n

ψm+n(x ′
1, . . . , x ′

m+n)ψm+n(y′
1, . . . , y′

m+n)
m∏

j=1

ω2(x ′
j , x j )ω2(y j , y′

j )
m+n∏

j=m+1

ω2(x ′
j , y′

j ),

where we omitted the metric induced volume forms on M. These are smooth functions of xi, yi,
1 ≤ i ≤ m because of Theorem 8.2.12 in Ref. 16 and the fact that (x, k; y, l) ∈ W F(ω2) implies both
k �= 0 and l �= 0. Now, by Proposition 2.1, we have

‖A(l,m)
ψ ( f1, . . . , fl , h1, . . . , hm)‖ ≤ C

l∏
i=1

‖κ( fi )‖ · ‖A(0,m)
ψ (h1, . . . , hm)‖

for some C > 0 that may depend on ψ . Hence,

W F(A(l,m)
ψ ) ⊂ W F(κ⊗l ⊗ A(0,m)

ψ ) ⊂ (W F(κ) ∪ Z)×l × (W F(A(0,m)
ψ ) ∪ Z×m) ⊂ (V +)×l × Z×m .

The extension to D′
� again follows from the results in Sec. 8.2 of Ref. 16 extended to the case of

Hilbert space-valued distributions. �
For each ψ ∈ Dω one now defines πω(�⊗n)ψ as the Hω-valued distribution on M× n obtained

by expanding � in terms of creation and annihilation operators and the normally ordered tensor
product : πω(�⊗n) : ψ is obtained by moving all creation operators in the expression for πω(�⊗n)ψ
to the left of all annihilation operators. Wick polynomials can now be defined by restricting the
distribution : πω(�⊗n) : ψ on M× n to the diagonal � := {(x, . . . , x) ∈ M× n| x ∈ M} as follows.
Let δ(n) ∈ D′(M×n) be the distribution δ(n)(h) := ∫

Mh|�. Given any ψ ∈ Dω, f ∈ C∞
0 (M) and any

partial differential operator Q on M× n with smooth coefficients and formal adjoint Q* we consider
the expression

: πω(Q∗�n) : ( f )ψ := : πω(�⊗n) : (Q( f δ(n)))ψ.

If Q = 1 this expression is called the nth Wick-power.

Downloaded 16 Apr 2012 to 128.135.100.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



042502-9 Ko Sanders J. Math. Phys. 53, 042502 (2012)

Corollary 4.4: Given f and Q the operator : πω(Q*�n) : ( f ) is well-defined on Dω by Theorem
4.3 and it is a strong limit on Dω of operators in UM . For each ψ ∈ Dω the map f �→ : πω(Q*�n) :
( f )ψ is an Hω-valued distribution on M.

Proof: Set � :=
{

(x, k1; . . . ; x, kn)| ∑n
j=1 k j = 0

}
= W F(δ(n)). For every partial differential

operator Q on M× n the map f �→Q( fδ(n)) is sequentially continuous from C∞
0 (M) to D′

�(M×n).
By Theorem 4.3 there are well-defined normally ordered operators A(l, n − l)(Q( fδ(n))) defined for
ψ ∈ Dω by A(l,n−l)(Q( f δ(n)))ψ := A(l,n−l)

ψ (Q( f δ(n))). For each ψ ∈ Dω this operator defines a
Hω-valued distribution and the Wick polynomials are just finite sums of these distributions. �

All Hadamard two-point distributions of a free scalar field with a fixed mass are known to differ
pairwise by a smooth function. Moreover, their singularity structure is locally determined by the
geometry of the spacetime alone. These remarks allow a more advanced formulation of the normal
ordering procedure and the construction of the Wick powers than what we have given here, which
is local, covariant and representation independent (cf. Refs. 7 and 13). Note that such a different
notion of normal ordering would not influence the results of Sec. V below, because the difference
would be a finite multiple of the identity operator.

