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The linear scalar quantum field, propagating in a globally hyperbolic space–time, is a
relatively simple physical model that allows us to study many aspects in explicit detail.
In this review, we focus on the thermal equilibrium (KMS) states of such a field in a
stationary space–time. Our presentation draws on several existing sources and aims to
give a unified exposition, while weakening certain technical assumptions. In particular
we drop all assumptions on the behavior of the time-like Killing field, which is important
for physical applications to the exterior region of a stationary black hole.

Our review includes results on the existence and uniqueness of ground and KMS
states, as well as an evaluation of the evidence supporting the KMS-condition as a
characterization of thermal equilibrium. We draw attention to the poorly understood
behavior of the temperature of the quantum field with respect to locality.

If the space–time is standard static, the analysis can be done more explicitly. For
compact Cauchy surfaces we consider Gibbs states and their properties. For general
Cauchy surfaces we give a detailed justification of the Wick rotation, including the
explicit determination of the Killing time dependence of the quasi-free KMS states.
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1. Introduction

For a quantum mechanical system with a Hilbert space H, a thermal equili-

brium state can be described by the density matrix for the Gibbs grand canonical

ensemble,

ρ(β,µ) := Z−1e−β(H−µN) , (1.1)

whereH is the Hamiltonian operator of the system, N the particle number operator,

β the inverse temperature and µ the chemical potential.a Z is a normalization factor,

which ensures that the trace Tr ρ(β,µ) = 1. For this to be well defined we need to

know that e−β(H−µN) is a trace-class operator, a condition which can often be

established in explicit models, especially when the system is confined to a bounded

region of space.

For physical purposes it is of some interest to study thermal equilibrium in much

more general situations than for quantum mechanical systems, such as for a quan-

tum field propagating in a given gravitational background field. In these cases one

immediately encounters three well known problems: in a general curved space–time

there is no clear notion of particle, no clear choice of a Hamiltonian operator and,

even if there were, the exponentiated operator in Eq. (1.1) might not be of trace-

class. Additional problems arise if one wants to use the technique of Wick rotation,

aWe work in natural (Planck) units throughout: c = G = ~ = kB = 1.
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which has important computational advantages in the quantum mechanical case,

but which requires a preferred choice of a well behaved time coordinate.

In this paper we treat the problems above for the explicit example of a linear

scalar quantum field propagating in a globally hyperbolic space–time. We combine

results and arguments from several sources into a unified exposition and we take

the opportunity to show that some of the technical conditions made in the earlier

literature may be dropped or weakened.

It is well known how to formulate a linear scalar quantum field theory in all

globally hyperbolic space–times.1–4 A notion of particle and Hamiltonian can be

introduced whenever the space–time is also stationary.3 We will therefore focus on

stationary space–times, in which case the notion of global thermal equilibrium is

(in principle) well understood.5,6 Under suitable positivity assumptions on the field

equation we first give a full characterization of all ground states on the Weyl algebra

and we describe in detail a uniquely preferred ground state.7 More precisely, our

assumptions are that the field should satisfy the (modified) Klein–Gordon equation

−�φ+ V φ = 0

with a smooth, real-valued potential V which is stationary and strictly positive

everywhere. Unlike Ref. 7 we do not insist that the ground state should have a

mass gap, which allows us to drop the restrictions that the norm and the lapse

function of the time-like Killing field be suitably bounded away from zero. This is

of some importance in certain physical applications, e.g. when the stationary space–

time is the exterior region of a stationary black hole.8,9 In that case the norm of

the Killing field may become arbitrarily small.

Gibbs states as in Eq. (1.1) have a certain property, first noticed by Kubo10

and Martin and Schwinger11 and now known as the KMS-condition. This property

was proposed as a defining characteristic for thermal equilibrium states by Ref. 12,

even when the Gibbs state is no longer defined, on the grounds that it survives

the thermodynamic (infinite volume) limit under general circumstances for systems

in quantum statistical mechanics in Minkowski space–time. Further support for

this proposal comes from an investigation of the second law of thermodynamics for

general C∗-dynamical systems13 and from the study of explicit models in quantum

statistical mechanics.14 In addition to its physical context, the KMS-condition has

also become important in the abstract theory of operator algebras, where it is

related to Tomita’s modular theory.15

In the case of a standard static space–time (see Sec. 3 for the definition) with a

compact Cauchy surface we will see that the Gibbs state of Eq. (1.1) makes sense.

In the case of a general stationary space–time we will give a full characterization

of all KMS states on the Weyl algebra and we describe uniquely preferred KMS

states at any temperature.6 Unfortunately, the arguments of Ref. 12 concerning the

thermodynamic limit fail to work for quantum field theories. This indicates that the

behavior of the temperature of a quantum field, with respect to locality, is presently

rather poorly understood, even in a space–time with a favorable background
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geometry. With a view to physical applications, e.g. in cosmology, an improved

understanding would be highly desirable. (At this point we would also like to point

out that Refs. 16 and 17 have recently proposed a notion of local thermal equilib-

rium in general curved space–times, but the full merit of this new approach is as yet

unclear and a review of these recent developments is beyond the scope of this paper.)

When we study the Wick rotation we will restrict attention to space–times which

are standard static. Under these geometric circumstances there is a preferred Killing

time coordinate and it is well understood how KMS states can be obtained from

a Wick rotation.5,18 We show that any technical assumptions are automatically

verified for the systems under consideration. After complexifying the Killing time

coordinate we obtain an associated Riemannian manifold and we compactify the

imaginary time coordinate to a circle of radius R. We then show that there exists

a uniquely distinguished Euclidean Green’s function, which can be analytically

continued back to the Lorentzian space–time. We will find the explicit Killing time

dependence of this Green’s function and on the Lorentzian side we recover the two-

point distribution of the preferred KMS state with inverse temperature β = 2πR.

The contents of this paper are organized as follows. Section 2 considers some

basic features of thermal equilibrium states in an abstract, algebraic setting. The

main aim is to elucidate the structure of the spaces of all ground and KMS states on

the Weyl algebra under minimal assumptions. Section 3 provides a review of recent

geometric results on stationary, globally hyperbolic space–times and the subclass

of standard static ones. In addition, it introduces the space–time complexification

procedure needed to perform the Wick rotation. After these algebraic and geomet-

ric preliminaries we describe in Sec. 4 the linear scalar field under consideration,

with an emphasis on those results that depend on the presence of the time-like

Killing field. This section also contains a discussion of the two-point distributions

of thermal equilibrium states. Section 5 considers the space of ground states and

the GNS-representation of the uniquely preferred ground state. It also includes a

discussion of the renormalized stress-energy–momentum tensor. Section 6 consid-

ers thermal equilibrium states at nonzero temperature, from several perspectives.

It contains existence results of Gibbs states, under suitable assumptions, and it

discusses the motivations to use the KMS-condition to characterize thermal equi-

librium. Furthermore, it characterizes all KMS states, including a uniquely preferred

one, and in the static case it provides a rigorous justification of the Wick rotation.

A number of useful results from functional analysis, needed for Secs. 2, 4 and 6,

are collected in the Appendix, so as not to hamper the flow of the presentation.

These results concern strictly positive operators and the relation between operators

in Hilbert spaces and distributions.

2. Equilibrium States in Algebraic Dynamical Systems

Much of the structure of dynamical systems can be conveniently described in an

abstract algebraic setting, which subsumes a great variety of physical applications.
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In this section we provide a brief overview of a number of notions and results

relating to equilibrium states for such systems and some more specialized results

pertaining to Weyl C∗-algebras. (For a detailed treatment of Weyl C∗-algebras we
refer to Ref. 19 and references therein.)

Note that we generally do not assume any continuity of the time evolution,

so our results must remain more limited than those for C∗-dynamical systems or

W ∗-dynamical systems.14,20 This is in line with our physical applications later on,

where we will consider the Weyl C∗-algebra of certain pre-symplectic spaces. As it

turns out, for these systems the time evolution will not be norm continuous in the

given algebra, but there will be continuity at the level of the symplectic space. To

accommodate for such situations, the results in this section will only make ad hoc

continuity assumptions in suitable representations.

2.1. Algebraic dynamical systems and equilibrium states

We begin with the following basic definition:

Definition 2.1. An algebraic dynamical system (A, αt) consists of a ∗-algebra A

with unit I, together with a one-parameter group of ∗-isomorphisms αt on A.

The algebra A is interpreted as the algebra of observables and αt describes the time

evolution. A state ω on A is a linear functional ω : A → C which is normalized,

ω(I) = 1, and positive, ω(A∗A) ≥ 0 for all A ∈ A. Every state gives rise to a unique

(up to unitary equivalence) GNS-triple14 (πω ,Hω,Ωω), where Hω is a Hilbert space

and πω is a representation of A onHω, in general by unbounded operators, such that

the vector Ωω is cyclic for πω(A), i.e. πω(A)Ωω = Hω and ω(A) = 〈Ωω, πω(A)Ωω〉.
We will denote the space of all states on A by S (A). It is a convex set in the

(algebraic) dual space A′, which is closed in the weak∗-topology. We will call a

state pure if for any decomposition ω = λω1 + (1− λ)ω2 with ω1, ω2 ∈ S (A) and

0 < λ < 1 we must have ω1 = ω2 = ω.

For dynamical systems, the following class of states are of special interest:

Definition 2.2. An equilibrium state ω for an algebraic dynamical system (A, αt)

is a state ω on A such that α∗
tω := ω ◦ αt = ω, for all t ∈ R. We denote the space

of all equilibrium states by G (A) (suppressing the dependence on αt).

Note that G (A) is a closed convex subset of S (A). In the GNS-representation space

of an equilibrium state ω the time evolution αt is implemented by a unitary group

Ut via

πω(αt(A)) = Utπω(A)U
−1
t , A ∈ A .

The group Ut is uniquely determined by the additional condition that UtΩω = Ωω
(cf. Ref. 14, Corollary 2.3.17). If the group Ut is strongly continuous, it has a self-

adjoint generator by Stone’s Theorem (Ref. 21, Theorem VIII.8), so we may write

Ut = eith, where the self-adjoint operator h is called the Hamiltonian.
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2.1.1. Ground states

Definition 2.3. A ground state ω on an algebraic dynamical system (A, αt) is an

equilibrium state for which Ut = eith is strongly continuous and the Hamiltonian h

satisfies h ≥ 0. We denote the space of all ground states by G 0(A).

A ground state ω is called nondegenerate when the eigenspace of h with eigen-

value 0 is one-dimensional, i.e. hψ = 0 implies ψ = λΩω for some λ ∈ C.

A ground state ω is called extremal if for any decomposition ω = λω1+(1−λ)ω2

with ω1, ω2 ∈ G 0(A) and 0 < λ < 1 we must have ω1 = ω2 = ω.

Note that pure ground states are always extremal. Furthermore, we have the fol-

lowing result, which is essentially due to Borchers:22

Theorem 2.1. A nondegenerate ground state ω on an algebraic dynamical system

(A, αt) with A a C∗-algebra is pure.

Proof. The strongly continuous unitary group Ut on Hω defines a group of auto-

morphisms on the von Neumann algebra R := πω(A)
′′. (A ′ denotes the commutant

of an algebra and ′′ the double commutant.15) The result of Ref. 22 is that Ut ∈ R,

for all t ∈ R. Now any unit vector ψ of the form ψ = XΩω with X ∈ R
′ satisfies

hψ = XhΩω = 0. Because Ωω is cyclic for R, it is separating for R′, so ψ = λΩω if

and only if X = λI. Hence if ω is nondegenerate, then R′ = CI, which means that

ω is pure (Ref. 15, Theorem 10.2.3).

In the case that A is commutative, ground states have a special property which

is worth singling out. The proof involves analytic continuation arguments which are

typical for the study of ground and KMS states:

Lemma 2.1. Let ω be a state on an algebraic dynamical system (A, αt) with A a

commutative ∗-algebra. Then the following statements are equivalent :

(i) ω is a ground state,

(ii) ω(Aαt(B)) = ω(AB) for all A, B ∈ A and t ∈ R,

(iii) ω is an equilibrium state with Ut = I for all t ∈ R, in the GNS-representation

of ω.

Proof. Suppose that ω is a ground state. For arbitrarily givenA,B ∈ A we consider

the function f(t) := ω(Aαt(B)) = ω(αt(B)A). Because h ≥ 0 (by definition of

ground states) we may use Lemma A.8 to define a bounded, continuous function

F+(z) on the upper half plane {z := t+ iτ | τ ≥ 0} by

F+(z) :=
〈

πω(A
∗)Ωω, e

izhπω(B)Ωω
〉

,

which is holomorphic on τ > 0 and satisfies F+(t) = f(t) for τ = 0. Similarly we

can define a bounded continuous function F−(z) on the lower half plane by

F−(z) :=
〈

πω(B
∗)Ωω, e

−izhπω(A)Ωω
〉

,
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which is holomorphic for τ < 0 and which again satisfies F−(t) = f(t), for τ = 0. It

follows from the Edge of the Wedge Theorem23 that there is an entire holomorphic

function F which extends both F+ and F− . Since F must be bounded as well it

is constant by Liouville’s Theorem.23 Restricting to τ = 0 we find f(t) = f(0), i.e.

ω(Aαt(B)) = ω(AB).

Now suppose that the second item holds for ω. Then ω is an equilibrium

state (taking A = I) and using the group properties of αt one easily shows that

ω(Aαt(B)C) = ω(ABC), for all t ∈ R and A, B, C ∈ A. This implies that

πω(αt(B)) = πω(B) and hence that Ut = I for all t ∈ R. Finally, Ut = I im-

plies h = 0, so ω is a ground state.

Lemma 2.1 allows us to give a nice description of all ground and equilibrium

states on those algebraic dynamical system (A, αt) for which A is a commutative

C∗-algebra. For this we make use of the classic structure theorem for commutative

C∗-algebras (cf. Ref. 15, Theorem 4.4.3), which tells us that there is a compact

Hausdorff space X , unique up to homeomorphism, and a ∗-isomorphism α : A →
C(X), where C(X) is the C∗-algebra of continuous, complex-valued functions on

X in the suppremum norm. The one-parameter group of ∗-isomorphisms βt :=

α ◦ αt ◦ α−1 on C(X) is then given by βt(F ) = Ψ∗
tF , where Ψt is a (uniquely

determined) one-parameter group of homeomorphisms of X . We define the set of

fixed points X0 := {x ∈ X | Ψt(x) = x for all t ∈ R}, which is closed in X and

hence compact.

Theorem 2.2. Using the notations above, the following statements are true for an

algebraic dynamical system (A, αt) with A a commutative C∗-algebra:

(i) There is an affine bijection between probability measures µ on X and states on

A given by µ 7→ ωµ, where ωµ(A) :=
∫

X
dµα(A).

(ii) The state ωµ is pure if and only if µ is supported at a single point.

(iii) ωµ is an equilibrium state if and only if Ψ∗
tµ = µ, for all t ∈ R.

(iv) ωµ is a pure equilibrium state if and only if µ is supported at a single point

in X0.

(v) ωµ is a ground state if and only if µ is supported on X0.

(vi) ω is an extremal ground state if and only if it is pure.

Proof. We only prove statement (v), as the others follow from standard results

on commutative C∗-algebras and the definitions above.15 By Lemma 2.1, ωµ is a

ground state if and only if
∫

X dµF (Ψ
∗
tG − G) = 0, for all F , G ∈ C(X). Because

Ψ∗
tG − G = 0 on X0 this is certainly the case when supp(µ) ⊂ X0 (cf. Ref. 15,

Remark 3.4.13). Conversely, for any x ∈ Xc
0 in the complement of X0 we can

find a t ∈ R and an open set U ⊂ X such that x ∈ U and Ψt(U) ∩ U = ∅.
(In detail: we may first choose a t ∈ R such that y := Ψt(x) 6= x. As X is Hausdorff

we may find an open set V ⊂ X such that x ∈ V and y 6∈ V̄ . Taking U :=

V \ Ψ−t(V̄ ) will do.) By Urysohn’s Lemma24 there is a G ∈ C(X) with G(x) = 1
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which vanishes on X \ U . Note that ḠΨ∗
tG = 0, so if ωµ is a ground state we have

∫

X
dµ|G|2 = −

∫

X
dµ Ḡ(Ψ∗

tG−G) = 0. As G(x) = 1 this entails that x 6∈ supp(µ),

so supp(µ) ⊂ X0.

Note in particular that pure equilibrium states are automatically ground states.

2.1.2. KMS states

In physical applications, thermal equilibrium states can be characterized by the

KMS-condition:

Definition 2.4. A state ω on an algebraic dynamical system (A, αt) is called a

β-KMS state for β > 0, when it satisfies the KMS-condition at inverse temperature

β, i.e. when for all operators A, B ∈ A there is a holomorphic function FAB on the

strip Sβ := R× i(0, β) ⊂ C with a bounded, continuous extension to Sβ such that

FAB(t) = ω(Aαt(B)) , FAB(t+ iβ) = ω(αt(B)A) . (2.1)

We will denote the space of all β-KMS states by G (β)(A). A β-KMS state ω is

called extremal if for any decomposition ω = λω1+(1−λ)ω2 with ω1, ω2 ∈ G (β)(A)

and 0 < λ < 1 we must have ω1 = ω2 = ω.

When A is a topological ∗-algebra and ω is a continuous state, then it suffices to

require the existence of FAB for A,B in a dense subalgebra of A, as we will see

in Proposition 2.1. When (A, αt) is a C
∗-dynamical system one may also drop the

requirement that FAB is bounded (Ref. 14, Proposition 5.3.7).

The motivations behind this condition will be discussed in some detail in Sec. 6,

in the context of our physical applications to the linear scalar quantum field. Note,

however, that a ground state satisfies a similar condition with β = ∞, when we

identify Sβ , respectively Sβ , with the open, respectively closed, upper half plane.

(This may be seen by the same methods as used in the proof of Lemma 2.1.)

The following general result again relies on analytic continuation arguments:

Proposition 2.1. Let ω be a β-KMS state on an algebraic dynamical system

(A, αt). Then the following hold true:

(i) ω is an equilibrium state.

(ii) For all A,B ∈ A and z ∈ Sβ we have

|FAB(z)|2 ≤ max(ω(AA∗)ω(B∗B), ω(A∗A)ω(BB∗)) .

Proof. For any B the function FIB(z) satisfies FIB(t) = FIB(t + iβ). Let F (z)

be the periodic extension of FIB(z) in Im(z) with period β. Then F is continuous

and bounded on C and it is holomorphic, even when Im(z) ∈ βZ, by the Edge of

the Wedge Theorem.23 F must then be a constant by Liouville’s Theorem,23 so

FIB(t) = FIB(0), i.e. ω(αt(B)) = ω(B) and ω is in equilibrium.
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For any operators A,B ∈ A the corresponding function FAB on Sβ satisfies

|FAB(z)| ≤ sup
t∈R

max{|FAB(t)|, |FAB(t+ iβ)|}

by the boundedness of FAB and Hadamard’s Three Line Theorem (Ref. 21,

Appendix to IX.4). The second statement then follows from the first and the

Cauchy–Schwarz inequality.

For commutative algebras a state ω is a β-KMS state if and only if it is a ground

state (cf. Lemma 2.1).

2.2. Weyl C∗-algebras

For our physical applications to linear scalar quantum fields we will make use of an

algebraic formulation involving Weyl C∗-algebras. In preparation for those appli-

cations we will now briefly review some fundamental aspects of these algebras,19

especially in relation to thermal equilibrium states.

We consider a pre-symplectic space (L, σ), which means that L is a real linear

space and σ is an antisymmetric bilinear form. We call (L, σ) a symplectic space if

σ is nondegenerate, which means that σ(f, f ′) = 0 for all f ′ ∈ L implies f = 0. For

each pre-symplectic space (L, σ) there is a unique C∗-algebra generated by linearly

independent operators W (f), f ∈ L, subject to the Weyl relations19

W (f)W (f ′) = e
−i
2 σ(f,f

′)W (f + f ′) , W (f)∗ =W (−f) . (2.2)

This is the Weyl C∗-algebra, which we will denote by W(L, σ). By construction,

the linear space generated by all W (f), but without taking the completion in the

C∗-norm, is also ∗-algebra, which we will denote by
◦

W(L, σ) and which is a dense

subset of W(L, σ). Every state on W(L, σ) restricts to a state on
◦

W(L, σ), but we

even have the following stronger result:

Lemma 2.2. The restriction map r : S (W(L, σ)) → S (
◦

W(L, σ)) is an affine

homeomorphism for the respective weak∗-topologies.

