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Abstract: We prove that the singularity structure of all n-point distributions of a state
of a generalised real free scalar field in curved spacetime can be estimated if the two-
point distribution is of Hadamard form. In particular this applies to the free field and
the result has applications in perturbative quantum field theory, showing that the class
of all Hadamard states is the state space of interest. In our proof we assume that the
field is a generalised free field, i.e. that it satisfies scalar (c-number) commutation rela-
tions, but it need not satisfy an equation of motion. The same arguments also work for
anti-commutation relations and for vector-valued fields. To indicate the strengths and
limitations of our assumption we also prove the analogues of a theorem by Borchers
and Zimmermann on the self-adjointness of field operators and of a weak form of the
Jost-Schroer theorem. The original proofs of these results make use of analytic contin-
uation arguments. In our case no analyticity is assumed, but to some extent the scalar
commutation relations can take its place.

1. Introduction

The study of quantum field theories in curved spacetime is simplified considerably by the
use of techniques from microlocal analysis to study the singularities of n-point distribu-
tions. Ever since Radzikowski [16] has shown that Hadamard states of the real free scalar
field can be characterised by the wave front set of their two-point distributions, these
techniques have been on the increase as a suitable replacement of the Fourier transform in
Minkowski spacetime. This enabled Brunetti, Fredenhagen and Köhler [2] to introduce a
microlocal spectrum condition (µSC) for general real scalar fields, which is a (smoothly)
generally covariant condition that generalises Wightman’s spectrum condition.

The generalisation is only possible at a price: whereas the n-point distributions of
a Wightman field are the boundary values of analytic functions, this is no longer so
in curved spacetimes. In [21] an analytic microlocal spectrum condition (AµSC) was
introduced on analytic spacetimes in order to provide an amount of analyticity analogous
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to the Wightman case, but the requirement that the metric be analytic in some analytic
structure on the manifold, although technically advantageous, seems to be unphysically
restrictive. In fact, a generic curved spacetime cannot be expected to be analytic at all,
so all arguments involving analytic continuation have to be reexamined in the context
of quantum field theory in curved spacetime.

In this work we will not require any analyticity, but instead we consider a real scalar
field which satisfies scalar (i.e. c-number) commutation relations1. These fields, which
include the real free scalar field, will be called generalised free fields, following the ter-
minology for the Wightman framework in Minkowski spacetime (see e.g. [10]), although
in curved spacetime not much seems to be known about them. As our main result we
will prove that an estimate on the singularities of the two-point distribution (“generalised
Hadamard condition”) implies estimates on the singularities of all n-point distributions.
In particular, all truncated n-point distributions with n �= 2 will be shown to be smooth
and consequently the state will satisfy the µSC. An easy application is that the class of
generalised Hadamard states is closed under operations from the algebra of observables.
Moreover, all Hadamard states of a free field can be extended to the extended algebra
of Wick polynomials and time-ordered products as constructed by Hollands and Wald
[7,8].

After that we will investigate the strength of our assumption by proving the analogues
of a result by Borchers and Zimmermann [1] on the self-adjointness of field operators
and a very weak version of the Jost-Schroer theorem [4,11,15]. In both cases the original
proofs rely on analytic continuation arguments, but in our case no analyticity is assumed.
The commutation relations take the place of analyticity to a certain extent, but not fully,
and we have had to weaken the conclusion of the Jost-Schroer theorem accordingly.

The organisation of our paper is as follows: we first establish our notation for quan-
tum field theory in curved spacetime in Sect. 2. There we also present the µSC, the
(generalised) Hadamard condition and the truncated n-point distributions and we col-
lect some results concerning the singularities of the two-point distribution. In Sect. 3
we introduce the commutation relations and give two equivalent characterisations of
generalised free fields. Section 4 contains our main results concerning the singularity
structure of higher n-point distributions and truncated n-point distributions, as well as a
result on the comparison of n-point distributions of different states. In Sect. 5 we discuss
the generalisations of the result by Borchers and Zimmermann and the Jost-Schroer
theorem. We conclude with some easy applications and an outlook in Sect. 6. For an
introduction to microlocal analysis we refer to Chap. 8 of [9].