V. SELF-ADJOINTNESS OF SECOND ORDER WICK POLYNOMIALS

In this section we present and prove our main results concerning the (essential) self-adjointness
of second order Wick polynomials. We fix a spacetime M and a quasi-free Hadamard state ω2 and
consider the operator

T =
∑
j∈J

: πω(�2) : (Q∗
j ⊗ Q j ( f j · δ(2))) (5)

with a finite index set J and partial differential operators Qj on M with real, smooth coefficients and
f j ∈ C∞

0 (M). We let K ⊂ M denote the union of the supports of the test-functions fj. Furthermore
we let

T1 := P+,1T P+,1

be the compression of T to the one-particle Hilbert space H(1) � K2ω2 .
We start by establishing the locality properties of the self-adjointness problem. For any open

set O ⊂ M we let Dω(O) denote the subspace of Hω generated by polynomials in the fields smeared
with test-functions supported in O and we set Hω(O) := Dω(O). Then we have the

Lemma 5.1 (Locality lemma): If O ⊂ M is a relatively compact open set containing K, then T
restricts to a densely defined operator on Dω(O) ⊂ Hω(O). If for every relatively compact open set
O ⊂ M containing K the restriction of T to Hω(O) is essentially self-adjoint on Dω(O), then T is
essentially self-adjoint on Dω.

Proof: If O contains K, then the range of T is contained in Hω(O), because (Q∗
j ⊗ Q j ( f j · δ(2)))

can be approximated by tensor products of test-functions supported in O. This proves the first
statement. Now suppose that arbitrary ψ ∈ Hω and ε > 0 are given. We may find an operator
A ∈ UM such that ‖ψ − πω(A)�ω‖ < ε

2 . Now choose O to be a relatively compact neighbourhood
of K and of the supports of all test-functions occurring in A. If we may choose O in such a way that the
restriction of T to Hω(O) is essentially self-adjoint, then we may find A± ∈ UM with test-functions
supported in O such that ‖(πω(A) − (T ± i I )πω(A±))�ω‖ < ε

2 . Now ‖ψ − (T ± iI)πω(A± ))�ω‖
< ε, so the range of T ± iI is dense for both signs and therefore T is essentially self-adjoint. �

A similar statement holds at the level of one-particle Hilbert spaces for T1.
If we write out T in terms of creation and annihilation operators, then the terms which consist

of two creation operators or two annihilation operators are not problematic. Indeed, they yield an
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essentially self-adjoint operator by Proposition 3.3, combined with Lemma 4.2 and the fact that

W F((Q∗
j ⊗ Q j )( f jδ

(2))) ⊂ W F(δ(2)) = {(x, k; x,−k)} .

The term consisting of a creation and annihilation operator, however, cannot be dealt with in the
same way, unless the singularities in ω2 are very mild. Indeed, this term is the second quantisation
of its compression T1 to K2ω2 , which is in general not a Hilbert-Schmidt operator. When T1 is
nevertheless a bounded operator one can still prove an analogue of Proposition 3.3, but this too
cannot be expected unless the singularities in ω2 are not too strong.

Because our aim is to prove results which are as general as possible, we will allow the possibility
that T1 is unbounded, so we need to use different methods to prove the essential self-adjointness of
T. For this purpose we consider the case that the fj are in the following set of functions.

Definition 5.2: S is the set of f ∈ C∞
0 (M) which can be written as a finite sum of squares of

real-valued test-functions.

Note in particular that f ∈ S entails f ≥ 0. When f j ∈ S for all j it is known that T is semi-
bounded,10 which implies that T certainly has self-adjoint extensions (e.g., the Friedrichs extension).
In Theorem 5.4 below we prove moreover that T is essentially self-adjoint when T1 is, but first we
prove that we can always pick out a particular self-adjoint extension of T in a nice way.

Theorem 5.3: Assume that f j ∈ S for all fj in Eq. (5). Then we may choose a sequence
Fn ∈ C∞

0 (M×2) and a sequence cn ∈ R≥0 such that for each quasi-free state ω

1. the operators Xn := : πω(�⊗2) : ( Fn) + cnI are essentially self-adjoint on Dω,
2. cn converges to some c ∈ R and Xn converges strongly to T + cI on Dω, and
3. Xn + 1 ≥ Xn ≥ 0 for all n.

Consequently, there is a self-adjoint extension X of T such that Xn → X in the strong resolvent
sense.

Proof: By rearranging sums we may assume without loss of generality that f j = f̃ 2
j with

f̃ j ∈ C∞
0 (M,R). In the following we will say that a coordinate neighbourhood U is “suitably small”

if we can choose the coordinates x such that one of them, x0, is a time-coordinate. Recall that
the compact set K is the union of the supports of all f̃ j . We can cover K by a finite number of
suitably small coordinate neighbourhoods Ok, 1 ≤ k ≤ N, which we augment by O0 := M\K. Let
{φk}k = 0, . . . , N be a partition of unity subject to the cover {Ok}k = 0, . . . , N, i.e., φk ∈ C∞

0 (Ok) and φk

≥ 0 for all k and
∑N

k=0 φk ≡ 1 on M. Now set34

χk := φk

(
N∑

k=0

φ2
k

)− 1
2

.