This follows from Theorem 3.5 and Lemma 3.3(a) of Ref. 19 and the fact that the

weak∗-topology on a bounded set in the continuous dual space W(L, σ)′ is already
determined by the dense set

◦

W(L, σ) ⊂ W(L, σ).

The Weyl C∗-algebra W(L, 0) is commutative, so there is a ∗-isomorphism α :

W(L, 0) → C(X), where we may identifyX as the space of pure states S (W(L, 0)).

Alternatively we may identify X with the dual group L̂ of L, viewed as an additive

group.19 Elements of L̂ are characters of L, i.e. group homomorphisms from L

(as an additive group) to the unit circle S1 (as a multiplicative group). The bijection

between pure states ρ ∈ X and characters χ ∈ L̂ is given by ρ(W (f)) = χ(f)

(cf. Ref. 15, Proposition 4.4.1).
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Remark 2.1. For any pure state ρ ∈ S (W(L, 0)) we can define a ∗-isomorphism

ηρ : W(L, σ) → W(L, σ) by continuous linear extension of ηρ(W (f)) :=

ρ(W (f))W (f).19 The ∗-isomorphisms ηρ are sometimes known as gauge trans-

formations of the second kind. We will denote the gauge transformations on the

commutative Weyl algebra W(L, 0) by ζρ.

The state space S (W(L, 0)) contains a special state,b ρ0, defined by

ρ0(W (f)) = 1, for all f ∈ L. This state is pure, because its GNS-representation

is one-dimensional. It is easy to verify that ρ = ζ∗ρρ
0 for all pure states ρ ∈

S (W(L, 0)).

The algebras W(L, λσ), 0 ≤ λ ≤ 1, may be viewed as a strict and continu-

ous deformation25 of the commutative algebra W(L, 0). It will be interesting for

us to compare the state space of the Weyl C∗-algebra W(L, σ) with that of the

commutative Weyl C∗-algebra W(L, 0):

Lemma 2.3. For every ω′ ∈ S (W(L, σ)) there is a unique weak∗-continuous,
affine map λω′ : S (W(L, 0)) → S (W(L, σ)) which is given by λω′(ρ) = η∗ρω

′ on
pure states. For any pure state ρ′ on W(L, 0) we have λω′ ◦ ζ∗ρ′ = η∗ρ′ ◦ λω′ and λω′

is injective when ω′(W (f)) 6= 0, for all f ∈ L.

Proof. For pure states we have

λω′(ρ)(W (f)) = ω′(W (f))ρ(W (f)) .

Because every state in S (W(L, 0)) is a weak∗-limit of finite affine combinations

of pure states, λω′ extends uniquely to a weak∗-continuous, affine map from

S (W(L, 0)) to S (W(L, σ)), which is given by the same formula. The injectivity of

λω′ under the stated assumptions is immediate from this formula and Lemma 2.2.

The intertwining relation with the gauge transformations of the second kind is a

straightforward exercise.

2.2.1. Quasi-free and Ck states

On any Weyl C∗-algebra there is a special class of states, called quasi-free states,

which are distinguished by their algebraic form. They are obtained from the follow-

ing well known result:

Theorem 2.3. Let (L, σ) be a pre-symplectic space. A sesquilinear form ω2 on the

complexification L ⊗ C defines a state ω on W(L, σ) by continuous linear exten-

sion of

ω(W (f)) = e−
1
2ω2(f,f) , f ∈ L ,

bNot to be confused with the tracial state ρt, defined by ρt(W (f)) = 0, for all f 6= 0, which can
be defined on any Weyl C∗-algebra, commutative or not.
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if and only if for all f, f ′ ∈ L⊗ C:

(i) ω2(f̄, f) ≥ 0 (positive type),

(ii) 2ω2−(f, f ′) := ω2(f, f
′)− ω2(f

′, f) = iσ(f, f ′) (canonical commutator).

We will call ω2 a two-point function, even though it is generally not a function of

two points x, y ∈M . The two-point function ω2 can be characterized alternatively

in terms of a one-particle structure:7

Definition 2.5. A one-particle structure on a pre-symplectic space (L, σ) is a pair

(p,K) consisting of a complex linear map p : L ⊗ C → K into a Hilbert space K
such that

(i) p has dense range in K,

(ii) 〈p(f̄ ), p(f ′)〉 − 〈p(f̄ ′), p(f)〉 = iσ(f, f ′).

Given a one-particle structure, one can define an associated two-point function by

setting ω2(f̄, f
′) := 〈p(f), p(f ′)〉. Conversely, a two-point function ω2 determines a

unique one-particle structure (p,K) such that the above equality holds, by similar

arguments as used in the GNS-construction. We call this as the one-particle struc-

ture associated with ω2.

A wider class of states which will be of interest is the following:

Definition 2.6. A state ω on the Weyl C∗-algebra W(L, σ) is called Ck, k > 0,

when the maps

ωn(f1, . . . , fn) := (−i)n∂s1 · · · ∂snω(W (s1f1) · · ·W (snfn))|s1=···=sn=0

are well defined on C∞
0 M×n for all 1 ≤ n ≤ k. The ωn are linear maps and they

are called the n-point functions. A state is called C∞, when it is Ck for all k > 0.

When ω is a quasi-free state, it is C∞ and all higher n-point functions can be

expressed in terms of the two-point function ω2 via Wick’s Theorem. For such

states it only remains to analyze the two-point functions ω2.

A physical reason why quasi-free states are of interest is the following (see also

Theorems 5.1 and 6.2):

Theorem 2.4. Let (L, σ) be a pre-symplectic space and let ω be a C2 state on

W(L, σ). ω2, as defined in Definition 2.6, defines a unique quasi-free state ω′ by
Theorem 2.3 and a one-particle structure (p,K). Then,

(i) ω′ is pure if and only if p has a dense range already on L (without

complexification) and p(f) = 0 for all degenerate f ∈ L (i.e. f ∈ L for which

σ(f, f ′) = 0 for all f ′ ∈ L).

(ii) If ω′ is pure, then ω = ω′.

Proof. The claim that ω2 satisfies the assumptions of Theorem 2.3 is a standard

exercise. The characterization of pure quasi-free states in terms of their one-particle

structures was established in Ref. 8, Lemma A.2, for the symplectic case. The
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generalization to the pre-symplectic case is straightforward. The fact that this im-

plies that ω = ω′ is a theorem due to Ref. 26, for the symplectic case. This result

and its proof carry over to the pre-symplectic case without modification.

A related result in the commutative case is the following characterization of the

state ρ0:

Proposition 2.2. If ρ ∈ S (W(L, 0)) is a C1 pure state, then ρ(W (f)) = eiρ1(f)

for all f ∈ L. In particular, if ρ1 = 0, then ρ = ρ0.

Proof. Given any f ∈ L we consider F (t) := ρ(W (tf)). Because ρ is pure and

W(L, 0) is commutative, F (t + t′) = F (t)F (t′) (cf. Ref. 15, Proposition 4.4.1)

and since ρ is C1, F is continuous at t = 0 and hence everywhere. Furthermore,

∂tF (t) = F (t)∂tF (0) = F (t)iρ1(f) and therefore F (t) = eitρ1(f), so the results

follow.

2.3. Quasi-free dynamics on Weyl C∗-algebras

A pre-symplectic isomorphism T of (L, σ) is a real-linear isomorphism T : L →
L which preserves the pre-symplectic form, σ(Tf, T f ′) = σ(f, f ′). Each pre-

symplectic isomorphism gives rise to a unique ∗-isomorphism αT of W(L, σ) such

that αT (W (f)) =W (Tf) (see Ref. 19 or also Ref. 14, Theorem 5.2.8). Hence, a one-

parameter group of pre-symplectic isomorphisms Tt gives rise to a one-parameter

group αt of ∗-isomorphisms on W(L, σ). Not every one-parameter group of
∗-isomorphisms on W(L, σ) arises in this way, but the time evolution that we will

be interested in for our physical applications does.

Definition 2.7. A one-particle dynamical system (L, σ, Tt) is a one-parameter

group of pre-symplectic isomorphisms Tt on a pre-symplectic space (L, σ). The

associated algebraic dynamical system (W(L, σ), αt) with αt(W (f)) = W (Tf) is

called quasi-free.

An equilibrium one-particle structure (p,K) on a one-particle dynamical system

(L, σ, Tt) is a one-particle structure on (L, σ) for which there is a one-parameter

unitary group Õt on K such that Õtp = pTt.

A ground one-particle structure is an equilibrium one-particle structure (p,K)

for which the unitary group Õt = eitH is strongly continuous and H ≥ 0.

A KMS one-particle structure at inverse temperature β > 0 is an equilibrium

one-particle structure (p,K), with associated two-point function ω2, such that for

all f, f ′ ∈ L there exists a bounded continuous function Fff ′ on Sβ , holomorphic

on its interior, satisfying

Fff ′(t) = ω2(f, Ttf
′ ) , Fff ′(t+ iβ) = ω2(Ttf

′, f) .

An equilibrium one-particle structure is called nondegenerate when Õt = eitH

is strongly continuous and 0 is not an eigenvalue for H .
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Note that a quasi-free state ω with two-point function ω2 is in equilibrium for

a quasi-free dynamical system if and only if the associated one-particle structure

(p,K) is in equilibrium. Furthermore, we have

Proposition 2.3. Let ω be a C2 equilibrium state on a quasi-free algebraic dynam-

ical system (W(L, σ), αt). Let (p,K) be the one-particle structure associated to ω2

and assume that ω1 = 0.

(i) If ω is a (nondegenerate) ground state, then (p,K) is a (nondegenerate) ground

one-particle structure.

(ii) If ω is a β-KMS state, then (p,K) is a β-KMS one-particle structure.

When ω is quasi-free, the converses of these statements are also true.

Proof. We may identify K as a closed linear subspace of the GNS-representation

spaceHω , spanned by the vectors p(f) := Φω(f)Ωω := −i∂sπω(W (sf))Ωω |s=0. This

derivative is well defined, because ω is C2. The unitary group Ut onHω restricts to a

unitary group Õt onK, because the dynamics is quasi-free, and the generator h of Ut
restricts to the generatorH of Õt. Also note that K is perpendicular to Ωω, because

ω1 = 0. It is then clear that when ω is a (nondegenerate) ground state, then H

is (strictly) positive and (p,K) is a (nondegenerate) ground one-particle structure.

When ω is a β-KMS state and f , f ′ ∈ L, we may take A(s) := s−1(W (sf)− I) and
B(s) := s−1(W (sf ′)−I) for any s 6= 0 to find functions FA(s)B(s). Because ω is C2,

the functions ω(A∗(s)A(s)) and ω(A(s)A∗(s)) have well defined limits as s → 0,

and similarly for B. We may then use Proposition 2.1 to take the uniform limit of

−FA(s)B(s′) as s, s′ → 0, which yields the desired function Fff ′ . This proves both

items.

If ω is quasi-free, its GNS-representation is a Fock space, Hω = ⊕∞
n=0P+,nK⊗n,

where P+,n is the projection onto the symmetrized n-fold tensor product. Ut is the

second quantization of Õt and h is the second quantization of H . For the converse

of the first statement we note that ω is a (nondegenerate) ground state if and only

if the restriction of h to each n-particle space with n ≥ 1 is (strictly) positive.

If (p,K) is a (nondegenerate) ground one-particle structure, then H is (strictly)

positive. The restriction hn of h to P+,nK⊗n is given by HnP+,n, where Hn is

defined to be the operator Hn :=
∑n

j=1 I
⊗j−1 ⊗H ⊗ I⊗n−j on the algebraic tensor

product D(H)⊗n of the domain D(H) of H . By Nelson’s Analytic Vector Theorem

(Ref. 21, Theorem X.39), Hn is essentially self-adjoint (because H is). The closure

of each summand in Hn is a (strictly) positive operator (by Lemma A.3), and hence

so is Hn (by Lemma A.6). Therefore, hn is (strictly) positive for n ≥ 1 and ω is a

(nondegenerate) ground state.

Now we turn to the converse of the second statement. One may use the Weyl

relations and the quasi-free property to find

ω(W (f)αt(W (f ′))) = ω(W (f))ω(W (f ′))e−ω2(f,Ttf
′) .
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Using Fff ′ in the exponent yields the desired FW (f)W (f ′). For finite linear combina-

tions of Weyl operators the desired property is now clear and for general operators

in W(L, σ) one appeals to Proposition 2.1 and a limiting argument.

One of the nice aspects of quasi-free dynamical systems is that we may view Tt
also as a pre-symplectic isomorphism of (L, 0), so we may compare the correspond-

ing quasi-free dynamics on W(L, σ) and on W(L, 0). In this context we prove the

following result (adapted from Ref. 27):

Proposition 2.4. Let (L, σ, Tt) be a one-particle dynamical system and consider

the corresponding quasi-free dynamical systems (W(L, σ), αt) and (W(L, 0), βt).

(i) If ω(β) ∈ G (β)(W(L, σ)) is quasi-free and ω
(β)
2 defines a nondegenerate equilib-

rium one-particle structure, then the map λ(β) := λω(β) of Lemma 2.3 restricts

to an affine homeomorphism λ(β) : G
0(W(L, 0)) → G (β)(W(L, σ)).

(ii) If ω0 ∈ G 0(W(L, σ)) is quasi-free and nondegenerate and the strong derivative

∂tπω0(αt(W (f)))Ωω0 |t=0 exists for all f ∈ L, then the map λ0 := λω0 restricts

to an affine homeomorphism λ0 : G
0(W(L, 0)) → G 0(W(L, σ)).

Proof. First consider the KMS case. It follows from Lemma 2.3 that λ(β) defines a

continuous affine map from G
0(W(L, 0)) to S (W(L, σ)), which is injective because

ω(β)(W (f)) = e−
1
2ω

(β)
2 (f,f) 6= 0. If ρ ∈ G 0(W(L, 0)), then ω := λ(β)(ρ) is invariant

under αt, because ω
(β) and ρ are equilibrium states for αt and βt, respectively, and

these one-parameter groups are quasi-free with the same underlying Tt. For any

A =
∑n

i=1 ciW (fi) and B =
∑n
i=1 diW (f ′

i) in
◦

W(L, σ) we have

ω(Aαt(B)) =

n
∑

i,j=1

cidjω
(β)
(

W
(

fi
)

αt
(

W
(

f ′
j

)))

ρ
(

W (fi)W
(

f ′
j

))

, (2.3)

by a short computation involving the Weyl relations and the properties of ρ estab-

lished in Lemma 2.1. A similar computation for ω(αt(B)A) and the KMS-condition

for ω(β) now imply the existence of a function FAB as needed for the KMS-condition

for ω. For the operators in the C∗-algebraic completion W(L, σ) one uses Proposi-

tion 2.1. Hence ω is a β-KMS state.

For ground states, Eq. (2.3) (with ω0 instead of ω(β)) implies that the unitary

group Ut that implements αt in the GNS-representation of ω is weakly continuous

and hence strongly continuous. The dense domain πω(W(L, σ))Ωω is invariant under

the action of Ut and one may show that Ut = eith has strong derivatives there,

because the same is true for ω0. Hence this domain is a core for the Hamiltonian

h (see e.g. Theorem VIII.10 of Ref. 21). Taking the derivative with respect to t

of Eq. (2.3) and taking A = B shows that h ≥ 0, by Schur’s Product Theorem

(cf. Ref. 28, Chap. 6, Sec. 7 or Ref. 29). This proves that ω is a ground state.

We now turn to surjectivity. Given any ω ∈ G (β)(W(L, σ)) we may define the

linear map ρ on
◦

W(L, 0) by ρ(W (f)) := ω(W (f))
ω(β)(W (f))

for all f ∈ L. Given any f , f ′ ∈ L
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we now let F
(β)
W (−f)W (f ′)(z) and FW (−f)W (f ′)(z) be the functions on Sβ , obtained

from the KMS-condition for ω(β) and ω, respectively. Note that F
(β)
W (−f)W (f ′)(z) =

C exp(−F−f,f ′(z)), by the one-particle KMS-condition for ω2 (cf. Proposition 2.3),

where C := exp
(

− 1
2 (ω

(β)(f, f) + ω(β)(f ′, f ′))
)

. Hence,

G(z) :=
(

F
(β)
W (−f)W (f ′)(z)

)−1

FW (−f)W (f ′)(z)

defines a bounded and continuous function on Sβ which is holomorphic in its inte-

rior. Furthermore,G(t)=ρ(W (−f)βt(W (f ′))) and G(t+iβ)=ρ(βt(W (f ′))W (−f)).
As ρ is defined on a commutative C∗-algebra it then follows that G(z+ iβ) = G(z)

and we may extend G periodically to a bounded continuous function on C, which is

entire holomorphic by the Edge of the Wedge Theorem.23 Hence, G is constant (by

Liouville’s Theorem23) and ρ(W (−f)βt(W (f ′)) = ρ(W (−f)W (f ′)) for all t ∈ R. A

similar argument holds for the case of ground states.

For any A =
∑n

i=1 ciW (fi) we have

0 ≤
N
∑

i,j=1

cicjω(W (−fi)W (fj))

=

N
∑

i,j=1

cicj exp

(

−1

2
ω
(β)
2 (fj − fi, fj − fi)

)

ρ(W (−fi)W (fj)) .

For some t > 0, we now let FMi :=
∑M−1

m=0
1
M Tmtfi for any M ∈ N. Using the pre-

vious paragraph one shows that ρ
(

W
(

−FMi
)

W
(

FMj
))

= ρ(W (−fi)W (fj)), from

which we find

0 ≤
N
∑

i,j=1

cicj exp

(

−1

2
ω
(β)
2

(

FMj − FMi , FMj − FMi

)

)

ρ(W (−fi)W (fj)) .

However, as the one-particle structure (p,K) associated to ω
(β)
2 is nondegenerate,

we see from von Neumann’s Mean Ergodic Theorem (Ref. 21, Theorem II.11) that

limM→∞ p(FMi ) = 0. The exponential term will then converge to 1 as M → ∞,

leading to the conclusion that ρ is positive. The unique extension of ρ to a state on

W(L, 0) is a ground state by the result of the previous paragraph and Lemma 2.1.

The same argument works for the case of ground states.

Finally, to see that λ(β) (respectively λ0) is a homeomorphism it suffices to note

that the inverse map ω 7→ ρ is weak ∗-continuous from G (β)(
◦

W(L, σ)) (respectively

G 0(
◦

W(L, σ))) to G 0(
◦

W(L, 0)), by construction.

Remark 2.2. In the setting of Proposition 2.4 we note that the space G 0(W(L, 0))

of classical ground states always contains the pure state ρ0 and that ω(β) = λ(β)(ρ
0).

For any other pure classical ground state ρ ∈ G 0(W(L, 0)) we consider the gauge

transformations of the second kind ηρ ofW(L, σ) and ζρ ofW(L, 0) (cf. Remark 2.1).
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We then have ρ = ζ∗ρρ
0 and λ(β) ◦ ζ∗ρ = η∗ρ ◦λ(β). Thus every extremal β-KMS state

can be obtained from ω(β) by a gauge transformation of the second kind. The same

holds for extremal ground states and ω0. In particular, all extremal ground states

are pure.

3. Review of Geometric Results

Before we consider the details of the linear scalar quantum field it is in order to study

the space–time in which it propagates. In the paragraphs below we will describe

the class of stationary, globally hyperbolic space–times and the subclass of standard

static space–times. For the latter case we also introduce the complexification and

Euclideanization that are necessary in order to perform a Wick rotation. Most of

our exposition here is a brief review of recent results of Refs. 30 and 31.

We assume that the reader is already familiar with the following standard ter-

minology, which will be used throughout (cf. Ref. 32):

Definition 3.1. A space–time M = (M, g) is a smooth, connected, oriented

manifold M of dimension d ≥ 2 with a smooth Lorentzian metric g of signature

(− + · · ·+).

A Cauchy surface Σ in M is a subset Σ ⊂ M that is intersected exactly once

by every inextendible time-like curve in M . A space–time is said to be globally

hyperbolic when it has a Cauchy surface.

For a space–time M we note that the manifold M is automatically paracompact.33

We are mainly interested in space–times that are globally hyperbolic, because they

allow us to formulate the linear field equation as an initial value (or Cauchy) prob-

lem. We will only consider Cauchy surfaces that are space-like, smooth hyper-

surfaces.34 A globally hyperbolic space–time is automatically time-orientable and

we will assume that a choice of time-orientation has been fixed. It follows that any

Cauchy surface is also oriented. Our notions and notations for causal relations, the

Levi-Civita connection, etc. follow standard usage.32 We will let h denote the Rie-

mannian metric on a Cauchy surface Σ induced by the Lorentzian metric g on M ,

and we let ∇(h) denote the corresponding Levi-Civita connection on Σ. Space–time

indices a, b, . . . are chosen from the beginning of the alphabet and run from 0 to

d− 1, whereas spatial indices are denoted by i, j, . . . and run from 1 to d− 1.