2. Real Scalar Quantum Fields and the Microlocal Spectrum Condition

Let M = (M, g) be a spacetime, i.e. M is a smooth, connected manifold of dimension
D ≥ 2 with the smooth Lorentzian metric g, where we use the signature convention
+ − · · · −. We let V ⊂ T M denote the set of all causal tangent vectors (including
0-vectors) and we let V ∗ ⊂ T ∗M be its dual, i.e. the image of V under the identification
of T M with T ∗M via the metric. We assume that M is time-oriented, so we can define
the future and past causal cones V ± ⊂ T M and their duals, V ∗± ⊂ T ∗M . We use Z
to denote the zero section of a vector bundle (it will always be clear from the context
which vector bundle is meant).

1 Our results also work for anti-commutation relations and for vector-valued fields.
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A real scalar quantum field on the spacetime M can be described using the Borchers-
Uhlmann algebra. Here we adopt the convention that the space M×0 consists of a single
point, so that C∞

0 (M
×0) = C.

Definition 2.1. The (scalar) Borchers-Uhlmann algebra on the spacetime M is defined
to be the topological ∗-algebra UM := ⊕∞

n=0C∞
0 (M

×n), where we allow only finite direct
sums and where

1. the product is determined by the linear extension of
f (xn+m, . . . , xn+1)g(xn, . . . , x1) := ( f ⊗ g)(xn+m, . . . , x1),

2. the ∗-operation is determined by anti-linear extension of
f ∗(xn, . . . , x1) := f (x1, . . . , xn),

3. as a topological space UM is the strict inductive limit

UM = ∪∞
N=0 ⊕N

n=0 C∞
0 (K

×n
N ),

where KN is an exhausting (and increasing) sequence of compact subsets of M and
each C∞

0 (K
×n
N ) is given the test-function topology (cf. [19] Theorem 2.6.4).

A state on the Borchers-Uhlmann algebra is a normalised continuous positive linear
map ω :UM →C.

The topology of UM is such that f j = ⊕n f (n)j converges to f = ⊕n f (n) if and only

if for all n we have f (n)j → f (n) in C∞
0 (M

×n) and all f (n)j vanish if n ≥ N for some
N > 0. A state therefore consists of a sequence of n-point distributions, ω = {ωn}∞n=0,
where ωn is a distribution on M×n . The algebra UM has the unit I = 1 ⊕ 0 ⊕ 0 . . .
and the normalisation of the state ω means that ω(I ) = ω0 = 1. Given a state one can
construct the GNS-representation πω on a Hilbert space Hω with a dense domain Dω

that contains a vector �ω such that: Dω = πω(UM )�ω and ω(A) = 〈�ω, πω(A)�ω〉
for each A ∈ UM . The GNS-quadruple (πω,Hω,Dω,�ω) is the unique quadruple with
these properties, up to unitary equivalence (see [20] Theorem 8.6.2).

Instead of the n-point distributions one often considers the truncated n-point distri-
butions of a state ω, which we will now define. For n ≥ 1 we let Pn denote the set of
all partitions of the set {1, . . . , n} into pairwise disjoint subsets, which are ordered from
low to high. If r is an ordered set in the partition P ∈ Pn we write r ∈ P and we denote
the elements of r by r(1) < · · · < r(|r |), where |r | is the number of elements in r . The
truncated n-point distributions ωT

n , n ≥ 1, of a state ω are defined implicitly in terms of
the n-point distributions ωn by:

ωn(xn, . . . , x1) =
∑

P∈Pn

∏

r∈P

ωT|r |(xr(|r |), . . . , xr(1)). (1)

Note that this equation can be solved iteratively for ωT
n order by order.

Definition 2.2. A state ω is called quasi-free if and only if ωT
n ≡ 0 for all n �= 2.

We will denote by � the canonical injection C∞
0 (M) ⊂ UM , which sends f to

�( f ) := 0 ⊕ f ⊕ 0 ⊕ . . . .

The map � is a distribution with values in UM and it represents the real scalar quan-
tum field. In the GNS-representation of a state ω the field is represented by �ω( f ) :=
πω(�( f )). For our current purposes it is convenient not to impose commutation
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relations, causality or an equation of motion on the field �, but to let them be dictated
for �ω by the state. This will be done in Sect. 3.