Notice that χk ∈ C∞
0 (Ok) and

∑N
k=0 χ2

k ≡ 1. Since χ0 f̃ j ≡ 0 we can consider the partition
f̃ j = ∑N

k=1 f̃ j,k with f̃ j,k := f̃ jχ
2
k , so that f̃ 2

j = ∑N
k,l=1 f̃ j,k f̃ j,l . Each term in the latter sum is

of the form f̃ j,k f̃ j,l = ( f̃ jχkχl)2 with f̃ jχkχl real-valued and supported in a suitably small coordi-
nate neighbourhood. After relabeling we may therefore assume without loss of generality that all f̃ j

are supported in suitably small neighbourhoods.
We partition the set J into disjoint subsets Jk, such that j ∈ Jk implies supp f̃ j ⊂ Ok . Taking

advantage of the special coordinates in the suitably small neighbourhood Ok we define

Fn,k(x, y) := (2π )−4
∑
j∈Jk

∫
Bn

dp Q j ( f̃ j (x)e−i p·x )Q j ( f̃ j (y)eip·y)

F ′
n,k(x, y) := 2(2π )−4

∑
j∈Jk

∫
B ′

n

dp Q j ( f̃ j (x)e−i p·x )Q j ( f̃ j (y)eip·y),
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where Bn := {p| |pμ| ≤ n} is a cube and B ′
n := Bn ∩ {p0 ≥ 0}. Then we define Fn := ∑N

k=1 Fn,k and
F ′

n := ∑N
k=1 Fn,k . Because each Bn is bounded the Fn, k and F ′

n,k are smooth functions and therefore
the Fn and F ′

n are smooth too. We set cn := ω2(F ′
n) and it now remains to check the properties of Xn

:= : πω(�⊗2) : ( Fn) + cnI.
By Lemma 4.2 and Proposition 3.3, we see that the Xn have Dω as a dense set of analytic

vectors in the GNS-representation of the quasi-free state ω. They are also symmetric and therefore
essentially self-adjoint on Dω. Furthermore, as n → ∞ the functions Fn converge to F in the
Hörmander pseudo-topology, so by Theorem 4.3 the operators Xn − cnI converge strongly on Dω

to T. Next we note that the cn are non-negative, because

ω2(F ′
n,k) = 2(2π )−4

∑
j∈Jk

∫
B ′

n

dp ω2

(
Q j ( f̃ j eip·.), Q j ( f̃ j e

ip·.)
)

≥ 0. (6)

In fact, using the Hadamard condition and the special properties of the coordinates used to define
the F ′

n,k and the fact that B ′
n is a half-space one can show that c := limn→∞cn is finite. Finally, each

ψ ∈ Dω with ‖ψ‖ = 1 defines a distribution ω′
2( f, h) := 〈ψ,πω(�( f )�(h))ψ〉 with ω′

2( f , f ) ≥ 0
and hence

〈ψ, Xnψ〉 = (ω′
2 − ω2)(Fn) + cn = (ω′

2 − ω2)(F ′
n) + ω2(F ′

n) = ω′
2(F ′

n),

where we used the symmetry of (ω′
2 − ω2)(x, y) in the second equality. As in Eq. (6), we now find

that Xn + 1 ≥ Xn for all n and that X1 ≥ 0. The final claim now follows from the monotone graph limit
Theorem 3.7. �

We will now prove that T is essentially self-adjoint when the compression T1 is essentially
self-adjoint, using Konrady’s trick.

Theorem 5.4: Assume that f j ∈ S for all fj in Eq. (5). If T1 is essentially self-adjoint, then so
is T.

Proof: Let F := ∑
j∈J Q j ⊗ Q j ( f̃ j (x) f̃ j (y)δ(2)(x, y)) and define the operators X := α∗

+ ⊗
α+(F) and Y := 1

2 ((α∗
+)⊗2 + α⊗2

+ )(F) on Dω (cf. Corollary 4.4), so that T = : �2 : ( F ) = X + Y.
Our aim is to apply Konrady’s trick in the form of Theorem 3.5.