3.1. Stationary space times

Stationary space–times come equipped with a preferred notion of time-flow, which

is mathematically encoded in the presence of a time-like vector field. To be precise:

Definition 3.2. A stationary space–time (M, ξ) is a space–time M together with

a smooth, complete, future-pointing, time-like Killing vector field ξ on M .
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Here completeness means that the corresponding flow Ξ : R×M → M, defined by

Ξ(0, x) = x and dΞ(t, x; ∂t, 0) = ξ(Ξ(t, x)), is well defined for all t ∈ R. This flow

is interpreted physically as the flow of time and following standard usage we write

Ξt : M → M for the map Ξt(x) := Ξ(t, x).

ξ is a Killing vector field if it satisfies Killing’s equation, ∇(aξb) = 0, where the

round brackets in the subscript denote symmetrization as an idempotent operation.

Equivalently, it means that the metric is invariant under the time flow of ξ, Ξ∗
t g = g

for all t ∈ R.

Example 3.1 (Standard stationary space–times). Examples of stationary

space–times are easily obtained by the following construction. Let S be a manifold

of dimension d−1, let h be a Riemannian metric on S, let v > 0 be a smooth, strictly

positive function on S and let w be a smooth one-form on S such that hijwiwj < v2.

One now defines M := R × S with canonical projection map π : M → S and the

canonical time coordinate t : M → R is the canonical projection onto the first

factor. A stationary space–time M = (M, g) is then obtained by defining

g := −(π∗v)2dt⊗2 + 2π∗(w)⊗s dt+ π∗h ,

where ⊗s is the symmetrized tensor product. We will always choose adapted local

coordinates on M , i.e. coordinates (t, xi) such that the xi are local coordinates on

S, unless stated otherwise.

Note that g indeed has a Lorentz signature and that the canonical vector field

∂t on R gives rise to a Killing vector field ξ on M . On S0 := {0} × S we can write

ξa = Nna+Na, where na is the future pointing unit normal vector field to S0 ⊂M

and naN
a = 0. The function N is known as the lapse function and Na as the shift

vector field. They are related to v and w by

N = (v2 + hijwiwj)
1
2 , N i = hijwj ,

where we use the fact that Na is tangent to Σ, so the component for a = 0 vanishes

(in adapted local coordinates). The inverse of the metric takes the form

g−1 = −N−2∂⊗2
t + 2N−2N j∂j ⊗s ∂t + (hij −N−2N iN j)∂i ⊗ ∂j ,

where hij is the inverse of the Riemannian metric h.

Definition 3.3. A stationary space–time of the form of Example 3.1 is called a

standard stationary space–time.

Note that a standard stationary space–time M is uniquely determined by the data

(S, h, v, w). However, different data may give rise to the same space–time, because

there is a lot of freedom in the choice of the surface S ⊂M . This is another way of

saying that a stationary space–time has a preferred time-flow, given by the Killing

vector field, but it does not have a preferred time coordinate, because we can choose

different canonical time coordinates which vanish on different spatial hypersurfaces.
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Although not all stationary space–times are standard,c they are the only ones

of interest to us because of the following result:

Proposition 3.1. Let M be a stationary space–time which is globally hyperbolic.

Then M is isometrically diffeomorphic to a standard stationary space–time.

This is Proposition 3.3 of Ref. 31. The proof is elegant and short and we include it

here for completeness:

Proof. Fix a Cauchy surface Σ ⊂M and use the flow Ξ of the Killing vector field

to define a local diffeomorphism ψ : R × Σ → M by ψ(t, x) = Ξ(t, x). The curves

t 7→ ψ(t, x) are time-like and inextendible, because ξ is assumed to be complete.

This means that they intersect Σ exactly once, proving that ψ is both injective

and surjective and hence a diffeomorphism. We define M ′ := (R × Σ, ψ∗g) and it

remains to show that M ′ is standard stationary. This follows easily from the fact

that ψ∗ξ = ∂t, where t is the canonical time-coordinate on M ′, together with the

fact that ∂tψ
∗g = 0, which is Killing’s equation.

A more complicated issue is the converse question, whether a standard sta-

tionary space–time is globally hyperbolic. A full characterization of those data

(S, h, v, w) that give rise to a standard stationary space–time M which is globally

hyperbolic was recently given by Ref. 30. It should be noted that S need not be a

Cauchy surface, even if M is globally hyperbolic. A full characterization of those

data for which S is a Cauchy surface was also given in Ref. 30. To close this sec-

tion we will sketch the main ingredients of this analysis and state the main results,

although they will not be needed in the remainder of this paper.

Let s 7→ γ(s) := (t(s), x(s)) be a smooth, time-like curve in a standard sta-

tionary space–time M with data (S, h, v, w). The fact that γ is time-like can be

stated as the quadratic inequality

hij ẋ
iẋ j + 2wiẋ

i ṫ− v2ṫ2 ≤ 0 ,

where ˙ denotes a derivative with respect to s. If γ is future pointing this leads to

ṫ ≥ v−2wiẋ
i +
(

v−4(wiẋ
i)2 + v−2hij ẋ

iẋ j
)

1
2 =: F (ẋ) ,

whereas for past-pointing γ we find

ṫ ≤ v−2wiẋ
i −
(

v−4(wiẋ
i)2 + v−2hij ẋ

iẋ j
)

1
2 =: −F̃ (ẋ) .

F and F̃ are smooth, strictly positive functions on TS \ 0, where 0 denotes the

zero section. (In fact, F and F̃ define Finsler metrics on S of Randers type. We

refer the interested reader to Ref. 30 for a brief introduction or to Ref. 35 for a full

exposition on Finsler geometry.)

cConsider e.g. Minkowski space–time and compactify an inertial time coordinate to a circle.
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It turns out that the questions concerning the causality of the standard sta-

tionary space–time with data (S, h, w, v) can be determined entirely from the

properties of S with respect to F and F̃ . As for a Riemannian metric, we can

use F to define the length of a smooth curve γ : [0, 1] → S as lF (γ) :=
∫ 1

0
F (γ̇(s))ds

and from that we can define a generalized distance function

d(p, q) := inf
γ∈C(p,q)

lF (γ) ,

where C(p, q) is the set of all piecewise smooth curves from p to q. d satisfies all

properties of a distance function, except symmetry. Indeed, if γ̃(s) := γ(1 − s)

we have lF (γ̃) = lF̃ (γ), which in general differs from lF (γ). However, taking the

ordering into account one can still define notions of forward and backward Cauchy

sequences and corresponding notions of forward and backward completeness for the

pair (S, F ).30,35

We now state without proof the results on the causality of standard stationary

space–times (Theorem 4.3b, Theorem 4.4 and Corollary 5.6 of Ref. 30).

Theorem 3.1. Let M be a standard stationary space–time with data (S, h, v, w).

(i) M is globally hyperbolic if and only if for all x ∈ S and all r > 0 the sym-

metrized closed ball Bs(p, r) := {x | d(p, x) + d(x, p) ≤ r} is compact.

(ii) S ⊂M is a Cauchy surface if and only if (S, F ) is both forward and backward

complete. In this case all hypersurfaces St := {t} × S are Cauchy.

(iii) If M is globally hyperbolic, then (S, h̃) is a complete Riemannian manifold with

h̃ := v−2h+ v−4w ⊗ w .

We record for completeness that the inverse metric of h̃ is given by h̃ij = v2hij −
v2N−2N iN j = v2gij , where gij is expressed in adapted coordinates.

3.2. Standard static space times

We have seen that stationary space–times have a preferred time flow, but no pre-

ferred time coordinate. This is different for standard static space–times, which we

will describe now. For a full discussion of static space–times we refer the reader to

Ref. 31 and references therein.

Definition 3.4. A static space–time M = (M, g, ξ) is a stationary space–time

with a Killing vector field ξ that is irrotational.

The property that ξ is irrotational means that the distribution of vectors orthogonal

to ξ is involutive, i.e. [X,Y ]aξa = 0 when Xaξa = Y aξa = 0. This can be expressed

equivalently as

ξ[a∇bξc] = 0 ,

where the square brackets in the subscript denote antisymmetrization as an idem-

potent operation. By Frobenius’ Theorem (Ref. 32, Theorem B.3.2) ξ is irrotational

if and only if M can be foliated by hypersurfaces orthogonal to ξ.
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If xi, i = 1, . . . , d−1, are local coordinates on a (d−1)-dimensional hypersurface

H ⊂ M orthogonal to ξ we can (locally) supplement them by the parameter t

appearing in the flow Ξt to define coordinates on a portion of M . When used like

this, we call t a Killing time coordinate. Note that the surfaces of constant t remain

orthogonal to ξ = ∂t, because they are the image of H under Ξt.

Remark 3.1. Although the definition of a (local) Killing time coordinate depends

on the choice of the hypersurface H , any two Killing time coordinates on the same

open set differ at most by a constant, because both are constant on the hypersurfaces

orthogonal to ξ. In this sense, static space–times have a preferred time coordinate

up to a constant, which we will often call the Killing time coordinate, with some

slight abuse of language.

In the local coordinates (t, xi) the metric can be expressed as

g = −v2 dt⊗2 + gij dx
i ⊗ dx j ,

with 1 ≤ i, j ≤ d − 1 and the smooth coefficient functions v, gij are independent

of t. We introduce a special name for the class of static space–times for which this

form of the metric can be obtained globally:

Definition 3.5. A standard static space–time M = (M, g, ξ) is a standard sta-

tionary space–time with a vanishing shift vector field, i.e. M ≃ R × S, ξ = ∂t
and

g = −(π∗N)2dt⊗2 + π∗h ,

where the Killing time coordinate t is the projection on the first factor of R× S, π

is the projection on the second factor, h is a Riemannian metric on S and N is a

smooth, strictly positive function on S.

The data (S, h,N) determine a unique standard static space–time, which is the

standard stationary space–time with data (S, h, v = N,w = 0). The canonical time

coordinate of the latter coincides with the Killing time coordinate.

Unlike the stationary case, there is only a limited freedom in the choice of data

that describe a fixed standard static space–time M . Indeed, suppose that (S, h, v)

and (S′, h′, v′) determine the same standard static space–time M and consider the

hypersurfaces S0 = {0} × S and S′
0 = {0} × S′ in M . By Remark 3.1 there is a

T ∈ R such that the diffeomorphism ΞT of M has S′
0 = ΞT (S0), Ξ

∗
Th

′ = h and

Ξ∗
T v

′ = v.

For our applications to Wick rotations we are particularly interested in space–

times which are both standard static and globally hyperbolic. To determine whether

a standard static space–time is globally hyperbolic we quote from Theorem 3.1 in

Ref. 31:

Theorem 3.2. For a standard static space–time M with data (S, h, v) the following

are equivalent :
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(i) M is globally hyperbolic.

(ii) S is complete in the conformal metric h̃ij = v−2hij.

(iii) Each constant Killing time hypersurface is Cauchy.

This is in fact a special case of Theorem 3.1, when w = 0. In the ultra-static case

v ≡ 1, it essentially reduces to Proposition 5.2 in Ref. 7. Note, however, that (S, h)

itself need not be a complete Riemannian manifold in general.

Remark 3.2. The metric h̃ is also called the optical metric,36 because geodesics of

h̃ are the projections onto Σ of light-like geodesics inM . To see this we first note that

the light-like geodesics ofM = (M, g) coincide with those of M̃ := (M, v−2g) after

a reparametrization (cf. Ref. 32, App. D). Because M̃ is ultra-static, the geodesic

equation for a curve γ(s) = (t(s), x(s)) decouples into the geodesic equation for x in

(S, h̃) and ∂2s t = 0. (Reference 36 also uses the term optical metric in the stationary

case for the metric N−2h, although the motivation is less convincing in that case.

It might be more appropriate to refer to the Finsler metrics F , F̃ of Subsec. 3.1 as

optical metrics.)

When the space–time M is both globally hyperbolic and static, it is automati-

cally a standard stationary space–time by Proposition 3.1. However, it may yet fail

to be a standard static space–time. A simple counterexample, taken from Ref. 37

(see also Ref. 31), is the cylinder space–time M = (R × S
1, g) with the metric

g := −dt⊗2 + dθ⊗2 + 2dt ⊗s dθ. This is a globally hyperbolic space–time with

Cauchy surfaces diffeomorphic to the circle S1. The vector field ξ = ∂t is a time-like

Killing field, which is irrotational on dimensional grounds. However, hypersurfaces

orthogonal to ξ must be diffeomorphic to R, as they wind around the cylinder.

A complete characterization of which static, globally hyperbolic space–times are

standard static is given by

Proposition 3.2. Let (M, ξ) be a static, globally hyperbolic space–time. Then M is

isometrically diffeomorphic to a standard static space–time if and only if it admits

a Cauchy surface that is Killing field orthogonal.

Proof. If M is isometrically diffeomorphic to a standard static space–time, the

existence of a Killing field orthogonal Cauchy surface follows from Theorem 3.2.

Conversely, if such a Cauchy surface exists we may choose this surface in the proof of

Proposition 3.1, which simultaneously shows that M is isometrically diffeomorphic

to a standard stationary space–time M ′ and that the metric g′ has no cross terms

involving w. Hence, M ′ is standard static.

3.3. Space time complexification

To conclude our geometric considerations we now define complexifications and Rie-

mannian manifolds associated to any given standard static space–time. With a view

to our applications to thermal states it is necessary to consider the case where the
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domain of the imaginary time variable is compactified. For this purpose we let

R > 0 and we define the cylinder

CR := C/ ∼ , z ∼ z′ ⇔ z − z′ ∈ 2πiRZ .

This equivalence relation compactifies the imaginary axis of C to a circle S1R of

circumference 2πR. C∞ := C can be taken as a degenerate case with R = ∞ and

S1∞ := R.

Let M be a standard static space–time with data (S, h,N). For any R > 0 we

define the complexification M c
R as the real manifold M c

R = CR × S endowed with

the symmetric, complex-valued, tensor field

gcR(z, x) = −N2(x)(dt + idτ)⊗2 + h(x) ,

where z = t + iτ is the coordinate on CR. M can be embedded into M c
R as the

τ = 0 surface and gcR is the analytic continuation of g in z. Furthermore, we define

the Riemannian manifold MR := {(z, x) ∈M c
R| t = 0} endowed with the pull-back

metric of gcR

gR(τ, x) = N2(x)dτ⊗2 + h(x) .

Note that MR ≃ S1R × S as a manifold and since S = M ∩MR in M c
R, we can

identify S also as the {τ = 0} surface in MR. MR has a Killing field ξR = ∂τ , which

can be viewed as the analytic continuation of ξ = ∂t.

The constructions above do not depend on any freedom in the choice of S,

because this freedom boils down to a Killing time translation (see Remark 3.1)

which has a unique analytic continuation toM c
R. It is also unnecessary for S to be a

Cauchy surface at this stage. Note that in the standard stationary case there is more

freedom to choose canonical time coordinates, so it would be unclear whether an

analogous construction can be made independent of the choice of such a coordinate.

Besides, any cross terms w⊗ dt in the metric would spoil the real-valuedness of the

restriction gR of the analytically continued metric, so it would not be Riemannian.

Whereas the Killing time coordinate onM is used to define the complexifications

M c
R and the Riemannian manifolds MR, it may be a bad choice of coordinate to

analyze the behavior near the edge of S. This will be the case e.g. if M is the right

wedge of a static black hole space–time with a bifurcate Killing horizon and we wish

to study the behavior near the bifurcation surface.d Anticipating these problems

we now consider Gaussian normal coordinates near S, instead of the Killing time

coordinate, and we study the properties of the complexification procedure above

with respect to these new coordinates.

Proposition 3.3. Let M be a standard static space–time, let R > 0 and let

xi denote local coordinates on a portion U of S. Let x = (x0, xi) be the corre-

sponding Gaussian normal coordinates on a portion of M, containing U, and let

dThis setting will be studied in detail in a forthcoming publication.9
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x′ = ((x′)0, xi) be Gaussian normal coordinates on a portion of MR, containing U .

We may express the metrics g and gR in these coordinates as

g = −(dx0)⊗2 + hijdx
idx j , gR = (d(x′)0)⊗2 + h′ijdx

i dx j

and we then have for all n ≥ 0:

∂2n0 hij
∣

∣

U
= (−1)n(∂′0)

2nh′ij
∣

∣

U
, ∂2n+1

0 hij
∣

∣

U
= 0 = (∂′0)

2n+1h′ij
∣

∣

U
. (3.1)

In the ultra-static case we have x0 = t, which means that the metric g is real-

analytic in x0 and its analytic continuation satisfies gab(ix
0, xi) = (gR)ab(x

0, xi).

This immediately implies Eq. (3.1), by the Cauchy–Riemann equations and the

reality of g and gR. In the general case, the Proposition can be interpreted as

saying that g is “infinitesimally holomorphic” in z := x0 + i(x′)0.

Proof. The form of the metrics follows from the construction of Gaussian normal

coordinates, as is well known.32 The idea is now to use the fact that the geometries

of M and MR are entirely determined by (S, h,N). The number of coefficients

in (hij , ξ
a) equals d(d+1)

2 , which is exactly the number of components of Killing’s

equation. We may write out Killing’s equation in the chosen local coordinates, for

which the Christoffel symbol vanishes when two or more indices are 0. The (00)-

component of Killing’s equation is then ∂0ξ
0 = 0, which means that ξ0(x) = N(xi).

Substituting this back in the remaining equations yieldse

hij∂0ξ
j = ∂iN , N∂0hij = −2hk(i∂j)ξ

k − ξk∂khij .

All normal derivatives of ξi and hij are uniquely determined by the initial data, as

can be shown by induction, taking successive normal derivatives of the equations

above. In the Riemannian case we find similarly ξ0R(x
′) = N(xi) and

h′ij∂
′
0ξ
j
R = −∂′iN , N∂′0h

′
ij = −2h′k(i∂

′
j)ξ

k
R − ξkR∂

′
kh

′
ij .

Note the change of sign in the first equation when compared to the Lorentzian case.

One now proves by induction on n ≥ 0 thatf

∂n0 hij
∣

∣

U
= in(∂′0)

nh′ij
∣

∣

U
, ∂n0 ξ

i
∣

∣

U
= in+1(∂′0)

nξiR
∣

∣

U
.

For n = 0, these equalities are true, because they just express the equality of the

initial data. (Note in particular that ξi|U = 0 = ξiR
∣

∣

U
.) Now suppose they hold true

eIn these coordinates it is less clear that the Cauchy problem is well posed, unless the initial data
are analytic, in which case the Cauchy–Kowalewsky Theorem applies.32 However, we know that
the data (Σ, h,N) determine a unique, smooth solution, which is easily written down in adapted
coordinates.
fThe vanishing of the odd normal derivatives on Σ can also be seen by a symmetry argument
involving a reflection in the Killing time around the Cauchy surface.
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for all 0 ≤ l ≤ n. We use Killing’s equation and ∂0N = ∂′0N = 0 to compute

∂n+1
0 hij

∣

∣

U
= −N−1∂n0

(

2hk(i∂j)ξ
k + ξk∂khij

)∣

∣

∣

U

= −in+1N−1(∂′0)
n
(

2h′k(i∂
′
j)ξ

k
R + ξkR∂

′
kh

′
ik

)∣

∣

∣

U

= in+1(∂′0)
n+1h′ij

∣

∣

U
,

where the induction hypothesis was used in the second equality. Similarly, by the

binomial formula,

hij∂
n+1
0 ξ j

∣

∣

U
= −

n−1
∑

l=0

(

n

l

)

∂n−l0 hij · ∂l+1
0 ξ j

∣

∣

∣

∣

U

= in+2hij(∂
′
0)
n+1ξ jR

∣

∣

U
,

where we used the fact that, as hij is invertible, the result for n+1 follows, complet-

ing the proof by induction. The statement of the proposition is then immediately

clear, because both hij and h′ij are real-valued.

Corollary 3.1. For a smooth curve γ : [0, 1] → S the following are equivalent :

(i) γ is a geodesic in (S, h),

(ii) γ is a geodesic in M,

(iii) γ is a geodesic in MR.

Proof. We express the geodesic equation inM in terms of local coordinates xi on S

and a Gaussian normal coordinate x0 near S ⊂M . Using the notation γa := xa ◦γ,
with γ0 = 0, the components

∂2sγ
i = −Γiab∂sγ

a∂sγ
b = −Γijk∂sγ

j∂sγ
k

form exactly the geodesic equation in (S, h). The remaining equation is

0 = ∂2sγ
0 = −Γ0

ij∂sγ
i∂sγ

j =
−1

2
∂0hij

∣

∣

∣

∣

U

∂sγ
i∂sγ

j ,

which is true by Proposition 3.3. This proves the equivalence of the first and second

statements. The equivalence of the first and third statement is shown in a similar

manner.

4. The Linear Scalar Quantum Field

It is well understood how to quantize a linear real scalar field on any globally hyper-

bolic space–time.1–4 In this section we will present this quantization, with a special

focus on the case where the space–time is stationary.7 This extra structure allows

one to obtain additional results concerning e.g. ground states for the Killing flow.

As a matter of convention we will identify distributions on M , MR and Σ with

distribution densities, using the natural volume forms determined by the metrics.

To unburden our notation we will often leave the volume form implicit, which should
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not lead to any confusion. However, we point out that the volume form is important

when restricting to submanifolds, because in that case a change in volume form is

involved. We will also make use of the natural Hilbert spaces of square-integrable

functions on the various space–times and Riemannian manifolds, where integration

is performed with respect to the volume forms determined by the metrics. This

being understood we may leave the volume forms implicit in our notation, writing

e.g. L2(M), L2(Σ) instead of L2(M,d volg) and L
2(Σ, d volh).

4.1. The classical scalar field in stationary space times

The classical theory of a linear scalar field on a space–time M is described by the

(modified) Klein–Gordon equation for φ ∈ C∞(M),

Kφ := (−�+ V )φ = 0 , (4.1)

where � := ∇a∇a denotes the Laplace–Beltrami operator and the potential V is a

smooth, real-valued function. V is often chosen to be of the form

V = cR+m2 , m ≥ 0 , c ∈ R

with mass m and scalar curvature coupling c. In any globally hyperbolic space–

time, the Klein–Gordon equation has a well posed initial value formulation (see e.g.

Ref. 2, Chap. 3, Theorem 3). To formulate it we introduce the space of initial data

D(Σ) := C∞
0 (Σ)⊕ C∞

0 (Σ) ,

as a topological direct sum, where each summand carries the test-function topology.

Theorem 4.1. Let Σ ⊂M be a Cauchy surface in a globally hyperbolic space–time

M with future pointing normal vector field na. For each (φ0, φ1) ∈ D(Σ) there is a

unique φ ∈ C∞(M) such that

Kφ = 0 , φ|Σ = φ0 , na∇aφ|Σ = φ1 . (4.2)

Moreover, supp(φ) ⊂ J(supp(φ0) ∪ supp(φ1)) and the linear map S : D(Σ) →
C∞(M) which sends (φ0, φ1) to the corresponding solution φ of Eq. (4.2) is conti-

nuous, if C∞(Σ) is endowed with the usual Fréchet topology.

It follows from Theorem 4.1 that the Klein–Gordon operatorK has unique advanced

(−) and retarded (+) fundamental solutions E± and we define E := E− − E+.

The solution map S and the operator E will be used frequently to translate

between the space–time and the initial data formulations of the theory and we

note that

E(f, f ′) :=

∫

M

fEf ′ :=

∫

M×2

d volg(x)d volg(x
′)f(x)E(x, x′)f ′(x′)

=

∫

Σ

Ef · na∇aEf
′ − na∇aEf · Ef ′ , (4.3)
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where Σ ⊂ M is any Cauchy surface and f , f ′ ∈ C∞
0 (M). The kernel of E, acting

on C∞
0 (M), is exactly1 KC∞

0 (M) and for later use we introduce the real-linear

space

L := C∞
0 (M,R)/KC∞

0 (M,R) .

In a stationary, globally hyperbolic space–time (M, ξ), the Killing vector field

determines a natural time evolution. We fix a Cauchy surface Σ ⊂ M and use it

to write M as a standard stationary space–time (cf. Subsec. 3.1). We will work

throughout in adapted coordinates xa = (t, xi) and assume that the potential V is

stationary,

ξa∇aV = ∂0V = 0 .

As the potential V is real-valued we may view K as a symmetric operator on

the dense domain C∞
0 (M) in L2(M). We will now separate off the canonical time

dependence of this operator and write the spatial dependence in terms of hij , N ,

N i and V . The cleanest way to do so is by ensuring that we obtain symmetric

operators in L2(Σ) for the spatial parts. For this reason it is convenient to consider

the unitary isomorphism

U : L2(M) → L2(R)⊗ L2(Σ) : f 7→
√
Nf

onto the Hilbert tensor product, where R is viewed as a Riemannian manifold

with the standard metric dt. To see that U is indeed an isomorphism we use

Schwartz Kernels Theorem, the diffeomorphism M ≃ R × Σ and the fact that

det g = −N2 deth and d volg = Ndt d volh, which may be seen by choosing local co-

ordinates on Σ that diagonalize hij at a point. The symmetric operator UNKNU−1

can now be written as

N
3
2KN

1
2 = N

3
2 (−�+ V )N

1
2

= ∂20 −
(

∇(h)
i N i +N i∇(h)

i

)

∂0

−N
1
2∇(h)

i (Nhij −N−1N iN j)∇(h)
j N

1
2 + V N2 . (4.4)

The computation that leads to this expression has been omitted, because it is

straightforward.g

gInstead of the Riemannian manifold (Σ, h) one may also consider (Σ, h̃), cf. Theorem 3.1. In this

case the unitary map takes the form U : f 7→ v
d
2 f and

v
d
2NKNv−

d
2 = ∂20 −

(

∇
(h̃)
i
N i +N i∇

(h̃)
i

)

∂0 −N∇
(h̃)
i
v−2h̃ij∇

(h̃)
j
N

+N2v−4 d

2

(

v(�
h̃
v) +

d− 6

2
h̃ij

(

∇
(h̃)
i v

)(

∇
(h̃)
j v

)

)

+ V N2 .

Although the metric h̃ has the advantage of being complete, it may be a less natural choice than
h, especially when the space–time M is isometrically embedded into a larger space–time.
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Because ξ is a Killing field, the flow Ξt preserves the Klein–Gordon equation:

KΞ∗
tφ = Ξ∗

t (Kφ) for all t ∈ R. Moreover, if Kφ = 0 and φ has compactly supported

initial data on some Cauchy surface, then the same is true for Ξ∗
tφ. This means that

the time flow determines a time evolution on the initial data in D(Σ). Indeed, let

S be the solution operator of Theorem 4.1 and let S−1 be its inverse, i.e. S−1(φ) =

(φ|Σ, na∇aφ|Σ). We may define the time evolution maps Tt on D(Σ) by Tt :=

S−1Ξ∗
tS. The maps Tt form a continuous (even smooth) one-parameter group for

t ∈ R, by Theorem 4.1. The infinitesimal generator Hcl of the group Tt is the

classical Hamiltonian:

Lemma 4.1. The (classical) Hamiltonian operator Hcl is given (in matrix notation

on D(Σ)) by

Hcl

(

φ0
φ1

)

:= −i∂tTt
(

φ0
φ1

)∣

∣

∣

∣

t=0

= −i





N i∇(h)
i N

∇(h)
i Nhij∇(h)

j − V N ∇(h)
i N i





(

φ0
φ1

)

.

Proof. The computation is simplified somewhat by defining X :=

(

I 0

Ni∇(h)
i

N

)

,

with inverse X−1 := N−1

(

N 0

−Ni∇(h)
i

I

)

. Note that X
(

φ0

φ1

)

=
(

φ0

∂0φ|Σ

)

, where φ :=

S(φ0, φ1). Now the first row of XHclX
−1 is simply (0 − iI) and the second row

can be found by writing ∂20 = N
1
2 ∂20N

− 1
2 and by eliminating the second-order time

derivative using Eq. (4.4) and Kφ = 0. Hcl is then obtained from a straightforward

matrix multiplication. The details are omitted.

For any solution φ ∈ C∞(M) of the Klein–Gordon equation one defines the

stress-energy–momentum tensor

Tab(φ) := ∇(aφ̄∇b)φ− 1

2
gab
(

∇cφ̄∇cφ+ V |φ|2
)

,

which is symmetric and

∇aTab(φ) =
−1

2
(∇bV )|φ|2 ,

because Kφ = 0. By Killing’s equation, ∇aξb is antisymmetric, so the energy–

momentum one-form

Pa(φ) := ξbTab(φ)

satisfies

∇aPa(φ) = ξb∇a(Tab(φ)) =
−1

2
(∂0V )|φ|2 = 0 ,
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where we used the assumption that V is stationary. Note that energy–momentum is

conserved, even though the stress–tensor may not be divergence free. On a Cauchy

surface Σ with future pointing normal na, the energy density is defined by

εΣ(φ) := naPa(φ)|Σ = naξbTab(φ)|Σ .
If φ = S(φ0, φ1) for some (φ0, φ1) ∈ D(Σ), then we can also define the total energy

on Σ by

E(φ) :=
∫

Σ

εΣ(φ) .

The conservation of Pa(φ) implies that E(φ) is independent of the choice of Cauchy
surface, by Stokes’ Theorem. In particular, E(Ξ∗

tφ) = E(φ) for all t, because the

left-hand side is the integral of εΣ′(φ) over the Cauchy surface Σ′ := Ξt(Σ).

Lemma 4.2. Viewing D(Σ) as a dense domain in L2(Σ)⊕2 we have

E(S(φ0, φ1)) = 〈(φ0, φ1), A(φ0, φ1)〉 ,
where the operator A is given by

A :=
1

2





−∇(h)
i Nhij∇(h)

j + V N −∇(h)
i N i

N i∇(h)
i N



 .

In particular, A = i
2σHcl with σ :=

(

0 −1

1 0

)

and A ≥ 1
2

(

V N 0

0 N−1v2

)

.

Proof. The form of E can be computed by expressing the energy density on Σ

in terms of the initial data. The computation is straightforward, so the details

are omitted. The final equality is then obvious from Lemma 4.1, whereas the final

inequality follows from

〈(φ0, φ1), A(φ0, φ1)〉 =
1

2

∫

Σ

Nhij
(

∇(h)
i φ0 +N−1Niφ1

)(

∇(h)
j φ0 +N−1Njφ1

)

+ V N |φ0|2 + (N −N−1N iNi)|φ1|2 ,
where the first term in the integrand is nonnegative and may be dropped.

When V > 0 everywhere, we may define an energetic inner product on L ⊗ C

by setting

〈f, f ′〉e := 〈S−1Ef,AS−1Ef ′〉 ,
where the inner product on the right-hand side is in L2(Σ)⊕2. Note that 〈 , 〉e is

indeed positive and nondegenerate, by the properties of A established in Lemma 4.2

and the positivity of V N and N−1v2. Since V is stationary, the energetic inner

product is independent of the choice of Cauchy surface, like the energy, because

‖f‖2e = E(Ef) .
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Definition 4.1. When V is stationary and V > 0, the energetic Hilbert space He

is the Hilbert space completion of L⊗ C in the energetic norm.

He can be interpreted as the space of all (complex) finite energy solutions of the

Klein–Gordon equation (4.1).

The following detailed description of the energetic Hilbert space is the main

result of this section. The proof makes use of strictly positive operators and we have

collected some basic results on such operators in the Appendix (see also Ref. 38).

Theorem 4.2. LetM be a stationary, globally hyperbolic space–time with a Cauchy

surface Σ and assume that V is stationary and V > 0. Let Â denote the Friedrichs

extension of the operator A of Lemma 4.2. The linear map qcl : D(Σ) → L2(Σ)⊕2

defined by qcl(φ0, φ1) :=
√

Â
(

φ0

φ1

)

is continuous, injective, has dense range, com-

mutes with complex conjugation and satisfies ‖qcl(φ0, φ1)‖2 = E(S(φ0, φ1)). Hence,
He ≃ L2(Σ)⊕2.

There is a unique, strongly continuous unitary group Ot = eitHe on L2(Σ)⊕2

such that Otqcl = qclTt. Its infinitesimal generator is given by He := 2i
√

Âσ
√

Â.

iHe commutes with complex conjugation, He and all its powers Hn
e , n ∈ N, are

essentially self-adjoint on the range of qcl, He is invertible and the range of qcl is

a core for |He|−1.

The explicit characterization of He in terms of L2(Σ)⊕2 is often very useful,

although it is less aesthetically appealing, because it requires the choice of an arbi-

trary Cauchy surface Σ.

Proof. We first consider the Friedrichs extension Â of A, which is a positive, self-

adjoint operator. By Lemma A.7, D(Σ) is a core for Â
1
2 . Furthermore, Â ≥ B,

where the operator B := 1
2

(

V N 0

0 N−1v2

)

is defined on D(Σ) (cf. Lemma 4.2). Note

that B is essentially self-adjoint with a strictly positive closure, by Proposition A.1.

Hence, Â is also strictly positive, by Lemma A.6 and D(Σ) is in the domain of Â− 1
2 .

Moreover, as D(Σ) is a core for Â
1
2 , the latter has a dense range on D(Σ). Therefore,

qcl is a well defined, injective linear map with dense range R and by Lemma 4.2,

‖qcl(φ0, φ1)‖2 = E(S(φ0, φ1)). As S is continuous, the last equation also entails the

continuity of qcl. (Alternatively one may use Theorem A.1 of the Appendix.) Also

note that A commutes with complex conjugation in L2(Σ)⊕2, hence the same is

true for Â
1
2 and for qcl.

Because qcl is invertible we may define Ot by Ot = qclTtq
−1
cl on R. Note that

the total energy ‖Otqcl(φ0, φ1)‖2 = E(Ξ∗
tS(φ0, φ1)) is independent of t, so each Ot

is a densely defined isometry, which extends uniquely to a unitary isomorphism on

the entire Hilbert space, again denoted by Ot. O
−1
t = O−t and the continuity of

f 7→ Ttf in the test-function topology entails the strong continuity of Ot.

Because the time-derivative of Tt(φ0, φ1) converges in the test-function topology

of D(Σ) and qcl is continuous, the infinitesimal generator of Ot is well defined on
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the range R of qcl, where it is given by

He = qclHclq
−1
cl = 2i

√

Âσ
√

Â ,

because of the Lemmas 4.1 and 4.2. Both He and Ot preserve R, so He and all its

powers are essentially self-adjoint on R by Lemma 2.1 in Ref. 39.

Â commutes with complex conjugation, so it is clear that iHe also commutes

with it. Furthermore, the map M := i
2 Â

− 1
2 σÂ− 1

2 is well defined on R and it

satisfies MHe = I there. Note that M is closable, because it is symmetric and

densely defined. By Lemma A.1, He must be invertible. Lemma A.4 implies that

H−1
e is self-adjoint and invertible and a core is given by HeR ⊂ R. As M is

a symmetric extension of H−1
e on this domain, we must have M̄ = H−1

e and the

domainR ofM is a core forH−1
e and hence also for |He|−1, by the Spectral Calculus

Theorem.

4.2. The scalar quantum field in stationary space times and

equilibrium one-particle structures

We now study the quantized scalar field in a stationary space–time, where the

ground states play a similarly important role for the theory as the vacuum state in

Minkowski space–time. Because of the importance of quasi-free equilibrium states

(cf. Sec. 2) we first focus on equilibrium one-particle structures, whereas the ground

and equilibrium states (beyond their two-point distributions) will be discussed in

Sec. 5 below.

The well posedness of the Cauchy problem established in Theorem 4.1 remains

true if we specify arbitrary distributional initial data, allowing distributional solu-

tions and using distributional topologies.40 In this setting it is natural to introduce

local observables, associated to arbitrary f ∈ C∞
0 (M), which measure the distri-

butional field φ by the formula φ(f) :=
∫

φf . These observables φ 7→ φ(f) can be

regarded as functions on the space of classical solutions φ and we may use them to

generate an algebra of observables. We choose to work with the Weyl C∗-algebra
Wcl := W(L, 0), whose elements we interpret as eiφ(f), which remains bounded

when φ and f are real-valued.

Interpreting the right-hand side of Eq. (4.3) in terms of initial values and

momenta motivates the introduction of the symplectic space (L,E), so that the

corresponding quantum theory is described by W := W(L,E). For each open sub-

set O ⊂ M we will denote by W(O) the C∗-subalgebra generated by those W (f)

with f supported in O (and similarly for Wcl(O)). In this way one obtains a net of

local C∗-algebras.4,41

When (M, ξ) is a stationary, globally hyperbolic space–time and V is stationary,

(L, 0, T−t) and (L,E, T−t) become one-particle dynamical systems. This follows

from the fact that Ξ∗
−t preserves the metric and that the E± are unique, so the

symplectic form E(f, f ′) :=
∫

M
fEf ′ is preserved. We may consider the associated
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quasi-free dynamical systems
(

Wcl, αcl
t

)

and (W , αt), so that

αcl
t (W (f)) =W (Ξ∗

−tf) , αt(W (f)) =W (Ξ∗
−tf)

for all f ∈ L.h αcl
t and αt describe the Killing time flow at an algebraic level and

we note that αt(W(O)) = W(Ξt(O)) and similarly in the classical case. However,

neither αcl
t nor αt is norm-continuous in t, as ‖w(f) − w(g)‖ = 2 for all f 6= g ∈

L (Ref. 19, Proposition 3.10). For this reason, general results on C∗-dynamical

systems14,20 do not apply directly to our situation. (Nor can we view (W , αt) as a

W ∗-dynamical system, because W is not a W ∗-algebra or von Neumann algebra.)

In order to take advantage of the smoothness of the time evolution maps Tt on

D(Σ) we need the following definition.

Definition 4.2. We call a state ω on the Weyl C∗-algebra W (or Wcl) Dk, k > 0,

when it is Ck (cf. Definition 2.6) and the maps

ωn(f1, . . . , fn) := (−i)n∂s1 · · · ∂snω(W (s1f1) · · ·W (snfn))|s1=···=sn=0

are distributions on M×n for all 1 ≤ n ≤ k. The ωn are called the n-point distri-

butions. A state is called regular, or D∞, when it is Dk for all k > 0.

In our setting the distributional character of the ωn is natural and useful.

Remark 4.1. An alternative description of the scalar quantum field uses the
∗-algebra A, generated by the identity I and the smeared field operators Φ(f),

f ∈ C∞
0 (M), satisfying

(i) f 7→ Φ(f) is C-linear,

(ii) Φ(f)∗ = Φ(f̄ ),

(iii) KΦ(f) := Φ(Kf) = 0,

(iv) [Φ(f),Φ(f ′)] = iE(f, f ′)I.

Although the algebras A and W are technically different, their relation can be

understood from a physical point of view by formally setting W (f) = eiΦ(f). In

suitable representations this can be made rigorous. This applies in particular to

regular states ω on W , which give rise to a corresponding state on A.

4.2.1. Two-point distributions

When ω is a D2 state on W , we may identify the one-particle structure (p,K)

of ω2 as a map into a subspace of the GNS-representation space Hω , as in the

proof of Proposition 2.3. A similar construction applies to the so-called truncated

two-point distribution, ωT2 (x, x
′) := ω2(x, x

′) − ω1(x)ω1(x
′), where we now take

p(f) := πω(Φ(f) − ω1(f)I)Ωω. Note that ωT2 is indeed a two-point distribution,

hThe sign in T−t is explained by the desire to have αcl
t φ = Ξ∗

tφ for the field φ, so that αcl
t (φ(f)) =

(Ξ∗

tφ)(f) = φ(Ξ∗

−tf) in the distributional perspective. The same argument applies to the quantum
case.
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(cf. Theorem 2.3) and that ω2 = ωT2 when ω1 = 0, so in that case the two construc-

tions coincide.

When ω2 is a distribution, the associated one-particle structure can be viewed as

a K-valued distribution p which satisfies the Klein–Gordon equation.42 (Conversely,

when p is a distribution, the associated ω2 is also a distribution.) For any Cauchy

surface Σ, p is uniquely determined by its initial data, which form a continuous

linear map qΣ : D(Σ) → K with dense range and such that

〈

qΣ(φ0 , φ1), qΣ(φ
′
0, φ

′
1)
〉

−
〈

qΣ(φ′0 , φ
′
1), qΣ(φ0, φ1)

〉

= i

∫

Σ

φ0φ
′
1 − φ1φ

′
0

(cf. Eq. (4.3)). Conversely, any such linear map qΣ determines a unique one-particle

structure. Indeed, just like smooth solutions to the Klein–Gordon equation, two-

point distributions are uniquely determined by their initial data on a Cauchy

surface:

Proposition 4.1. Let Σ ⊂ M be a Cauchy surface in a globally hyperbolic space–

time with future pointing normal na and let ω be a distribution density in M×2. If

Kxω(x, y) = Kyω(x, y) = 0, then the restrictions

ωij := (na∇a)
i
x(n

b∇b)
j
yω
∣

∣

Σ×2 ,

are well defined distribution densities in Σ×2 for all i, j ∈ N.