First note that T1 = P+ ,1XP+ ,1 is essentially self-adjoint and positive on the dense domain
Dω ∩ K2ω2 = H(1)

+ . It then easily follows that X is essentially self-adjoint and positive onDω, because
it is the second quantisation of P+ ,1XP+ ,1 (cf. Sec. VIII.10, Ex. 2 in Ref. 24.). By Lemma 4.2 and
Proposition 2.1, the operator Y satisfies ‖Yψ‖ ≤ d

2 ‖(N + 2)ψ‖ ≤ d‖Nψ‖ + d‖ψ‖ for some d ≥ 0.
To obtain the final estimate needed to apply Theorem 3.5 we note that for any h ∈ C∞

0 (M) we have

Nπω(�(h)) = πω(�(h))(N − I ) +
√

2α∗
+(h).

Because : πω(�⊗2) : (h, h) = πω(�(h))πω(�(h)) − ω2(h, h)I it follows that

N : πω(�(h))πω(�(h)) : + : πω(�(h))πω(�(h)) : N

= 2πω(�(h))Nπω(�(h)) + α∗
+(h)α+(h) − α∗

+(h)α+(h) − 2ω2(h, h)(N + I )

≥ −4ω2(h, h)(N + I ),

where we used the elementary estimates above Proposition 2.1 in the final inequality.
Referring to the proof of Theorem 5.3 we may assume without loss of generality that all f̃ j are

supported in a single, suitably small coordinate neighbourhood. We may then write

Q j ⊗ Q j ( f̃ j (x) f̃ j (y)δ(2)(x, y)) = (2π )−4
∫

dk Q j ( f̃ j (x)e−ik·x )Q j ( f̃ j (y)eik·y)
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and exploit the symmetry of the Wick square to integrate over k0 ≥ 0 only, which yields for any
ψ ∈ Dω

Re(〈ψ, N : πω(�2) : (Q j ⊗ Q j ( f̃ j ⊗ f̃ jδ
(2)))ψ〉)

= (2π )−4
∫

dk Re
(〈ψ, N : πω(�⊗2) :

(
Q j ( f̃ j e

−ik·.), Q j ( f̃ j e
ik·.)

)
ψ〉)

= 2(2π )−4
∫

k0≥0
dk Re

(〈ψ, N : πω(�⊗2) :
(
Q j ( f̃ j e

−ik·.), Q j ( f̃ j e
ik·.)

)
ψ〉)

≥ −4(2π )−4
∫

k0≥0
dk ω2

(
Q j ( f̃ j e

−ik·.), Q j ( f̃ j e
ik·.)

) ‖√N + Iψ‖2

≥ −c j‖
√

N + Iψ‖2,

where cj < ∞ in the final inequality, because of the Hadamard condition and the fact that k0 ≥ 0.
After summing over j we have verified all the assumptions of Theorem 3.5, which completes the
proof. �

It is in order to make a remark on the class S of smearing functions appearing in Theorems 5.3
and 5.4 (see also Ref. 10, p. 345 for similar comments):

Remark 5.5: Note that a sum of squares of real-valued test-functions is clearly a positive test-
function, but the converse is not true because of Hilbert’s theorem of 1888.25 In fact, if O ⊂ Rd is
an open set with d ≥ 4 then one may find a homogeneous polynomial P ≥ 0 on O of degree 4 which
cannot be written as a finite sum of squares of polynomials, and therefore it is not a finite sum of
squares of C2 functions either.3, 35 (For d = 3 the same argument gives a counter-example for finite
sums of squares of C3 functions, using a polynomial of degree 6.) Multiplying P by a test-function
f which is identically 1 near 0 does not spoil the argument, so fP is not a square of C2 functions
either. More generally, if f (0) �= 0 then f2P cannot be a sum of squares of C2 functions. The work of
Blekherman2 suggests that such counter-examples could be plentiful. As a positive result, however,
any nonnegative smooth function f ≥ 0 on O can be written as a finite sum of C1 functions with
Lipschitz continuous derivatives,3 but this small amount of regularity places severe restrictions on
the order of the Qj and of ω2. The fact that any f ≥ 0 can be written as a difference of two squares
of smooth functions seems of little use for our proof.