Conversely, for any four distribution densities ωij , 0 ≤ i, j ≤ 1, on Σ×2, there

is a unique distribution density ω on M×2 such that

Kxω = Kyω = 0 , (na∇a)
i
x(n

b∇b)
j
yω
∣

∣

Σ×2 = ωij . (4.5)

Support and continuity properties analogous to Theorem 4.1 also hold, but we will

not need them. We omit the proof of this basic result.

There is a preferred class ofD2 states, called Hadamard states, which are charac-

terized by the fact that their two-point distribution has a singularity structure that

is of the same form as for the Minkowski vacuum state. These states are important,

because the renormalized Wick powers and stress tensor of the quantum field have

finite expectation values in them. To put it more precisely, ω2 is of Hadamard form

if and only if43

WF (ω2) = {(x, k; y, l) ∈ T ∗M×2 | l 6= 0 is future pointing and

light-like and (y, l) generates a geodesic γ which

goes through x with tangent vector −k} . (4.6)

This condition is already implied by one of the following apparently weaker, and

often more convenient, estimates on ω2 or its associated one-particle structure

(p,K):

WF (ω2) ⊂ V −M × V +M , WF (p) ⊂ V +M ,

where V ±M ⊂ T ∗M is the space of future (+) or past (−) pointing causal co-

vectors on M (cf. Ref. 42, Proposition 6.1). For any regular state (even if it is not
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quasi-free) the Hadamard condition allows one to estimate the singularity structure

of all higher n-point distributions too,44 so that the state satisfies the microlocal

spectrum condition of Ref. 45.

By the Propagation of Singularities Theorem and the fact that ω2 solves the

Klein–Gordon equation in both variables it suffices to check the condition in

Eq. (4.6) on a Cauchy surface Σ:

WF (ω2)|Σ ⊂ {(x,−k;x, k)|(x, k) ∈ V +M |Σ} .

Unfortunately it is somewhat complicated to see whether a state ω2 is Hadamard

by inspecting its initial data on a Cauchy surface Σ. The initial data of ω2 should be

smooth away from the diagonal in Σ×2, so it suffices to characterize the singularities

on the diagonal. However, for the singularities on the diagonal we are not aware of

any argument that avoids the use of the Hadamard parametrix construction, which

involves the Hadamard series for which Hadamard states were originally named.

4.2.2. Equilibrium two-point distributions

An equilibrium one-particle structure (p,K) has some nice additional structure

when p is a distribution:

Lemma 4.3. If (p,K) is an equilibrium one-particle structure such that p is a

distribution, then the unitary group Õt on K defined by Õtp = pΞ∗
−t (on C∞

0 (M))

is strongly continuous, Õt = eitH . Its strong derivative is well defined on the range

of p, H is essentially self-adjoint on this range and Hp(f) = ip(∂0f) for all

f ∈ C∞
0 (M).

Proof. The strong continuity of Õt follows from the continuity of t 7→ Ξ∗
−tf in the

test-function topology and the fact that p is a distribution. The formula for H on

the range of p can be deduced from the continuity of p by a direct calculation:

Hp(f) := −i∂tÕtp(f)|t=0 = −i∂tp(Ξ∗
−t(f))|t=0 = ip(∂0f) .

The essential self-adjointness of H on the range of p then follows from Chernoff’s

Lemma.39

The next two results are the main results of this section. They are existence and

uniqueness results for nondegenerate ground and β-KMS one-particle structures.

For the existence of a nondegenerate ground we adapt a result of Ref. 7, which

imposed additional restrictions on the potential V and on the Killing field in order

to obtain such a ground one-particle structure with, in addition, a mass gap. For

the existence of a nondegenerate β-KMS one-particle structure see Refs. 6 and 27.

Theorem 4.3. Let M be a globally hyperbolic, stationary space–time and consider

a linear scalar field with a stationary potential V such that V > 0.
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(i) There exists a nondegenerate ground one-particle structure (p0,K0), with K0 ⊂
He the closed range of

p0(f) :=
√
2|He|−

1
2P−pcl(f) ,

where P− is the spectral projection onto the negative part of the spectrum of He

and pcl(f) := qclS
−1E(f).

(ii) For every β > 0 there exists a nondegenerate β-KMS one-particle structure
(

p(β),K(β)

)

, with K(β) ⊂ H⊕2
e the closed range of

p(β)(f) =
√
2P−|He|−

1
2

(

I − e−β|He|)−
1
2 pcl(f)

⊕
√
2P+|He|−

1
2 e−

β

2 |He|(I − e−β|He|)−
1
2 pcl(f) .

The occurrence of P−, rather than P+, is in line with the footnote h on page 31.

Proof. We start with the He-valued distribution pcl(f) := qclS
−1E(f) and the

unitary group Ot determined by Theorem 4.2. Define p0(f) :=
√
2|He|− 1

2P−pcl(f)
and let the closed range of p0 be denoted by K0. It is not hard to see that Otp0(f) =

p0(Ξ
∗
t f), so Ot preserves K0 and we may let Õt := O−t|K. The generator H of this

strongly continuous unitary group is the restriction of −He, which is strictly positive

there. The range of p0 is in the domain of H and H− 1
2 , by Theorem 4.2. If we let C

denote the complex conjugation on L2(Σ)⊕2, then CHeC = −He, so CP−C = P+,

the spectral projection onto the positive part of the spectrum of He. Thus,

〈p0(f̄ ), p0(f ′)〉 = 2〈pcl(f̄ ), |He|−1P−pcl(f
′)〉

= −2〈CH−1
e P−pcl(f

′), Cpcl(f̄ )〉

= 2〈H−1
e P+pcl(f ′), pcl(f)〉

= 2〈pcl(f ′), |He|−1P−pcl(f)〉+ 2〈pcl(f ′), H−1
e pcl(f)〉

= 〈p0(f ′), p0(f)〉+ i〈S−1Ef ′ , σS−1Ef〉

= 〈p0(f ′), p0(f)〉 − iE(f, f ′) .

This proves that (p0,K0) is a nondegenerate ground one-particle structure.

The formula for p(β) is well defined, because the range of pcl is in the domain

of |He|−1 by Theorem 4.2. It defines a K(β)-valued distribution with dense range,

which solves the Klein–Gordon equation. Just like for the ground one-particle struc-

ture one may check that 〈p(β)(f̄ ), p(β)(f ′)〉 − 〈p(β)(f ′), p(β)(f)〉 = iE(f, f ′), so

(p(β),K(β)) does indeed define a one-particle structure.

Viewing K(β) as a subspace of H⊕2
e we note that O⊕2

t preserves the range of p(β),

because O⊕2
t p(β)(f) = p(β)(Ξ

∗
t f). We can therefore define a strongly continuous

unitary group Õt on K(β) as the restriction of O⊕2
−t . The generator H of Õt is given

by the restriction of |He| ⊕ −|He| and the range of p(β) is contained in D
(

e−
β

2H
)

.
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One may then compute
〈

e−
β

2Hp(β)(f̄ ), e
−β

2Hp(β)(f
′)
〉

=
〈

pcl(f̄ ), |He|−1
(

I − e−β|He|)−1(
P+ + e−β|He|P−

)

pcl(f
′)
〉

=
〈

p(β)(f ′), p(β)(f)
〉

. (4.7)

This implies the one-particle KMS-condition, because for any f , f ′ ∈ C∞
0 (M,R)

the function

Fff ′(z) :=
〈

e−
i
2 z̄Hp(β)(f̄ ), e

i
2 zHp(β)(f

′)
〉

,

is bounded and continuous on Sβ and holomorphic in its interior. The correct

boundary conditions follow from Eq. (4.7).

As (p0,K0) is nondegenerate, the associated quasi-free state is nondegenerate too

(Proposition 2.3) and hence it is pure (by Borchers’ Theorem 2.1). We then see

from Theorem 2.4 that p0 already has dense range on the real subspace. (Of course

a direct proof of this fact is also possible.)

Remark 4.2. Note that there is a connection between the classical energy and the

Hamiltonian operator H0 in the ground one-particle structure, which is given by

〈p0(f), H0p0(f)〉+ 〈p0(f̄ ), H0p0(f̄ )〉 = 2E(Ef) ,

as may be shown by the same techniques employed in the proof of Theorem 4.3.

Next we establish a uniqueness result for nondegenerate ground and β-KMS

one-particle structures.6,46,i

Proposition 4.2. Let
(

p2,K2, Õ
(2)
t

)

be a ground, respectively β-KMS , one-particle

structure (with β > 0) and let P2 be the orthogonal projection onto the space of

Õ
(2)
t -invariant vectors. Let

(

p1,K1, Õ
(1)
t

)

be the nondegenerate ground, respectively

β-KMS, one-particle structure of Theorem 4.3. Then there is a unique isometry

U : K1 → K2 such that Õ
(2)
t U = UÕ

(1)
t and Up1 = (I − P2)p2. In particular, if

P2 = 0, then U is an isomorphism.

Let w := ω
(2)
2 − ω

(1)
2 denote the difference of the associated two-point functions

ω
(i)
2 . Then w is a real-valued , symmetric (weak) bi-solution to the Klein–Gordon

iOur uniqueness result is a slight strengthening of the results of Refs. 6 and 46, in our setting,
because our definition of β-KMS one-particle structures is slightly less stringent and we provide
a bit more detail on degenerate one-particle structures. Note that Ref. 46 formulates and proves
uniqueness in the class of nondegenerate ground one-particle structures, for which p already has
a dense range on the real linear space L (which entails that the associated quasi-free ground state
is pure by Theorem 2.4). That this extra condition is not needed for the proof was pointed out
by the same author in Ref. 6, which also proves uniqueness of nondegenerate β-KMS one-particle
structures.
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equation which is of positive type and independent of the Killing time (in both

entries). If p2 is a distribution on M, then w ∈ C∞(M×2).

Proof. The proof follows Ref. 46 (see also Ref. 47). For arbitrary f , f ′ ∈ C∞
0 (M,R)

the function

F (t) :=
〈

p2(f), Õ
(2)
t p2(f

′)
〉

K2

−
〈

p1(f), Õ
(1)
t p1(f

′)
〉

K1

=
〈

p2(f), e
itH2p2(f

′)
〉

K2

−
〈

p1(f), e
itH1p1(f

′)
〉

K1

is continuous (by the Definition 2.7 of ground and β-KMS one-particle structures)

and real-valued on R. Suppose both one-particle structures satisfy the one-particle

β-KMS condition at the same β > 0. There is then a bounded continuous exten-

sion F̃ of F to Sβ , holomorphic in the interior. By repeatedly applying Schwarz’

reflection principle,23 F̃ extends to a bounded holomorphic function on all of C,

which means that F̃ and F are constant, by Liouville’s Theorem.23 Similarly, if

both are ground one-particle structures, the positivity of the infinitesimal genera-

tors Hi implies that there is a bounded, holomorphic function F+ in the upper half

plane, which has F as its boundary value. By Schwarz’ reflection principle, F+ can

be extended to a bounded holomorphic function on the entire plane, which again

means that F is constant.

Note that the range of p1 is in the domain of H1, because the strong derivative

∂tÕ
(1)
t p1(f)|t=0 exists (cf. Theorem 4.3). The same is true for p2 and H2, because

∥

∥

∥

(

Õ
(2)
t − I

)

p2(f)
∥

∥

∥

2

−
∥

∥

∥

(

Õ
(1)
t − I

)

p1(f)
∥

∥

∥

2

≡ 0, by the previous paragraph. The

constancy of F implies ∂2t F |t=0 = 0, i.e.

〈

p1(f), H
2
1p1(f

′)
〉

K1
=
〈

p2(f), H
2
2p2(f

′)
〉

K2
.

This equality must hold for all f , f ′ ∈ C∞
0 (M), by complex (anti-)linearity. We

may therefore define linear maps Xi := Hipi and we let Vi := ker(Xi) denote

their kernels. By the previous equation, V1 = V2 =: V , so the Xi descend to linear

injections X̃i : C∞
0 (M)/V → Ki. We set U := X̃2X̃

−1
1 between the ranges of

the Xi. It is obvious from the previous paragraph that U is an isometry, because

UH1p1 = H2p2. The nondegeneracy of the first one-particle structure implies that

H1 is injective, while the range of p1 is a core for it. It follows that the map X̃1 has a

dense range, so U extends by continuity to an isometry fromK1 into K2. Note that U

intertwines between the unitary groups, because Õ
(i)
t Hipi(f) = Hipi(Ξ

∗
−tf). Hence

UH1 = H2U and P2UH1 = (P2H2)U = 0, which means that P2U = 0, because H1

has a dense range. Let R be the unique linear map such that RP2 = 0 and RH2 =

I − P2. Then U = RH2U = RUH1 and Up1 = RUH1p1 = RH2p2 = (I − P2)p2.

The uniqueness of U is then obvious, as p1 has a dense range.

By construction, w := ω
(2)
2 − ω

(1)
2 is a real-valued, symmetric bi-solution to

the Klein–Gordon equation (in a weak sense). Moreover, as U is isometric and
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Up1 = (I − P2)p2,

w(f̄, f) = ‖p2(f)‖2 − ‖Up1(f)‖2 = ‖P2p2(f)‖2 ≥ 0 ,

so w is of positive type. For fixed f, f ′ ∈ C∞
0 (M), w(f̄,Ξ∗

−tf
′) = F (t) = w(Ξ∗

t f , f
′)

is constant, as we saw in the first paragraph of this proof. If p2 is a distribution on

M , then w is a distribution on M×2 and, in adapted coordinates, ∂0w = ∂′0w = 0.

The equation KxKx′w = 0 then reduces to an elliptic equation on Σ×2, which

implies that w is smooth (see e.g. Ref. 48, Theorem 8.3.1).

Remark 4.3. Proposition 4.2 shows in particular that there is at most one non-

degenerate ground one-particle structure and at most one nondegenerate β-KMS

one-particle structure at any fixed β > 0, up to unitary equivalence. These are

the ones of Theorem 4.3. The degenerate ones may be classified in terms of w.

In space–times with a compact Cauchy surface Σ we note that the only smooth

function w with the stated properties is w = 0. Indeed, for any fixed y ∈ Σ,

vy(x) := w(x, y) solves Cvy = 0 for C := −∇(h)
i (Nhij − N−1N iN j)∇(h)

i + V N .

(This is because w solves the Klein–Gordon equation and is Killing time indepen-

dent.) As 0 = 〈vy, Cvy〉 ≥
∥

∥

√
V Nvy

∥

∥

2
in L2(Σ) this implies vy = 0 and hence w = 0.

4.2.3. Simplifications in the standard static case

On a standard static space–time M , the construction of the nondegenerate ground

and β-KMS one-particle structures in the proof of Theorem 4.3 simplifies. For later

convenience we formulate these results as a proposition:7

Proposition 4.3. Let Σ ⊂ M be a Cauchy surface orthogonal to the Killing field

of the standard static, globally hyperbolic space–time M . Under the assumptions of

Theorem 4.3 we have:

(i) The unique nondegenerate ground one-particle structure is given, up to

equivalence, by K0 = L2(Σ) and p0 = q0,ΣS
−1E with

q0,Σ(f0, f1) :=
1√
2

(

C
1
4N− 1

2 f0 − iC− 1
4N

1
2 f1

)

.

Furthermore, the unitary group Õt of Lemma 4.3 is given by Õt = eit
√
C .

(ii) For any β > 0 the unique nondegenerate β-KMS one-particle structure is given,

up to equivalence, by K(β) = L2(Σ)⊕2 and p(β) = q(β),ΣS
−1E with

q(β),Σ(f0, f1) :=
1√
2

((

I − e−β
√
C
)− 1

2
(

C
1
4N− 1

2 f0 − iC− 1
4N

1
2 f1

)

⊕ e−
β

2

√
C
(

I − e−β
√
C
)− 1

2
(

C
1
4N− 1

2 f0 + iC− 1
4N

1
2 f1

))

.

Furthermore, the unitary group Õt of Lemma 4.3 is given by Õt = eit
√
C ⊕

e−it
√
C .
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Here C is the closure of the partial differential operator

C0 := −
√
N∇(h),iN∇(h)

i

√
N + V N2 ,

defined on C∞
0 (Σ). C0 and all integer powers of it are essentially self-adjoint on the

invariant domain C∞
0 (Σ). Furthermore, C is strictly positive with C ≥ V N2 and

C∞
0 (Σ) is contained in the domain of C± 1

2 for both signs.

One may also write C in terms of the conformal metric h̃ as

C = �h̃ + V N2 +
d− 2

2
N−2

(

N(�h̃N) +
d− 4

2
h̃ij(∂iN)(∂jN)

)

,

on L2(Σ, d volh̃), where we used the footnote g on page 26 and the fact that v = N

in the static case. The completeness of h̃ (Theorem 3.2) implies that all powers of

−�h̃ are essentially self-adjoint on the test-functions. Proposition 4.3 shows, among

other things, that the additional terms do not spoil this result.

Proof. In the standard static case N i ≡ 0, so the operator A of Lemma 4.2 can be

written as a diagonal matrix A = 1
2

(

α 0

0 N

)

, where α := −∇(h),iN∇(h)
i +V N . Let α̂

denote the Friedrichs extension of α, which is strictly positive by Lemmas A.7 and

A.6. We may then compute
√

Â and hence, on the range of
√

Â,

He = 2i
√

Âσ
√

Â =

(

0 −i
√
α̂
√
N

i
√
N
√
α̂ 0

)

.

Both
√
α̂
√
N and

√
N
√
α̂ are closable operators, because He is closable. Further-

more, their closures are each others adjoints, becauseHe is self-adjoint. By the Polar

Decomposition Theorem (Ref. 15, Theorem 6.1.11) there is then a partial isometry

U such that
√
α̂
√
N = UC

1
2 and

√
N
√
α̂ = C

1
2U∗, where C =

√
Nα̂

√
N = C0 .

Now H2
e =

(√
α̂N

√
α̂ 0

0 C0

)

on the range of
√

Â, which is invariant. The essential

self-adjointness of all even powers of He on this range (Theorem 4.2), restricted to

the second summand of L2(Σ)⊕2, implies that all integer powers of C0 are essen-

tially self-adjoint on the range of
√
N , which is just C∞

0 (Σ). The estimate C ≥ V N2

follows from a partial integration, whereas strict positivity follows from Lemma A.6.

That C∞
0 (Σ) is in the domain of C

1
2 is clear, because it is in the domain of C, and

that it is in the domain of C− 1
2 follows again from Lemma A.6. Finally, the domain

and range of U are the entire L2(Σ), because C
1
2 and α̂

1
2 have dense ranges. This

establishes all the claims concerning C.

Returning to one-particle structures, we may write, after some short com-

putations:

V ∗|He|V =

(

C
1
2 0

0 C
1
2

)

, V ∗P±V =
1

2
I ± 1

2

(

0 i

−i 0

)

,
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qcl(f0, f1) =
1√
2
V

(

C
1
2N− 1

2 0

0 N
1
2

)

(

f0
f1

)

,

where we introduced the unitary operator V :=
(

U 0

0 I

)

. A comparison with the

proof of Theorem 4.3 yields

q(f0, f1) =
1

2

(

U

iI

)

(

I − e−β
√
C
)− 1

2
(

C
1
4N− 1

2 f0 − iC− 1
4N

1
2 f1

)

⊕ 1

2

(

U

−iI

)

e−
β

2

√
C
(

I − e−β
√
C
)− 1

2
(

C
1
4N− 1

2 f0 + iC− 1
4N

1
2 f1

)

, (4.8)

where we made use of the fact that P±V = 1
2

(

U

∓iI

)

(I ± iI). As ‖Uψ ⊕ ±iψ‖2 =

‖
√
2ψ‖2, the first factors in each summand can safely be replaced by

√
2, leading

to a unitary equivalent formulation, q(β),Σ. Note that the range of q(β),Σ is dense in

L2(Σ)⊕2, because if ψ ⊕ χ is orthogonal to this range, then we may use the strict

positivity of the operators
(

I − e−β
√
C
)− 1

2C± 1
4 to show that ψ ± e−

β

2

√
Cχ = 0 for

both signs and hence ψ = χ = 0. The proof of the fact that H =
√
C ⊕ −

√
C is

an easy exercise which we omit. The case of the ground one-particle structure is

similar, but simpler.

The result of Proposition 4.3 can be interpreted in terms of positive and negative

frequency solutions.49 Indeed, any solution φ = Ef ∈ S with initial data (f0, f1)

can be decomposed into positive and negative frequency parts
(

N− 1
2φ
)

(t, ·) = eit
√
CN− 1

2 f+ + e−it
√
CN− 1

2 f− , (4.9)

where f± = 1
2

(

f0 ∓ iN
1
2C− 1

2N
1
2 f1

)

. In the ground state we have

ω0
2(f̄, f) =

1

2

∥

∥

∥C
1
4N− 1

2 f0 − iC− 1
4N

1
2 f1

∥

∥

∥

2

, (4.10)

which vanishes when f0 = iN
1
2C− 1

2N
1
2 f1, which is the case precisely when f+ = 0,

i.e. when φ is a negative frequency solution. (The occurrence of negative, rather

than positive, frequency solutions here is explained by the footnote h on page 31.)

5. Ground States and their Properties

We are now ready to study the space G 0(W) of ground states, under the assump-

tions of Theorem 4.3, and to consider some of their properties. These properties

often generalize the special properties of the Minkowski vacuum. Note that a charac-

terization of all classical equilibrium and ground states on the commutative Weyl

C∗-algebra Wcl can be given, in principle, using the results of Sec. 2.
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5.1. The space of ground states

The following theorem gives a full description of the space G 0(W) of all ground

states. (This result may be compared to Theorem 2.2.)

Theorem 5.1. Let M be a globally hyperbolic, stationary space–time and consider

a linear scalar field with a stationary potential V such that V > 0.

(i) There exists a unique C2 ground state ω0 with vanishing one-point function. It

is also the unique extremal C1 ground state with vanishing one-point function.

We denote its GNS-triple by (H0, π0,Ω0) and the one-particle structure of its

two-point function is (p0,K0) (cf. Theorem 4.3).

(ii) ω0 is quasi-free and regular (D∞) and π0 is faithful and irreducible.

(iii) The map λ0 := λω0 of Lemma 2.3 restricts to an affine homeomorphism λ0 :

G 0(Wcl) → G 0(W).

(iv) Any D2 ground state is Hadamard and any regular ground state satisfies the

microlocal spectrum condition. A ground state ω = λ0(ρ) is Ck, respectively

Dk, k = 1, 2, . . . , if and only if ρ is Ck, respectively Dk.

(v) Any extremal ground state ω on W is of the form ω = η∗ρω
0 for some

gauge transformation of the second kind ηρ. Hence it is pure and it is reg-

ular (respectively C∞) if and only if it is D1 (respectively C1). Furthermore,

it has the Reeh–Schlieder property, i.e. for any open set O ⊂ M the linear

space πω(W(O))Ωω is dense in Hω.

(vi) If there exists an ǫ > 0 such that V N ≥ ǫ and N−1v2 ≥ ǫ everywhere, then

(p0,K0) has a mass gap,j namely ‖H−1‖ ≤ ǫ−1.

(vii) For d = 4, Haag duality holds : if Σ ⊂M is a Cauchy surface, U ⊂ Σ an open,

relatively compact subset whose boundary ∂U is a smooth submanifold of Σ

and O := D(U), then

π0(W(O))′ = π0(W(O⊥))′′ ,

where O⊥ := int(M \ J(O)) denotes the causal complement for any subset

O ⊂M .

Recall that the Reeh–Schlieder property means that the ground state has many

nonlocal correlations.41,50 In fact, the Reeh–Schlieder property is known for all

quasi-free D∞ equilibrium states.51

Proof. Let ω0 be the quasi-free state whose two-point distribution is associated to

the nondegenerate ground one-particle structure (p0,K0) of Theorem 4.3. Then ω0

is a nondegenerate and pure (and hence extremal) ground state, by Theorems 2.3

and 2.1. As ω0 is quasi-free and ω0
2 is a distribution (density), ω0 is a regular state.

Furthermore, the representation π0 is irreducible, because ω0 is pure, and it is

jOur condition is weaker than that of Ref. 7, which requires N−1v2 ≥ ǫ, V ≥ ǫ and N ≥ ǫ.
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faithful, because the space (L,E) is symplectic (by construction) and hence W is

simple (Ref. 14, Theorem 5.2.8).

Using Lemma 4.3 and the fact that ω0 is quasi-free one may show that the

strong derivatives of t 7→ π0(αt(W (f)))Ω0 are well defined for all f ∈ L. The map

λ0 := λω0 of Lemma 2.3 then restricts to the stated affine homeomorphism by

Proposition 2.4.

For regular ground states, the Hadamard property is known to hold52 and the

microlocal spectrum then follows.44,45 The Hadamard property forD2 ground states

then follows from the last statement of Proposition 4.2. From the definition of λ0
we have

(λ0ρ)(W (f1) · · ·W (fn)) = ω0(W (f1) · · ·W (fn))ρ(W (f1) · · ·W (fn)) .

As ω0 is regular and quasi-free it follows that λ0(ρ) is C
k (respectively Dk) if and

only if ρ is Ck (respectively Dk).

Extremal ground states ω on W are of the form λ0(ρ) for an extremal ground

state ρ on Wcl. Such ρ are pure by Theorem 2.2, so by Lemma 2.3 this entails

ω = η∗ρω
0. Because η∗ρ preserves pure states it follows that every extremal ground

state on W is pure (cf. Remark 2.2). Furthermore, η∗ρ preserves the local algebras

W(O), so the extremal ground states have the Reeh–Schlieder property, because ω0

does.51 The statement on the regularity of extremal ground states follows directly

from Proposition 2.2. This also proves the second uniqueness clause for ω0. The

first uniqueness clause follows from Theorem 2.4.

To prove the existence of the mass gap we note that, under the stated assump-

tions, Â ≥ ǫ
2I by Lemma 4.2. In the energetic Hilbert space we then use (iσ)∗ = iσ

to estimate

H2
e = 4Â

1
2 iσÂiσÂ

1
2 ≥ 2ǫÂ

1
2 (iσ)2Â

1
2 = 2ǫÂ ≥ ǫ2I .

Hence, |He| ≥ ǫI, H ≥ ǫI and ‖H−1‖ < ǫ−1.

Finally, the fact that ω is pure entails Haag duality, at least when d = 4 (Ref. 53,

Theorem 3.6), even for slightly more general regions O than used here.

A few remarks concerning the interpretation of the results of this section and

their implications are in order:

Remark 5.1. The gauge transformations of the second kind, which appeared in

the proof of Theorem 5.1, can be physically interpreted as field redefinitions. If ω1

is a linear map on L, then χ := e−iω1 is a character and ρ(W (f)) := e−iω1(f) defines

a pure state on Wcl. If we write (formally) W (f) = eiΦ(f) we have

ηρ(W (f)) = ei(Φ(f)−ω1(f)I) .

In particular, if ω is any pure C2 ground state with one-point distribution ω1

and ρ is defined as above, then we must have η∗ρω = ω0 by Theorem 5.1. Hence,

ω(W (f)) = eiω1(f)ω0(W (f)). Because pure states ρ of this exponential form are
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dense (Ref. 19, Lemma 4.2) we may argue on physical grounds that we may as well

restrict attention to the pure ground state with vanishing one-point distribution, ω0.

Remark 5.2. Because ω0 is a uniquely distinguished ground state and π0 is faithful

we may perform the following standard modification of the original theory. For each

bounded region O ⊂ M we define the von Neumann algebra R(O) := π0(W(O))′′.
This gives rise to a local net of von Neumann algebras in the space–timeM and we

let the C∗-algebraR be their inductive limit. EachR(O) contains the corresponding

W(O), so that R ⊃ W . We may then consider the class of states on R which are

locally normal, i.e. they restrict to normal states on each von Neumann algebra

R(O). Such states clearly restrict to a state on W and a state ω on W has at

most one extension to R. This extension exists if and only if ω is locally normal

with respect to ω0 (by definition). This includes at least all quasi-free Hadamard

states.54

There are good physical reasons to consider only states on W that are locally

normal with respect to ω0. For any self-adjoint operatorA ∈ W(O) for any bounded

region O, the algebra R(O) contains all the spectral projectors of A, so the opera-

tional question whether the measured value of A attains a value in some Borel set

I ⊂ R corresponds to the same projection operator for all locally normal states.

Another reason to restrict only to locally normal states is of a more technical nature.

The action of the one-parameter group αt on W is not norm continuous, but the

larger algebra R contains a C∗-algebra R0 which is dense in R in the strong opera-

tor topology and on which αt is norm continuous (cf. Ref. 55, Sec. 4 or also Ref. 20,

Theorem 1.18 for a closely related result). This means that a large number of results

on C∗-dynamical systems can be brought to bear on (R0, αt), and hence indirectly

also on W , if one considers states that are locally normal14,20 with respect to ω0.

Let us briefly describe the constructions of Ref. 55 (adapted to a stationary,

globally hyperbolic space–time and with a possibly noncompact Cauchy surface).

The C∗-algebra R0 may be generated by operators of the form

Af :=

∫

dt f(t)αt(A) ,

where A ∈ W(O) for some bounded region O and f ∈ C∞
0 (R). Then Af ∈ R(O′),

where O′ is another bounded region that depends on O and on the support of f .

Such operators form a ∗-algebra which is invariant under the action of αt and on

which αt is norm continuous. R0 is the norm closure of this ∗-algebra.

5.2. The ground state representation and the quantum

stress-energy momentum tensor

As ω0 is quasi-free, H0 is a Fock space (cf. Subsec. 3.2 of Ref. 8) and we may

introduce a particle interpretation for the field, based on creation and annihilation

operators. Note that such an interpretation fails in general space–times, because

there are many unitarily inequivalent Fock space representations and there is no

generally covariant prescription to single out a preferred one.3,56
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Following standard notations14 we will write H0 =
⊕∞

n=0 H
(n)
0 , where the n-

particle Hilbert space is H(n)
0 := P+(K0)

⊗n, in which (p0,K0) is the one-particle

structure associated to ω0
2 and P+ denotes the projection onto the symmetric tensor

product. We write N for the number operator, so that N |H(n)
0

= nI. We will use

the notation a∗(ψ) and a(ψ) for creation and annihilation operators, respectively,

where ψ ∈ K0. As a
∗(ψ)∗ = a(ψ) we see that a is complex antilinear in ψ, whereas

a∗ is linear. The field Φ is given by

Φ(f) =
1√
2
(a∗(p0(f)) + a(p0(f̄ )))

and is complex linear, as desired. We may introduce the initial value and normal

derivative of the quantum field as

Φ0(f1) :=
−1√
2
(a∗(q0(0, f1)) + a(q0(0, f1))) ,

Φ1(f0) :=
1√
2
(a∗(q0(f0, 0)) + a(q0(f0 , 0)))

so that Φ(f) = Φ1(f0) − Φ0(f1), where (f0, f1) = S−1Ef . This is in line with

what one would get if Φ were a classical solution to the Klein–Gordon equation

(cf. Eq. (4.3)). It will also be convenient to introduce the operators

Π(f) :=
i√
2
(a∗(p0(f))− a(p0(f̄ ))) .

Because the classical stress-energy–momentum tensor played a significant role

in the classical and quantum descriptions of the linear scalar field in a stationary

space–time, it seems fitting to also spend a few words on the quantum stress-

energy–momentum tensor. If the field theory on M can be extended to all globally

hyperbolic space–times in a locally covariant way,4 e.g. if V = cR+m2, then there

is a generally covariant way to define the renormalized stress-energy–momentum

tensor.57 However, in our setting it will be advantageous not to renormalize the

stress tensor in a generally covariant way, but instead to exploit the extra struc-

ture of the stationary space–time. (Nevertheless, our presentation of the classical

and quantum stress tensor is based on existing treatments that fit in a generally

covariant framework, e.g. Ref. 58.)

We may define a tensor field Gab on a sufficiently small neighborhood U ⊂
M×2 of the diagonal ∆ := {(x, x) | x ∈ M} by the property that for any vector

vb ∈ Tx′M , the vector gac(x)Gcb(x, x
′)vb(x′) ∈ TxM is the parallel transport of

v along a unique geodesic connecting x to x′. (The uniqueness of the geodesic

can be ensured by choosing U sufficiently small.) Using Gab and Gab(x, x′) :=

gac(x)gbd(x′)Gcd(x, x′) we may write the classical stress-energy–momentum tensor
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in terms of a differential operator as

Tab(φ) =
(

T split
ab φ⊗2

)

(x, x) ,

T split
ab = ∇a ⊗∇b −

1

2
GabG

cd∇c ⊗∇d −
1

2
Gab

√
V ⊗

√
V .

(5.1)

Instead of letting the operator T split
ab act on the classical fields φ⊗2, we can let it

act on the normal ordered quantum field,

:Φ⊗2 : (x, x′) = Φ(x)Φ(x′)− ω0
2(x, x

′) .

For any vector ψ ∈ π0(A)Ω0 we may define the H0-valued distribution (density)

T ren
ab (fab)ψ := lim

n→∞
T split
ab :Φ⊗2 : (fabδn)ψ ,

where δn ∈ C∞(M×2) is a sequence of functions that approximates the delta dis-

tribution δ(x, x′) and fab is a compactly supported, smooth test-tensor.45 The

operator T ren
ab (fab) is densely defined and it is a symmetric operator when fab is

real-valued. Moreover, if V > 0 everywhere one can show that T ren
ab (χaχb) is semi-

bounded from below for real-valued test-vector fields χa.58 (Note that the method

of proof in Ref. 58 is not affected by the presence of the nonnegative potential

energy term V in the equation of motion.)

In analogy with the classical case we define the quantum energy–momentum

one-form and the energy density by

P ren
a (fa) := T ren

ab (faξb) , ǫren(f) := T ren
ab (naξbf)

in the sense of H0-valued distributions, when acting on π0(A)Ω0. One may check

that T ren
ab is symmetric in its indices a, b and that

∇aT ren
ab = −(∇bV ) :Φ2 : ,

where the Wick square :Φ2 : is the restriction of :Φ⊗2 : to the diagonal ∆ ⊂ M×2.

It follows from ∂0V = 0 that ∇aP ren
a = 0, just like in the classical case.

Remark 5.3. From a physical point of view it seems reasonable to expect that

for real-valued f the operator ǫren(f2) is semi-bounded from below, using the same

motivation as for existing quantum inequalities.58 However, the details of the argu-

ment require that we can write ξanb+naξb =
∑k

j=1 χ
a
jχ

b
j for some finite number of

(real) vectors χaj . An easy exercise shows that this is possible if and only if we are

in the static case, where ξa = Nna, in which case the single vector χa = N− 1
2 ξa

will suffice. Thus, in the static case, the results of Ref. 58 apply and ǫren(f2) is

semi-bounded from below.

There is another result, however, which does work very nicely in the general

stationary setting:

Theorem 5.2. Under the assumptions of Theorem 5.1, let ω0 be the unique ground

state. For any real-valued test-tensor fab, the operator T ren
ab (fab) is essentially self-

adjoint on π0(A)Ω0.
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A similar essential self-adjointness result for the smeared stress-energy–momentum

tensor in general globally hyperbolic space–times is much harder to obtain by a

direct proof (cf. Ref. 59 for partial results).

Proof. It follows from Lemma 4.3 (and second quantization) that the Hamiltonian

operator h is essentially self-adjoint on the dense, invariant domain π0(A)Ω0 and

that

〈ψ, [h+ I, T ren
ab (fab)]ψ′〉 = 〈ψ, iT ren

ab (∂0f
ab)ψ′〉 ,

for all ψ, ψ′ in that domain. (Here we have used the fact that ω0 is an equilibrium

state.) The idea is now to use the Commutator Theorem X.36’ of Ref. 21 to prove

essential self-adjointness of T ren
ab (fab). This means we need to prove that for any

test-tensor fab there is a C > 0 such that

|〈ψ, T ren
ab (fab)ψ′〉| ≤ C

∥

∥(h+ I)
1
2ψ
∥

∥ ·
∥

∥(h+ I)
1
2ψ′∥
∥ , (5.2)

for all ψ, ψ′ ∈ π0(A)Ω0. By polarization it suffices to take ψ = ψ′. It also suffices

to consider fab to be supported in a convex normal neighborhood, by a partition of

unity argument. Moreover, the antisymmetric part of fab does not contribute and

the symmetric part can be written as a finite sum of terms of the form χaχb, so it

suffices to consider fab = χaχb.

Now consider the operators Π(f) for f ∈C∞
0 (M). [Π(f),Π(f ′)]=[Φ(f),Φ(f ′)]=

iE(f, f ′), so for any ψ ∈ π0(A)Ω0 the distribution

ωψ2 (f, f
′) := ‖ψ‖−2〈ψ,Π(f)Π(f ′)ψ〉

is a Hadamard two-point distribution. As for the field Φ(f) one may introduce the

normal-ordered product :Π(f)Π(f ′) : := Π(f)Π(f ′)−ω0
2(f, f

′) and following Ref. 58

one proves that the operator

T̃ ren
ab (χaχb) :=

(

T split
ab :Π⊗2 :)(χaχbδ)

is semi-bounded from below. Hence, for some c > 0,

T ren
ab (χaχb) ≤ T ren

ab (χaχb) + T̃ ren
ab (χaχb) + cI = 2

(

T split
ab a∗ ⊗ a

)

(χaχbδ) + cI . (5.3)

The first term on the right-hand side is the second quantization of an operator T

on H(1)
0 , for which we have

〈Φ(f)Ω0, TΦ(f)Ω0〉 = 2
(

T split
ab φ̄⊗ φ

)

(χaχbδ)

=

∫

M

|χa∇aφ|2 − χaχag
bc∇bφ∇cφ− χaχaV |φ|2

≤ c′
∫

supp(χa)

|∂0φ|2 + hij∇(h)
i φ∇(h)

j φ+ |φ|2 , (5.4)
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for some c′ > 0, where we defined φ := ω0
2(· , f). On the other hand, because the

classical energy is independent of the Cauchy surface, h satisfies (cf. Lemma 4.2)

E(φ) = 〈Φ(f)Ω0, hΦ(f)Ω0〉

=

∫

M

τ(t)

2N2

(

|∂0φ|2 + (N2hij −N iN j)∇(h)
i φ∇(h)

j φ+ V N2|φ|2
)

, (5.5)

where τ ∈ C∞
0 (R) satisfies

∫

τ = 1. Choosing τ ≥ 0 and τ > 0 on the compact

support of χa and using the fact that Nhij − N−1N iN j is positive definite, the

desired estimate Eq. (5.2) easily follows from Eqs. (5.3)–(5.5).

Note that
[

T ren
ab (fab), π0(W (f ′))

]

= 0 whenever supp(f ′) ∩ J(supp(fab)) = ∅.
It follows from Haag duality that T ren

ab (fab) is affiliated to the local von Neumann

algebra R(D(supp(fab))).

Lemma 5.1. Let Σ be Cauchy surface in a stationary, globally hyperbolic space–

time M . Let f ∈ C∞
0 (M), τ ∈ C∞

0 (R) with
∫

τ = 1 and χ ∈ C∞
0 (Σ) such that

χ ≡ 1 on supp(τ) ∩ J(supp(f)), where we view τ, χ as functions on M in adapted

coordinates. Then

[

ǫren(τ ⊗N−1χ),Φ(f)
]

= Φ(i∂0f)

on π0(A)Ω0.

Proof. We follow the computations in Ref. 55, App. A.2. Fix a vector ψ ∈ π0(A)Ω0,

so that φ′ := 〈ψ,Φ(·)ψ〉 is a smooth function. Let φ := E(· , f) and note that ∂0φ =

E(· , ∂0f), by the uniqueness of E±. Using ω
([

:Φ⊗2 : (x, x′),Φ(f)
])

= iφ(x)φ′(x′)+
iφ′(x)φ(x′) we find after some algebra

ω([ǫren(·),Φ(f)]) = i(Nhij −N−1N iN j)∂iφ∂jφ
′ + iV Nφφ′ + iN−1∂0φ∂0φ

′ .

Using the Klein–Gordon equation and Eq. (4.3) we may then compute for any

Cauchy surface Σ′

ω(Φ(i∂0f)) = i

∫

M

(∂0f)φ
′ = −i

∫

Σ′

(na∇a∂0φ)φ
′ − (∂0φ)n

a∇aφ
′

= i

∫

Σ′

(Nhij −N−1N iN j)∂iφ∂jφ
′ + V Nφφ′ +N−1∂0φ∂0φ

′

=

∫

Σ′

ω([ǫren(·),Φ(f)]) =
∫

M

τ(t)N−1χω([ǫren(·),Φ(f)]) .