Thus, our class of smearing functions is smaller than the class of all non-negative smooth
functions. However, for some choices of T, such as the components of the stress-energy-momentum
tensor, one could argue that one is really interested in the smearing function 1 and one only uses
test-functions to avoid a divergence caused by an integration over all of spacetime. As shown in the
proof of Theorem 5.3, there exist partitions of unity consisting of squares of real-valued functions,
which would then be sufficient for these purposes. �

The results above have only made use of the microlocal spectrum condition, but for the case
of free fields more detailed information is available. In the remainder of this section we will study
especially the Wick square of a free scalar field and use the results above to establish its self-
adjointness. We start with a lemma and a proposition concerning the compression to the one-particle
Hilbert space. In these results we make use of the Sobolev wave front set W F(s) of a distribution
with s ∈ R. For its definition and properties we refer to the literature8, 15, 17, 36

Lemma 5.6: Let ω2 be a Hadamard two-point distribution of a free scalar field and v ∈ E ′(M).
Assume for some s ∈ R that W F(s)(v) = ∅. Then W F(s+1)(ω2(v, .)) = ∅.

In fact one can even prove the slightly stronger result that W F(s+ 3
2 )(ω2(v, .)) = ∅ using Theorem

B.9 and Eqs. (62,63) in Ref. 17, but we will not need this strengthened version here.

Proof: We consider the distribution u := ω2(v, .) = ω2(., v) + i E(v, .), which is well-defined
and has W F(u) ⊂ V + by the Hadamard condition (see Theorem 8.2.13 in Ref. 16). As the
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first term on the right-hand side has a wave front set contained in V − we see that W F(s)(u)
= W F(s)(E(v, .)) ∩ V + for all s. Now suppose that W F(s)(v) = ∅ and (x, k) ∈ W F(s+1)(u). Then we
have (x, k) ∈ W F(s+1)(E±(v, .)) for at least one choice of the sign. Because v = K E±(v, .), where
K := �+ ξR + m2 is the Klein-Gordon operator, we can use the propagation of singularities theo-
rem (Theorem 6.1.1’ of Ref. 8) to propagate the null vector (x, k) along the light-like geodesic that it
generates to points (y, l) in W F(s+1)(E±(v, .)) \ W F(s)(v). We may find such points with y to the past
(–) or future (+) of the support of v. However, since E±(v, .) ≡ 0 there, this gives a contradiction.
Thus we must have W F(s+1)(u) = ∅. �

Proposition 5.7: Let ω2 be a Hadamard two-point distribution of a free scalar field and let T1

be the compression of T to the one-particle Hilbert space K2ω2 . Assume that Qj ≡ 1 and f := ∑
j ∈ Jfj

is real-valued. Then T1 is essentially self-adjoint.

Proof: Suppose that ψ ∈ K2ω2 is an eigenvector of T ∗
1 with eigenvalue λ ∈ iR \ {0} and

consider the distribution u(h) := 〈ψ , κ(h)〉 on M. The eigenvalue equation T ∗
1 ψ = λψ implies

λu(h) = 〈ψ, T1κ(h)〉 = ω2( f u, h), where we used the explicit expression for T1 in terms of creation
and annihilation operators. Now set v := f u ∈ E ′(M), so there is an s ∈ R such that W F(s)(v) = ∅.
Applying Lemma 5.6 and λv = f ω2(v, .) we find that W F(s+1)(v) ⊂ W F(s+1)(ω2(v, .)) = ∅. Itera-
tion gives W F(s)(v) = ∅ for all s, i.e. W F(v) = ∅.

Next we define v1 := Re(v) and v2 := Im(v), which are real-valued test-functions. Splitting the
equation λv = f ω2(v, .) into real and imaginary parts yields

−iλv2 = f ω2+(v1, .) − f

2
E(v2, .)

iλv1 = f ω2+(v2, .) + f

2
E(v1, .).

Inserting v2 in the first line, v1 in the second line and subtracting yields 0 = v1(v1) + v2(v2)
= ∫

M |v|2, by the anti-symmetry of E and the symmetry of ω2 + . This means we have v = 0
(pointwise) and hence λu = ω2(v, .) = 0, which implies ψ = 0. In other words, the range of
T1 ± iI is dense for both signs, which means that T1 is essentially self-adjoint. �

Theorem 5.8: Let ω be a quasi-free Hadamard state of a free scalar field and T := : πω(�2) :
( f ) with f ∈ S. Then T is essentially self-adjoint on Dω.