By polarization the desired operator equality now holds on the indicated dense

domain.
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6. KMS States in Stationary Space Times

We now come to the thermal equilibrium states at nonzero temperature. We still

consider a linear scalar field in a stationary, globally hyperbolic space–time and

we assume that the theory has a unique C2 ground state ω0 as in Sec. 5 and a

Hamiltonian operator h. In Subsec. 6.2, we will review the states satisfying the

KMS-condition, which exist for every inverse temperature β > 0. Afterwards, in

Subsec. 6.3, we show that their two-point distributions can be obtained from a Wick

rotation, in case M is standard static (see also Ref. 5).

Before we come to this, however, we study the motivation to use the KMS-

condition as a characterization of thermal equilibrium in Subsec. 6.1. In particular

we show that for a standard static space–time M with compact Cauchy surfaces

we may also define Gibbs states to describe thermal equilibrium and these Gibbs

states satisfy the KMS-condition.

6.1. Gibbs states and the KMS-condition

Consider, then, a stationary, globally hyperbolic space–time M and a linear scalar

field satisfying the assumptions of Theorem 5.1. If, for some inverse temperature

β > 0, the operator e−βh is of trace-class in the ground state representation π0,

i.e. if it has a finite trace, one may define the thermal equilibrium state to be the

Gibbs state

ω(β)(A) :=
Tr(e−βhA)

Tr e−βh
. (6.1)

Here we use the fact that the set of bounded trace-class operators on a Hilbert space

forms a ∗-ideal in the algebra of all bounded operators (Ref. 15, Remark 8.5.6 or

Ref. 21, Theorem VI.19).

We now show that these Gibbs states are well defined whenever M is standard

static and has compact Cauchy surfaces. Moreover, we explain that these Gibbs

states satisfy the KMS-condition.

Theorem 6.1. We make the assumptions of Theorem 5.1 with the additional

assumptions that M is a standard static space–time with compact Cauchy surfaces,

so that the theory has a mass gap. For any β > 0

(i) e−βh is of trace-class and in particular the Gibbs state ω(β) of Eq. (6.1) is well

defined and normal with respect to the ground state ω0;

(ii) the Gibbs state ω(β) is quasi-free and satisfies the KMS-condition at inverse

temperature β > 0.

Proof. By Ref. 14, Proposition 5.2.27, the operator e−βh has a finite trace on H0

if and only if e−βH has a finite trace on H(1)
0 ≃ K and βH is strictly positive. The

latter is satisfied by our assumptions, so we only need to show that e−βH has a

finite trace. Our proof of this fact is adapted from the proof of nuclearity in Ref. 60.
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We refer to Proposition 4.3 for a convenient formulation of the ground one-

particle structure, with K ≃ L2(Σ) and H =
√
C. By assumption, the theory has

a mass gap, so
√
C ≥ ǫI > 0. The exponential e−β

√
C is bounded and may be

written as C−n(Cne−β
√
C) for any n ≥ 1, where both C−n and the product in

brackets are bounded. Because trace-class operators form an ideal in the algebra of

bounded operators, it suffices to prove that C−n is trace-class. The operator C is a

partial differential operator, while C−2n defines a distribution density u on Σ×2 by

Theorem A.1. We then have (CnuCn)(x, y) = δ(x, y). Note that C⊗C is an elliptic

operator on Σ×2. Choosing n large enough, we can make u continuous. Because Σ

is compact it follows that u ∈ L2(Σ×2), which implies that it is Hilbert–Schmidt

(Ref. 21, Theorem VI.23) and, by definition of Hilbert–Schmidt operators, C−n

is trace-class. ω(β) is normal with respect to the ground state by definition. This

completes the proof of the first item.

The quasi-free property follows from Proposition 5.2.28 of Ref. 14. For the KMS-

condition we follow Ref. 12 and note that the function

f(z) := π0(A)e
izhπ0(B)e−izhe−βh = π0(A)e

−τheithπ0(B)e−ithe(τ−β)h

takes values in the bounded operators on H0 for z = t+ iτ ∈ Sβ , as 0 ≤ τ ≤ β. By

Lemma A.8 it is continuous on Sβ and holomorphic on the interior Sβ . Moreover,

f(z) is trace-class, because either e(τ−β)h or e−τh is trace-class. Using the fact that

|Tr(CD)| ≤ ‖C‖Tr |D| for all bounded operators C and trace-class operators D,k

we see that Tr f(z) is a bounded, continuous function on Sβ , which is holomorphic

in the interior. Dividing by Tr e−βh proves the second item.

We see that, under suitable physical (and technical) conditions, Gibbs states are

well defined for systems in a finite spatial volume. In fact, we will see in Theorem 6.2

below that for given β > 0 it is the only β-KMS state on W satisfying some natural

additional conditions. In general, however, the given exponential operator is not of

trace-class and the definition of the Gibbs state does not make sense. In such cases

one takes the KMS-condition to be the defining property of thermal equilibrium

states. Theorem 6.1, together with the uniqueness result of Theorem 6.2 below, is a

good indication that such a definition is justified. Further evidence comes from the

analysis of Ref. 13, who investigated the second law of thermodynamics for general

C∗-dynamical systems. They call a state ω of such a system completely passive, if

it is impossible to extract any work from any finite set of identical copies of this

system, all in the same state, by a cyclic process. They then showed, among other

things, that a state is completely passive if and only if it is a ground state or a KMS

kProof: If D is trace-class, we may choose an orthonormal eigenbasis ψn of |D| and use the Polar
Decomposition Theorem (Ref. 15, Theorem 6.1.11) to write D = U |D| for some partial isometry
U . Then,

|Tr(CD)| =
∣

∣

∣

∑

n

〈U∗C∗ψn, |D|ψn〉
∣

∣

∣
≤ ‖U∗C∗‖

∑

n

‖|D|ψn‖ = ‖C‖Tr |D| .

1330010-48



April 15, 2013 13:36 WSPC/Guidelines-IJMPA S0217751X1330010X

Thermal Equilibrium States in Stationary Space–Times

state at an inverse temperature β ≥ 0.l This analysis applies to our situation, if

we restrict attention to states which are locally normal with respect to the ground

state (cf. Remark 5.2). We will see in Subsec. 6.2 that quasi-free, D2 KMS states

do indeed satisfy this local normality condition, because they are Hadamard. A

more general and detailed study of the relations between passivity, the Hadamard

condition and quantum energy inequalities was made by Ref. 55.

Probably the most direct motivation in favor of the KMS-condition is an anal-

ysis of Ref. 12 (see also Ref. 14) which shows, in the context of quantum statistical

mechanics, that a thermodynamic (infinite volume) limit of Gibbs states satis-

fies the KMS-condition. Reformulated to our geometric setting, the idea is to ap-

proximate h by operators hO, where O ⊂ Σ has finite volume, such that eithO ∈
R(D(O)) = π0(W(D(O)))′′ for all t ∈ R, where D(O) ⊂M denotes the domain of

dependence. If e−βhO is a trace-class operator on H0(O) := π0(W(D(O)))Ω0 for

some β > 0, then it gives rise to a Gibbs state ω(β,O). The argument of Ref. 12

shows that, under some additional assumptions on the hO, one may show that

the thermodynamic limit ω(β) := limO→Σ ω
(β,O) exists and is a β-KMS state.

In the case of nonrelativistic point-particles in Minkowski space–time, an explicit

construction of the approximate Hamiltonians hO and the corresponding limit-

ing procedure is described in detail in Ref. 14 (see also the classic paper Ref. 61,

where the thermodynamic limit of a nonrelativistic free Bose gas was investigated

in detail).

For a quantum field it is tempting to choose hO to be of the form hO = ǫren(f)

for some suitable f ∈ C∞
0 (D(O)), in view of Theorem 5.2 and Lemma 5.1. However,

the argument becomes more problematic for two reasons. First, the restriction to

a bounded open region O does not entail the desired reduction in the degrees of

freedom, due to the Reeh-Schlieder property: if O is nonempty, the subalgebra

R(D(O)) already generates the entire Hilbert space H0 when acting on the ground

state vector Ω0. Second, and more to the point, the operators e−βhO cannot be

trace-class. In fact, R(D(O)) is a type III1 factor (Theorem 3.6(g)) of Ref. 53), so

the only trace-class operator X ∈ R(D(O)) is X = 0.m This means that no hO
can possibly satisfy the assumptions made in Ref. 12. Even in a space–time with

a compact Cauchy surface Σ, the Reeh–Schlieder property of the ground state and

the type of the local von Neumann algebras prevent us from finding appropriate

Gibbs states to define thermal equilibrium states in any bounded region V ⊂ Σ

lIf it is impossible to extract any work from only one copy of this system in the given state, the
state is called passive. The set of passive states also contains convex combinations of the ground
and KMS states.
mFor a proof, consider a trace-class operator X ∈ R(D(O)), so that |X| has a discrete spectrum.
Suppose that P ∈ R(D(O)) is a spectral projection operator onto an eigenspace with an eigenvalue
c 6= 0. As |X| is trace-class, P must project onto a finite-dimensional subspace, so it is a finite
projection in the von Neumann algebra R(D(O)). However, since R(D(O)) is a type III1 factor,
it does not have any nontrivial finite projections.15 Thus, P = 0 and the only possible eigenvalue
of |X| is 0, which entails X = 0.
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which is strictly smaller than Σ. All this in spite of naive physical intuition and the

positive results for quantum statistical mechanics.

It is possible that other techniques, such as local entropy arguments,62 can

be employed to elucidate the local aspects of thermal equilibrium for quantum

fields, but we are not aware of a detailed treatment of this issue. We must therefore

conclude that, even though it is still perfectly satisfactory to use the KMS-condition

as the defining property of global thermal equilibrium, the local aspects of thermal

equilibrium and temperature of a quantum field are presently not well understood.

6.2. The space of KMS states

We now give a full description of the space G (β)(W) of all β-KMS states in gen-

eral stationary, globally hyperbolic space–times. (This result may be compared to

Theorems 2.2 and 5.1.)

Theorem 6.2. Let M be a globally hyperbolic, stationary space–time and consider

a linear scalar field with a stationary potential V such that V > 0. Let β > 0.

(i) There exists a unique extremal C1 β-KMS state ω(β) with vanishing one-

point function. We denote its GNS-triple by
(

H(β), π(β),Ω(β)

)

and we let h

be the self-adjoint generator of the unitary group that implements αt in this

GNS-representation. The one-particle structure of its two-point function is
(

p(β),K(β)

)

(cf. Theorem 4.3).

(ii) ω(β) is quasi-free, regular (D∞), locally quasi-equivalent to ω0 and π(β) is

faithful.

(iii) The map λ(β) := λω(β) of Lemma 2.3 restricts to an affine homeomorphism

λ(β) : G
0(Wcl) → G (β)(W).

(iv) Any D2 β-KMS state is Hadamard and any regular β-KMS state satisfies the

microlocal spectrum condition. A β-KMS state ω = λ(β)(ρ) is C
k, respectively

Dk, k = 1, 2, . . . , if and only if ρ is Ck, respectively Dk.

(v) Any extremal β-KMS state ω on W is of the form ω = η∗ρω
0 for some gauge

transformation of the second kind ηρ. It is regular (respectively C
∞) if and only

if it is D1 (respectively C1). Furthermore, it has the Reeh–Schlieder property.

(vi) limβ→∞ ω(β) = ω0 in the weak∗-topology.

(vii) πω(W) ∈ D(e−
β

2 h) and for all A, B ∈ W

〈πω(A∗)Ωω , πω(B
∗)Ωω〉 =

〈

e−
β

2 hπω(B)Ωω, e
− β

2 hπω(A)Ωω

〉

.

Proof. Let ω(β) be the quasi-free state whose two-point distribution is associated

to the nondegenerate β-KMS one-particle structure (p(β),K(β)) of Theorem 4.3.

Then ω(β) is a β-KMS state, by Theorem 2.3. As ω(β) is quasi-free and ω
(β)
2 is a

distribution (density), ω(β) is a regular state. The representation π(β) is faithful, as

in the proof of Theorem 5.1.
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The map λ(β) := λω(β) of Lemma 2.3 restricts to the stated affine homeomor-

phism by Proposition 2.4. For regular β-KMS states the Hadamard property is

known to hold52 and the microlocal spectrum then follows.44,45 The Hadamard

property for D2 β-KMS states then follows from the last statement of Proposi-

tion 4.2. The fact that λ(β)(ρ) is C
k (respectively Dk) if and only if ρ is, is shown

as in Theorem 5.1.

Local quasi-equivalence of all quasi-free Hadamard states was proved in Ref. 54,

which applies in particular to ω(β) and ω0.

Extremal β-KMS states ω on W are of the form ω = η∗ρω
0, as in Theorem 5.1,

and the Reeh–Schlieder property for ω follows from that of ω(β).51 The statement

on the regularity of extremal β-KMS states follows directly from Proposition 2.2.

This also proves the uniqueness clause for ω(β).

Using Theorem 4.3 one may show that limβ→∞ ω
(β)
2 (f, f) = ω0

2(f, f). Indeed,

the range of pcl is in the domain of |He|−1 by Proposition 4.2 and the functions

F (x) := e−
β

2 x
√

x
1−e−βx and G(x) :=

√

x
1−e−βx − √

x converge uniformly to 0 on

the positive half line as β → ∞. The explicit expression for p(β) and the Spectral

Calculus Theorem for the functions F (|He|) and G(|He|) then prove the claim. It

follows that limβ→∞ ω(β)(W (f)) = ω0(W (f)), because the ω(β) and ω0 are quasi-

free. Hence, limβ→∞ ω(β) = ω0.

As ω(β) is locally normal with respect to ω0, it extends in a unique way to

a locally normal state on R, which contains a dense, C∗-dynamical system R0

(cf. Remark 5.2), for which ω is again a β-KMS state (by Proposition 2.1 and

a limit argument). The GNS-representation πω of ω on R restricts to the GNS-

representations of R0 and of W , which all generate the same Hilbert space Hω .

The final item then follows from Ref. 20, Theorem 4.3.9.

It is known that the state ω(β) is not pure, but it can be purified by extending it to

a so-called doubled system.63 This abstract procedure finds a natural interpretation

in the setting of black hole thermodynamics.38 Because ω(β) is not pure we cannot

use Theorem 2.4 to obtain a uniqueness result, unlike the ground state case.

6.3. Wick rotation in static space times

In Subsec. 4.2, we have shown the existence of unique nondegenerate β-KMS

one-particle structures for a linear scalar quantum field on a stationary, globally

hyperbolic space–time, provided the interaction potential is stationary and every-

where strictly positive. In this section, we will show that the corresponding two-

point distributions can also be obtained by a Wick rotation, in case the space–time

is standard static. The geometric backbone of the argument was already presented

in Subsec. 3.3, so in this section we may focus on the functional analytic aspects

of the technique of Wick rotation. The results we describe correspond to those in

Ref. 5, but our presentation focusses more on the operator theoretic language. The

case of R = ∞, which leads to a ground state, has already been described in some

detail,49 so we will focus primarily on the case R <∞.
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6.3.1. The Euclidean Green’s function

For some R > 0 consider the complexification M c
R and the associated Riemannian

manifold MR of a standard static globally hyperbolic space–time M . Because the

Laplace–Beltrami operator � onM is defined in terms of the metric and the poten-

tial V is assumed stationary, there is a natural corresponding Euclidean Klein–

Gordon operator on MR, namely KR := −�gR + V . Our first task is to find a

preferred Euclidean Green’s function, which will be the starting point for the Wick

rotation that should lead to a two-point distribution on the Lorentzian space–

time M .

Definition 6.1. A Euclidean Green’s function is a distribution (density) GR on

M×2
R which is a fundamental solution, (KR)xGR(x, y) = (KR)yGR(x, y) = δ(x, y),

of positive type, GR(f̄, f) ≥ 0 for all f ∈ C∞
0 (MR).

Just like there are many (Hadamard) two-point distributions on M , there may

be many Green’s functions on MR. The common wisdom is to obtain a preferred

one by the following method: the partial differential operatorKR can be viewed as a

positive, symmetric linear operator on the domain C∞
0 (MR) in L

2(MR). Assuming

KR is self-adjoint and strictly positive, it has a well defined inverse. We may then

take G(f̄, f ′) := 〈f, (KR)
−1f ′〉, whenever this is a distribution. In an attempt to

substantiate this procedure we will analyze the operator KR in some more detail.

For a standard static space–time M we have N i ≡ 0 ≡ w, so Eq. (4.4) simpli-

fies to

N
3
2KN

1
2 = ∂20 + C0 , (6.2)

where C0 is the partial differential operator

C0 := −N 1
2∇(h)

i Nhij∇(h)
j N

1
2 + V N2

acting on C∞
0 (Σ) in L2(Σ) (cf. Proposition 4.3). Recall from Subsec. 4.1 that the

powers 3
2 and 1

2 of N to the left and right of K were chosen in such a way that

C0 is symmetric and at the same time the operator ∂20 appears without any spa-

tial dependence. In the case at hand that completely separates the Killing time

dependence from the spatial dependence.

In a similar manner we may split off the imaginary Killing time dependence of

KR. For this we will view the circle S1R of radius R as a Riemannian manifold in

the canonical metric dτ2. In analogy to the Lorentzian case (cf. Subsec. 4.1), there

is a unitary isomorphism

UR : L2(MR) → L2
(

S
1
R

)

⊗ L2(Σ) : f 7→
√
Nf ,

onto the Hilbert tensor product, because d volgR = Ndτ d volh. Then, N
3
2KRN

1
2 =

−∂2τ + C0, with the same operator C0 on Σ as in the Lorentzian case. More pre-

cisely, we have

URNKRNU
−1
R ⊃ BR ⊗ I + I ⊗ C0 , (6.3)
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where the operator BR := −∂2τ acts on the dense domain C∞
0

(

S1R

)

in L2
(

S1R

)

and

the operator on the right-hand side is defined on the algebraic tensor product of

the domains of BR and C0.

The properties of the operator BR are well known and we quote them without

proof:

Proposition 6.1. The operator BR := −∂2τ is essentially self-adjoint on C∞
0

(

S1R

)

in L2
(

S1R

)

. If R is finite, there is a countable orthonormal basis of eigenvectors

ψn(τ) :=
1√
2πR

einτ/R, n ∈ Z, with eigenvalues λn := n2

R2 .

This follows e.g. from Theorem II.9 in Ref. 21 by rescaling to R = 1. Note that

for finite R the operator BR is positive, but not strictly positive. From now on we

will use BR to denote the unique self-adjoint extension found in Proposition 6.1, to

unburden our notation.

Together with the results for C (Proposition 4.3), Proposition 6.1 implies

Theorem 6.3. For any R > 0 the operator NKRN is essentially self-adjoint on

C∞
0 (MR) in L2(MR), its closure is strictly positive with NKRN ≥ V N2 and the

domain of (NKRN )−
1
2 contains C∞

0 (MR).

Proof. By Theorem VIII.33 in Ref. 21 the sum BR ⊗ I + I ⊗C is essentially self-

adjoint on the algebraic tensor product D := C∞
0

(

S1R

)

⊗C∞
0 (Σ), because both BR

and C are essentially self-adjoint on the space of test-functions. By Eq. (6.3) the

operator URNKRNU
−1
R extends BR ⊗ I + I ⊗ C and UR is unitary, so NKRN

is already essentially self-adjoint on the smaller domain U−1
R D. In fact, because

D ⊂ C∞
0

(

S1R⊗Σ
)

in L2
(

S1R⊗Σ, dτ d volh
)

we have URNKRNU
−1
R = BR⊗ I+ I ⊗

C ≥ I⊗C ≥ I⊗V N2 on D. It follows that NKRN ≥ V N2 on U−1
R D and hence on

C∞
0 (MR). The claim on the domain of (NKRN )−

1
2 then follows from Lemma A.6

in the Appendix.

In the ultra-static case, where N is constant, Theorem 6.3 (in combination with

TheoremA.1) suffices to justify the procedure to define a Euclidean Green’s function

by GR(f, f
′) := 〈(KR)

− 1
2 f̄, (KR)

− 1
2 f ′〉. In the general case, however, the study of

the self-adjoint extensions of the operator KR is more complicated.n Nevertheless,

we can define a Euclidean Green’s function by a slight modification of the common

procedure as

GR(f, f
′) :=

〈

(NKRN )−
1
2Nf̄, (NKRN )−

1
2Nf ′

〉

, (6.4)

nSome partial results are the following: (i) When V = m2 > 0, KR is essentially self-adjoint on
C∞

0 (MR) in L2(MR) if and only if its range is dense, in which case its closure is strictly positive.
For this to be the case it is sufficient that N−1 is bounded. (ii) If the Riemannian manifold
(MR, gR) has a negligible boundary,64 then KR is essentially self-adjoint and its closure is strictly
positive. Unfortunately, the boundedness of N−1 does not hold if the space–time is the exterior
region of a black hole, while the condition in (ii) may only hold for very special choices of R.
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using Theorem 6.3 and the fact that multiplication by N is a continuous linear map

on C∞
0 (M). It is straightforward to verify that this satisfies all the requirements

to be a Euclidean Green’s function and we will see shortly that this choice of

the Euclidean Green’s function will indeed allow us to recover the KMS two-point

distributions.