Proof: The result follows from Theorem 5.4 combined with Proposition 5.7. We also note
that Theorem 5.3 provides an opportunity to deduce some information on the spectral projections
of T . �

Thus we see that for any d ≥ 2 the Wick square : πω(�2) : ( f ) is essentially self-adjoint on its
natural domain.37 To draw a similar conclusion for the components of the stress-energy-momentum
tensor requires a study of its compression to the one-particle Hilbert space, which is unfortunately
more complicated than for the Wick square due to the presence of derivatives.

VI. CONCLUSIONS

In this paper we have shown that it is possible to obtain self-adjointness results for operators
in quantum field theory by exploiting the microlocal spectrum condition. This technique allowed us
to generalise previously known results to a large class of physically relevant states on all globally
hyperbolic spacetimes, at for least for suitable operators. Note that we imposed no requirements on
the boundary of the spacetime, such as geodesic completeness, which is usually assumed to prove
the essential self-adjointness of the wave operator on the Hilbert space of L2-functions, nor did we
restrict the spacetime dimension d.

Our strategy for proving the essential self-adjointness of second order Wick polynomials was
to reduce the problem to the one-particle Hilbert space and to try and exploit the essential self-
adjointness of the compression T1. Together with our locality lemma this opens up the way to
apply estimates obtained by Verch in his study of local quasi-equivalence.29 We point out that
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Baez’ proof1 of the self-adjointness of the Wick square in a ground state on a static spacetime also
reduces the problem to the one-particle Hilbert space, but uses very different techniques. Indeed, he
studies the action of commutators with the Wick square, which is determined by a linear operator L on
the one-particle Hilbert space. A result of Poulsen (published by Klein20) then guarantees the essential
self-adjointness of the Wick square, as soon as L is a Hilbert-Schmidt infinitesimal symplectic map.

The microlocal spectrum condition and Nelson’s theorem do allow some further results, which
we state here without proof, because the proofs are variations on the ones given in the main text.
If the Hadamard condition is strengthened so as to exclude also time-like singularities (as is the
case for free scalar fields), one may restrict the field and its derivatives to spacelike hypersurfaces.
By Nelson’s theorem these restrictions are essentially self-adjoint (when suitably smeared to make
them symmetric).

A different strategy to prove essential self-adjointness results would be to try and exploit the
fact that the two-point distribution of a free scalar field becomes more regular in lower dimensions.
Indeed, the Sobolev wave front set of a Hadamard two-pint distribution of a free scalar field in a
d-dimensional spacetime (d ≥ 2) is given by38

W F(s)(ω2) =
{

W F(ω2) if s ≥ 3−d
2

∅ if s < 3−d
2

.

In the extreme case d = 1 of a scalar field in a one-dimensional “spacetime” (i.e. a harmonic
oscillator) no singularities occur in the two-point distribution at all and therefore second order Wick
polynomials (with derivatives) are essentially self-adjoint when they are symmetric, as may be seen
from Lemma 4.2 and Nelson’s theorem. In fact, a similar conclusion holds for semi-bounded fourth
order Wick polynomials, by replacing Nelson’s theorem by Nussbaum’s theorem. In particular we
note that the fourth Wick power : �4 : ( f ) is essentially self-adjoint when smeared with any positive
measure f. This is in contrast to the results of Rabsztyn22 who found that the third Wick power in
the one-dimensional setting is only essentially self-adjoint for non-generic choices of the smearing
function.

For d ≥ 2 it is harder to see if the extra regularity of the two-point distribution can lead to
further self-adjointness results. For example, in d = 4 it is known that the compression T1 of a Wick
square to the one-particle Hilbert space of the Minkowski vacuum in Minkowski spacetime is a
bounded operator.21 This leads to additional essential self-adjointness of the Wick square, also for
more general smearing functions than those of class S and in a large class of non-quasi free states,
using Nelson’s theorem (as in Proposition 3.3). We believe the boundedness of T1 for a Wick square
can be generalised to curved spacetimes for d = 2, but for d ≥ 3 the situation is less clear. In the
presence of derivatives one would generally expect to require smaller d in order to obtain similar
results. (Note on the other hand that Lemma 5.6 is independent of d.)

ACKNOWLEDGEMENTS

I would like to thank Robert Wald for encouraging remarks and Chris Fewster for posing a
critical question during a special programme “QFT on curved spacetimes and curved target spaces,”
held at ESI, Vienna in Spring 2010. A first draft of this paper was prepared at the Institute for
Theoretical Physics at the University of Göttingen and was supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the
University of Göttingen and the Graduiertenkolleg 1493 “Mathematische Strukturen in der modernen
Quantenphysik”.

1 Baez, J., “Wick Products of the Free Bose Field,” J. Funct. Anal 86, 211–225 (1989).
2 Blekherman, G., “There are significantly more nonnegative polynomials than sums of squares,” Isr. J. Math. 1511, 355–380

(2006).
3 Bony, J. -M., Broglia, F., Colombini, F., and Pernazza, L., “Nonnegative functions as squares or sums of squares,” J. Funct.

Anal. 232, 137–147 (2006).
4 Borchers, H. -J. and Zimmermann, W., “On the self-adjointness of field operators,” Nuovo Cimento 31(10), 1047–1059

(1964).
5 Bratteli, O. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics (Springer, Berlin, 2002), Vol. 1.

Downloaded 16 Apr 2012 to 128.135.100.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/0022-1236(89)90052-9
http://dx.doi.org/10.1007/BF02771790
http://dx.doi.org/10.1016/j.jfa.2005.06.011
http://dx.doi.org/10.1016/j.jfa.2005.06.011
http://dx.doi.org/10.1007/BF02821677


042502-15 Ko Sanders J. Math. Phys. 53, 042502 (2012)

6 Brunetti, R., Fredenhagen, K., and Köhler, M., “The microlocal spectrum condition and Wick Polynomials of free fields
on curved spacetimes,” Commun. Math. Phys. 180, 633–652 (1996).

7 Brunetti, R. and Fredenhagen, K., “Microlocal analysis and interacting quantum field theories: renormalization on physical
backgrounds,” Commun. Math. Phys. 208, 623–661 (2000).
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9 Dütsch, M. and Fredenhagen, K., “Algebraic quantum field theory, perturbation theory, and the loop expansion,” Commun.

Math. Phys. 219, 5–30 (2001).
10 Fewster, C. J. and Verch, R., “A quantum weak energy inequality for Dirac fields in curved spacetime,” Commun. Math.

Phys. 225, 331–359 (2002).
11 Fredenhagen, K. and Hertel, J., “Local algebras of observables and pointlike localized fields,” Commun. Math. Phys. 80,

555–561 (1981).
12 Fulling, S. A., Narcowich, F. J., and Wald, R. M., “Singularity structure of the two-point function in quantum field theory

in curved spacetime,” Ann. Phys. 136, 243–272 (1981).
13 Hollands, S. and Wald, R. M., “On the renormalization group in curved spacetime,” Commun. Math. Phys. 237, 123–160

(2003).
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16 Hörmander, L., The Analysis of Linear Partial Differential Operators (Springer, Berlin, 2003), Vol. 1.
17 Junker, W. and Schrohe, E., “Adiabatic vacuum states on general spacetime manifolds: definition, construction, and physical

properties,” Ann. Inst. Henri Poincare 3, 1113–1181 (2002).
18 Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras (American Mathematical Society,

1997), Vol 1.
19 Kay, B. S. and Wald, R. M., “Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree

states on spacetimes with a bifurcate Killing horizon,” Phys. Rep. 207, 49–136 (1991).
20 Klein, A., “Quadratic expressions in a free Boson field,” Trans. Am. Math. Soc. 181, 439–456 (1973).
21 Langerholc, J. and Schroer, B., “On the structure of the von Neumann algebras generated by local functions of the free

Bose field,” Commun. Math. Phys. 1, 215–239 (1965).
22 Rabsztyn, S., “Deficiency indices for Wick powers in one dimension,” Rep. Math. Phys. 27, 161–168 (1989).
23 Radzikowski, M. J., “Micro-local approach to the Hadamard condition in quantum field theory on curved space-time,”

Commun. Math. Phys. 179, 529–553 (1996).
24 Reed, M. and Simon, B., Methods of Modern Mathematical Physics, (Academic, San Diego, 1980) Vols. 1, 2.
25 Rudin, W., “Sums of squares of polynomials,” Am. Math. Monthly 107, 813–821 (2000).
26 Sanders, K., “Aspects of locally covariant quantum field theory,” PhD dissertation, (University of York, 2008).
27 Sanders, K., “Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields

in curved spacetime,” Commun. Math. Phys. 295, 485–501 (2010).
28 Strohmaier, A., Verch, R., and Wollenberg, M., “Microlocal analysis of quantum fields on curved space-times: analytic

wavefront sets and Reeh-Schlieder theorems,” J. Math. Phys. 43, 5514–5530 (2002).
29 Verch, R., “Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime,”