6.3.2. Analytic continuation of the Euclidean Green’s function

We may now establish the explicit Killing time dependence of the Euclidean Green’s

function and its analytic continuation:

Theorem 6.4. Consider a standard static globally hyperbolic space–time M . For

each R < ∞ there is a unique continuous function GcR(z, z
′) from C×2

R into the

distribution densities on Σ×2, holomorphic on the set where Im(z − z′) 6= 0, such

that for all χ, χ′ ∈ C∞
0

(

S1R

)

and f, f ′ ∈ C∞
0 (Σ) we have

〈

U−1
R (χ⊗ f), GRU

−1
R (χ′ ⊗ f ′)

〉

=

∫

S×2
R

dτ dτ ′ χ̄(τ)χ′(τ ′)GcR(iτ, iτ
′; f̄, f ′)

with z = t+ iτ . When Im(z − z′) ∈ [−2πR, 0] it is given by

GcR(z, z
′; f̄, f ′) :=

〈

C− 1
2Nf,

cos((z − z′ + iπR)
√
C)

2 sinh(πR
√
C)

Nf ′
〉

.

Proof. It suffices to check that the given formula for GcR satisfies all the desired

properties, but let us first sketch a more constructive argument to see where the

formula comes from. When we try to extract the Killing time dependence of GR,

as defined in Eq. (6.4), we may make use of the fact that the inverse of the strictly

positive operator NKRN can be found as a strongly converging integral of the heat

kernel,

∫ ∞

0

dα e−α(NKRN )ψ = (NKRN )−1ψ , (6.5)

for all ψ ∈ D((NKRN )−1). The importance of the heat kernel (i.e. the exponential

function) is that it allows us to separate out the Killing time dependence. Indeed, for

all α ≥ 0 there holds e−α(NKRN ) = U−1
R e−αBR ⊗e−αCUR, because of Trotter’s pro-

duct formula (Ref. 21, Theorem VIII.31). Now let λn, n ∈ Z, denote the eigenvalues

of BR and Pn the corresponding orthogonal projections. Then we may perform the

integral over the heat kernel to find UR(NKRN )−1U−1
R Pn = Pn ⊗ (C + λn)−1 .

Summing over n we then expect the formula

UR(NKRN )−1U−1
R =

∑

n∈Z

R

2π
ei

n
R
(τ−τ ′)(R2C + n2)−1 ,
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where we have written Pn as an integral kernel on
(

S1R

)×2
and we substituted the

values of λn. The sum over n can be performed (cf. Ref. 65, Formula 1.445:2) in

the sense of the Spectral Calculus Theorem, leading to

UR(NKRN )−1U−1
R =

cosh((τ − τ ′ + πR)
√
C)

2π
√
C sinh(πR

√
C)

.

The analytic continuation is then obvious.

Let us now verify that the given formula for GcR has the desired properties. First

note that for each z, z′ with Im(z− z′) ∈ [−2πR, 0] it defines a distribution density

on Σ×2 by Theorem A.1, because multiplication by N is a continuous linear map

from C∞
0 (Σ) to itself, C∞

0 (Σ) is in the domain of C− 1
2 , by Proposition 4.3, and

cos
(

(τ − τ ′ + πR)
√
C
)

sinh(πR
√
C)

=
(

e(iz−iz
′−2πR)

√
C + e−i(z−z

′)
√
C
)(

I − e−2πR
√
C
)−1

,

by the Spectral Calculus Theorem. Moreover, both exponential terms in the first

factor of the last expression are bounded operators that depend holomorphically

on z, z′ as long as Im(z − z′) ∈ (−2πR, 0). This proves the continuity and the

holomorphicity claims. As the uniqueness of GcR is clear from the Edge of the

Wedge Theorem,23 it only remains to prove that it restricts to GR.

For any f , f ′ ∈ C∞
0 (Σ) the function

GcR(iτ, iτ
′; f̄, f ′) = 1

2

〈

C− 1
2Nf,

(

e−(τ−τ ′−2πR)
√
C + e(τ−τ

′)
√
C
)(

I − e−2πR
√
C
)−1

Nf ′
〉

is continuous for τ − τ ′ ∈ [−2πR, 0] and holomorphic in the interior. We may

compute the derivatives in the distributional sense, which leads to

−∂2τGcR(iτ, iτ ′; f̄, f ′) = −∂2τ ′GcR(iτ, iτ
′; f̄, f ′)

= −GcR(iτ, iτ ′;N−1CNf̄, f ′) + δ(τ − τ ′)〈Nf,Nf ′〉

= −GcR(iτ, iτ ′; f̄, N−1CNf ′) + δ(τ − τ ′)〈Nf,Nf ′〉 .

Letting URKRU
−1
R = N−1(−∂2τ +C0)N

−1 act on G2
R(iτ, iτ

′;x, x′) from the left and

right we find

−∂2τGcR(iτ, iτ ′;N−2f̄, f ′) +GcR(iτ, iτ
′;N−1CN−1f̄, f ′)

= −∂2τ ′GcR(iτ, iτ
′; f̄, N−2f ′) +GcR(iτ, iτ

′; f̄, N−1CN−1f ′) = δ(τ − τ ′)〈f, f ′〉 ,

which shows that the restriction of GcR to
(

S1R

)×2
is indeed the Euclidean Green’s

function.

The case R = ∞ can be treated using similar methods,49 now using Ref. 65,

Formula 3.472:5. The result is the distribution density-valued function

Gc∞(z, z′; f̄, f ′) :=
1

2

〈

C− 1
2Nf, e−i(z−z

′)
√
CNf ′

〉

.
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Alternatively, this expression can be obtained as the limit

Gc∞(z, z′; f̄, f ′) = lim
R→∞

GcR(z, z
′; f̄, f ′) ,

for fixed f , f ′ ∈ C∞
0 (Σ), using Lemma A.8.

6.3.3. Wick rotation to fundamental solutions and thermal states

Using the analytic continuation GcR we now want to complete the Wick rotation by

considering the restriction to real values z = t and z′ = t′. Following Ref. 5 we show

how the thermal two-point distribution and the advanced, retarded and Feynman

fundamental solutions are obtained.

Both for t > t′ and t < t′ we can approach the real axis from above, Im(z−z′) >
−2πR, and from below, Im(z − z′) < 0. This prompts us to define the following

functions on R
×2 with values in the distribution densities on Σ×2:

E
+(t, t′; f, f ′) := iθ(t− t′)

(

GcR(t, t
′; f, f ′)−GcR(t− 2πiR, t′; f, f ′)

)

E
−(t, t′; f, f ′) := −iθ(t′ − t)

(

GcR(t, t
′; f, f ′)−GcR(t− 2πiR, t′; f, f ′)

)

E
F
R (t, t′; f, f ′) := iθ(t− t′)GcR(t, t

′; f, f ′) + iθ(t′ − t)GcR(t− 2πiR, t′; f, f ′) .

Note that the E ± and E F
R are given by

E ±(t, t′; f̄, f ′) = ±θ(±(t− t′))
〈

C− 1
2Nf, sin

(

(t− t′)
√
C
)

Nf ′
〉

,

E F
R (t, t′; f̄, f ′) = i

〈

C− 1
2Nf,

cos((|t− t′|+ iπR)
√
C)

2 sin(πR
√
C)

Nf ′
〉

.

(6.6)

They give rise to distribution densities on M×2 defined by

E±(χ⊗ f, χ′ ⊗ f ′) :=

∫

dt dt′ χ(t)χ′(t′)E ±(t, t′;
√
Nf,

√
Nf ′) ,

EFR (χ⊗ f, χ′ ⊗ f ′) :=

∫

dt dt′ χ(t)χ′(t′)E F
R

(

t, t′;
√
Nf,

√
Nf ′)

(6.7)

and using Schwartz Kernels Theorem to extend the distribution to all test-functions

in C∞
0 (M). (Note that the factors

√
N are required to account for the change in

integration measure and they can equivalently be written in terms of the unitary

isomorphism U .)

Proposition 6.2. E± and EFR are left and right fundamental solutions for the

Klein–Gordon operator K = −�+V and we have E ±(t, t′; f, f ′) = E ∓(t′, t; f, f ′) =

E ±(t, t′; f̄, f ′) = E
±(t, t′; f ′, f).

Proof. The first sequence of equalities follows directly from Eq. (6.6) and the

fact that L2(Σ) carries a natural complex conjugation which commutes with the
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operator C and any real-valued function of C. To see that the distribution densities

are fundamental solutions we use Eq. (6.2) to find

UKU−1(χ⊗ f) = χ⊗N−1CN−1f + ∂2t χ⊗N−2f

and we use the fact that

∂2tG
c
R(t, t

′;N−2f, f ′) +GcR(t, t
′;N−1CN−1f, f ′) = 0 .

(The differentiations can be carried out by going into the complex manifold M c,

where GcR is holomorphic, and then extending by continuity to the boundary.) For

the case of E±(t, t′) we then have, by Eq. (6.6):

((K ⊗ I)E±)(U−1(χ⊗ f), U−1(χ′ ⊗ f ′))

= E±(U−1(χ⊗N−1CN−1f), U−1(χ′ ⊗ f ′))

+ E±(U−1(∂2t χ⊗N−2f), U−1(χ′ ⊗ f ′))

= ±
∫

dt dt′ χ(t)χ′(t′)θ(±(t− t′))
〈√

CN−1f̄, sin((t− t′)
√
C)Nf ′

〉

+ ∂2t χ(t)χ
′(t′)θ(±(t− t′))

〈

C− 1
2N−1f̄, sin((t− t′)

√
C)Nf ′

〉

.

We account for the factors θ by restricting the domain of integration and then

perform partial integrations, after which we are only left with the boundary terms,

which immediately yield the result. By the symmetry properties of E ±, E± is also

a right-fundamental solution. The proof for EFR uses a similar computation.

It follows from the support properties of the distribution densities E± that they

are the advanced (−) and retarded (+) fundamental solutions, so our notation is

consistent. As Eq. (6.6) shows, they are independent of R, in line with the unique-

ness of these fundamental solutions. EFR is the Feynman fundamental solution, as

can be inferred from the fact that the real axis of t − t′ is approached by a rigid

rotation from the imaginary time axis in counterclockwise direction. It does depend

on the choice of R and it defines a choice of two-point distribution as follows:

Proposition 6.3. For 0 < R < ∞ the function GcR(t, t
′) = −i(E FR − E

−)(t, t′)

on R×2 has a corresponding distribution density ω
(β)
2 := −i(EFR − E−) where we

set β := 2πR. ω
(β)
2 is the two-point distribution density of ω(β) (as defined in

Theorem 6.2) and

ω
(β)
2 (U−1(χ⊗ f), U−1(χ′ ⊗ f ′))

=

∫

dt dt′ χ(t)χ′(t′)GcR(t, t
′; f, f ′)

=

∫

dt dt′ χ(t)χ′(t′)

〈

C− 1
2 vf̄,

cos((t− t′ + iπR)
√
C)

2 sinh(πR
√
C)

vf ′
〉

.
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Proof. The equality GcR(t, t
′) = −i(E FR − E −)(t, t′) follows directly from the defi-

nitions of GcR, E F
R and E −, so it remains to check the properties of ω

(β)
2 . ω

(β)
2 is a

bisolution to the Klein–Gordon equation because it is −i times a difference of two

fundamental solutions (Proposition 6.2). Furthermore, comparison with Eqs. (6.6)

and (6.7) shows that the antisymmetric part of ω
(β)
2 is given by i

2 (E
− − E+).

Remembering that ∂t = Nna∇a and that the restriction of a distribution density

from M to Σ incurs a factor N−1 we find that the initial data of ω
(β)
2 are given by

ω
(β)
2,00(f̄1, f

′
1) =

1

2

〈

C− 1
2N

1
2 f1, coth

(

β

2
C

1
2

)

N
1
2 f ′

1

〉

,

ω
(β)
2,10(f̄, f

′) =
−i
2
〈f, f ′〉 = −ω(β)

2,01(f̄, f
′) ,

ω
(β)
2,11(f̄0, f

′
0) =

1

2

〈

C
1
2N− 1

2 f0, coth

(

β

2
C

1
2

)

N− 1
2 f ′

0

〉

.

(6.8)

On the other hand, the nondegenerate β-KMS one-particle structure, which is

described in Proposition 4.3 for the standard static case, defines a two-point distri-

bution whose initial data coincide with those in Eq. (6.8), as one may verify by a

short computation. This proves that ω
(β)
2 , as defined above, is indeed the two-point

distribution of ω(β).

Using similar techniques one may treat the case R = ∞, which leads to the

two-point distribution ω0
2 of the ground state ω0 of Theorem 5.1.49
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Appendix. Some Useful Results from Functional Analysis

In this appendix we collect some results from functional analysis, to make our

review self-contained. Most of the proofs are omitted, because they are elementary

or make use of standard methods. For more information we refer the reader to

Refs. 15, 21 and 38 for strictly positive operators. In particular these references

contain a detailed formulation of the Spectral Calculus Theorem (Ref. 15, Sec. 5.6

or Ref. 21, Theorem VIII.6).

If X : H1 → H2 is a linear operator between two Hilbert spaces Hi, we denote

the domain of X by D(X). We wish to record the following useful relation between

operators on a Hilbert space and distributions.

Theorem A.1. Let X : H1 → H2 be a closed , densely defined linear operator be-

tween two Hilbert spaces Hi and let L : C∞
0 (M) → H1 be an H1-valued distribution
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density. If the range of L is contained in D(X), then f 7→ XL(f) is an H2-valued

distribution density.

Proof. If X is a bounded operator this is immediately clear from ‖XL(f)‖ ≤
‖X‖ · ‖L(f)‖. If X is a self-adjoint operator on H1 = H2 we may use its

spectral projections P(−n,n) onto the intervals (−n, n) to define bounded opera-

tors Xn := P(−n,n)X for n ∈ N . Each XnL defines a distribution density and

limn→∞XnL(f) = XL(f) for all f ∈ C∞
0 (M), because L(f) ∈ D(X). From the

Uniform Bounded Principle (Ref. 21, Theorem III.9) we see that XL also defines

an H2-valued distribution density. The general case now follows from the polar

decomposition, Theorem 6.1.11 of Ref. 15, which allows us to write T = V (T ∗T )
1
2 ,

where V is bounded and (T ∗T )
1
2 is a self-adjoint operator on H1 with the same

domain as T .

We now turn to injective (and therefore invertible) operators on a Hilbert space,

starting with the following four general Lemmas:

Lemma A.1. A densely defined , closable and injective operator X in a Hilbert

space H has an injective closure X̄ if and only if X−1 is closable.

Lemma A.2. If X is a densely defined , injective operator with dense range, then

X∗ and (X−1)∗ are injective and (X∗)−1 = (X−1)∗.

Lemma A.3. A self-adjoint operator X is invertible if and only if it has a dense

range on any core.

Lemma A.4. If X is self-adjoint and invertible, then X−1 is self-adjoint and

invertible, where the domain of X−1 is the range of X. If D is a core for X, then

XD is a core for X−1.

These Lemmas can be proved using entirely elementary methods.

As positive invertible operators are particularly useful we make the following

definition.

Definition A.1. A densely defined operatorX in a Hilbert spaceH is called strictly

positive if and only if X is self-adjoint and for any 0 6= φ ∈ D(X): 〈φ,Xφ〉 > 0.

Several equivalent characterizations can be given as follows:

Lemma A.5. For a positive, self-adjoint operator X the following are equivalent :

(i) X is strictly positive.

(ii) X is injective.

(iii) X has a dense range on any core.

(iv) X−1 is strictly positive.
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Proof. (i) is equivalent to (iv) by Lemma A.4, because 〈φ,X−1φ〉 = 〈Xψ,ψ〉 when
φ := Xψ. The implication (i) ⇒ (ii) is immediate and (ii) is equivalent to (iii) by

Lemma A.3. To see that (ii) implies (i) one uses the Spectral Calculus Theorem

and the fact that 〈φ,Xφ〉 = 0 implies X
1
2φ = 0 and Xφ = 0. If X is injective, this

means that φ = 0.

The following estimate is often useful to find strictly positive operators, in par-

ticular in combination with Lemma A.7 below.

Lemma A.6. Let X and Y be positive self-adjoint operators with X strictly positive

and assume that Y ≥ X on a core for Y
1
2 . Then Y is strictly positive, D

(

Y − 1
2

)

⊃
D
(

X− 1
2

)

and Y −1 ≤ X−1 on D
(

X− 1
2

)

.

Proof. Let D denote the core for Y
1
2 on which the estimate holds. The estimate

∥

∥X
1
2ψ
∥

∥ ≤
∥

∥Y
1
2ψ
∥

∥ for ψ ∈ D can be extended to the entire domain D
(

Y
1
2

)

. Because

X is strictly positive the same must be true for Y by Lemma A.5. By Lemma A.4,
∥

∥X
1
2Y − 1

2ψ
∥

∥ ≤ ‖ψ‖ on D
(

Y − 1
2

)

. Note in particular that the range of Y − 1
2 is con-

tained in D
(

X
1
2

)

. As X
1
2Y − 1

2 is bounded on D
(

Y − 1
2

)

we also find that the range

of X
1
2 , which is D

(

X− 1
2

)

, is contained in the domain of
(

Y − 1
2

)∗
= Y − 1

2 . It now

follows that
(

X
1
2Y − 1

2

)∗
= Y − 1

2X
1
2 on D

(

X
1
2

)

. As
∥

∥X
1
2 Y − 1

2

∥

∥ ≤ 1 we must also

have
∥

∥Y − 1
2X

1
2

∥

∥ ≤ 1, which implies that
∥

∥Y − 1
2ψ
∥

∥ ≤
∥

∥X− 1
2ψ
∥

∥ on D
(

X− 1
2

)

and the

conclusion follows.

Lemma A.7. Let X ≥ 0 be a densely defined, positive operator. Then the

Friedrichs extension X̂ is positive and D(X) is a core for X̂
1
2 .

The following lemma concerns the heat kernel:

Lemma A.8. Let X be a positive self-adjoint operator on H and let C+ := {z ∈
C|Re(z) > 0} be the right half space. Then the function z 7→ e−zX is holomorphic

on C+ with values in the bounded operators on H and for each ψ ∈ H the function

e−zXψ is continuous on C+ .

To close this appendix we provide some facts concerning multiplication operators

on the L2 space of a semi-Riemannian manifold:

Proposition A.1. Let (M, g) be an orientable semi-Riemannian manifold , let w ∈
C∞(M) and let W be the corresponding multiplication operator in L2(M,d volg),

defined on C∞
0 (M) by (Wf)(x) = w(x)f(x). If |w| is bounded , then W is bounded.

If w is real-valued , then W is essentially self-adjoint. W̄ is (strictly) positive if and

only if w is (strictly) positive (almost everywhere).
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59. K. Sanders, J. Math. Phys. 53, 042502 (2012), doi: 10.1063/1.3703516.
60. R. Verch, Lett. Math. Phys. 29, 297 (1993).
61. H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963).
62. M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer, Berlin, 2004).
63. B. S. Kay, Helv. Phys. Acta 58, 1030 (1985).
64. M. P. Gaffney, Proc. N.A.S. 37, 48 (1951).
65. I. S. Gradshteyn, I. M. Ryzhik and A. Jeffrey (eds.), Table of Integrals, Series, and

Products (Academic Press, San Diego, 2000).

1330010-62


	Introduction
	Equilibrium States in Algebraic Dynamical Systems
	Algebraic dynamical systems and equilibrium states
	Weyl C*-algebras
	Quasi-free dynamics on Weyl C*-algebras

	Review of Geometric Results
	Stationary space–times
	Standard static space–times
	Space–time complexification

	The Linear Scalar Quantum Field
	The classical scalar field in stationary space–times
	The scalar quantum field in stationary space–times and equilibrium one-particle structures

	Ground States and their Properties
	The space of ground states
	The ground state representation and the quantum stress-energy–momentum tensor

	KMS States in Stationary Space–Times
	Gibbs states and the KMS-condition
	The space of KMS states
	Wick rotation in static space–times

	Acknowledgments
	Appendix.  Some Useful Results from Functional Analysis
	References