Commun. Math. Phys. 160, 507–536 (1994).
30 This is a straightforward generalisation of part of Theorem X.44 in Ref. 24, who only consider K = L2(R3).
31 Such a Schmidt decomposition exists: let F ∈ H1 ⊗ H2, where the Hi are Hilbert spaces. Let { fi }i∈I be an orthonormal

basis for H1 (I some index set) and define gi ∈ H2 by 〈F, fi⊗ψ〉 = 〈gi, ψ〉 for all ψ ∈ H2. Notice that gi vanishes for all
but a countable number of indices i, by construction of the tensor product. Indexing the subset where gi �= 0 by i ∈ N and
setting Fn := ∑n

i=1 fi ⊗ gi one proves 〈F − Fn, Fn〉 = 0, w − limn→∞ Fn = F and hence F = limn→∞Fn.
32 The same Hilbert space is obtained in a different way in appendix A of Ref. 19. Equality follows from Lemma A.1

in Ref. 19.
33 Notice that Ref. 5 uses the Segal field �S(u) := 1√

2
(a∗+(u) + a+(u)), which is only real linear in u ∈ Kω2 , but has the

advantage that it can be defined on any abstract Fock space, since no conjugation of u is needed. To check e.g. cyclicity for
the physical field �( f ) one uses that for real-valued f we have �S(κ( f )) = �( f ) and �S(iκ( f )) = �(i f ) − i

√
2α+( f ),

which allows us to approximate any vector of the form �S(κ( f )1)···�S(κ( f )n)� by �( f1)···�( fn)� plus terms with <n
particles, which can be dealt with by induction.

34 This choice of partition of unity is not new, cf. p. 142 of Ref. 14 for a similar construction. The existence of a partition of
unity consisting of squares of test-functions is rather remarkable in the light of Remark 5.5 below.

35 In view of this, the heart of the problem seems to be algebraic in nature rather than analytic (at least in higher dimensions).
It therefore seems unrelated to the infinite order zeroes of f, which are mentioned in the context of the one dimensional
case in Ref. 10.

36 Although Ref. 17 provides the best overview of this material, it omits proofs and we note that the bot-
tom line of its Theorem B5 seems to be erroneous because of the counter-example (0, 0; 0, 1) ∈ W F(−1)(δ⊗2) \(
W F(0)(δ) × (W F(δ) ∪ {(0, 0)}) ∪ (W F(δ) ∪ {(0, 0)}) × W F(−1)

)
.

37 In Ref. 7, Wick polynomials are defined on a “microlocal domain of smoothness”. This domain can be shown to be larger
than the “Wightman domain”, which we use here. A Wick polynomial may be essentially self-adjoint on the microlocal
domain of smoothness without being essentially self-adjoint on the Wightman domain, a possibility which might be worthy
of further investigation, also for higher Wick powers. I would like to thank Romeo Brunetti for bringing this to my
attention.

38 This result generalises Lemma 5.2 of Ref. 17 and can be inferred from Theorem B.10 and Sec. 5.1 (especially the equation
displayed above Eq. (62)) of Ref. 17.

Downloaded 16 Apr 2012 to 128.135.100.102. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1007/BF02099626
http://dx.doi.org/10.1007/s002200050004
http://dx.doi.org/10.1007/BF02392165
http://dx.doi.org/10.1007/PL00005563
http://dx.doi.org/10.1007/PL00005563
http://dx.doi.org/10.1007/s002200100584
http://dx.doi.org/10.1007/s002200100584
http://dx.doi.org/10.1007/BF01941663
http://dx.doi.org/10.1016/0003-4916(81)90098-1
http://dx.doi.org/10.1007/s00220-003-0837-1
http://dx.doi.org/10.2307/1970473
http://dx.doi.org/10.1007/s000230200001
http://dx.doi.org/10.1016/0370-1573(91)90015-E
http://dx.doi.org/10.1090/S0002-9947-1973-0406213-5
http://dx.doi.org/10.1007/BF01646306
http://dx.doi.org/10.1016/0034-4877(89)90002-5
http://dx.doi.org/10.1007/BF02100096
http://dx.doi.org/10.2307/2695736
http://dx.doi.org/10.1007/s00220-009-0900-7
http://dx.doi.org/10.1063/1.1506381
http://dx.doi.org/10.1007/BF02173427