We now give an equivalent reformulation of the µSC of Brunetti, Fredenhagen and
Köhler [2], starting with the introduction of some terminology.

Definition 2.3. We let Gn denote the set of all graphs with n vertices and finitely many
edges. An immersion of a graph G ∈ Gn into the spacetime M consists of an assignment
of

1. a point x(i) ∈ M to each vertex νi of G,
2. a piecewise smooth curve γr between x(i) and x( j) to every edge er of G that

connects νi and ν j ,
3. a causal, future pointing covector field ξr on γr to each er , so that ξr is covariantly

constant, ∇ξr = 0, along γr .

An immersion of a graph G ∈ Gn into the spacetime M is called causal, resp. light-
like, iff the curves γr are causal, resp. light-like.

We say that a point (xn, kn; . . . ; x1, k1) ∈ T ∗M×n\Z is instantiated by an immer-
sion of a graph G ∈ Gn if and only if for each i = 1, . . . , n the immersion sends the
vertex νi to xi and

ki =
∑

er between i and j>i

ξr (xi )−
∑

er between j<i and i

ξr (xi ).

Recall that Z denotes the zero section of a vector bundle. The covector field ξr is to
be thought of as a singularity, propagating along the curve γr from x(i) to x( j). The
following sets describe the singularities that we allow the n-point distributions to have:

�n := {
(xn, kn; . . . ; x1, k1) ∈ T ∗M×n\Z| ∃G ∈ Gn and an immersion of G

into M which instantiates the point (xn, kn; . . . ; x1, k1)} . (2)

The sets�c
n , resp.�ll

n , are defined similarly, but using only causal, resp. light-like, immer-
sions of graphs. In general we will write �•

n , where • denotes either no superscript, or c
or ll.

Definition 2.4. A state ω satisfies the microlocal spectrum condition (µSC) with
smooth, resp. causal, resp. light-like immersions, iff for all n ∈ N we have W F(ωn) ⊂
�•

n, where • denotes no superscript, resp. c, resp. ll.
If M is an analytic spacetime thenω satisfies the analytic microlocal spectrum con-

dition (AµSC) with smooth, resp. causal, resp. light-like immersions, iff for all n ∈ N

we have W FA(ωn) ⊂ �•
n, where • denotes no superscript, resp. c, resp. ll.

The usefulness of these restrictions on the singularities of the n-point distributions derives
largely from the properties of the sets �•

n :

Proposition 2.5. The sets�•
n, with a fixed choice for the superscript •, have the following

properties:

1. each �•
n ⊂ T ∗M×n\Z is a convex cone,

2. �•
n ∩ −�•

n = ∅,
3. for every partition P ∈ Pn with ordered subsets r1, . . . , rm we have

π((�•|r1| ∪ Z)× . . .× (�•|rm | ∪ Z)) ⊂ �•
n ∪ Z , where the permutation π acts on the

indices and sends (r1, . . . , rm) to {1, . . . , n}.
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4. (x1, k1; . . . ; xn, kn) ∈ −�•
n iff (xn, kn; . . . ; x1, k1) ∈ �•

n.

Proof. We refer to [2] Lemma 4.2 for a proof of the first property. The second property
follows from the first and the third property follows immediately from the definitions,
using the unions of disconnected instantiating graphs (cf. [2] Prop. 4.3). The fourth
property follows directly from the definitions. ��
Lemma 2.6. A stateω satisfies theµSC with smooth, resp. causal, resp. light-like immer-
sions iff W F(ωT

n ) ⊂ �•
n for all n ∈ N, where • denotes no superscript, resp. c, resp. ll.

The same result holds in the analytic case.

Proof. We prove by induction on n ∈ N that W F(ωT
n ) ⊂ �•

n if and only if W F(ωn) ⊂
�•

n . For n = 1 this holds because ωT
1 = ω1. Now assume that the claim holds for

i = 1, . . . , n − 1 for some n ≥ 2. From Eq. (1) we see that ωn − ωT
n can be expressed

as a sum, whose wave front set is contained in �•
n by Items 1 and 3 in Proposition 2.5.

Using Item 1 of this proposition once more we see that W F(ωn) ⊂ �•
n if and only if

W F(ωT
n ) ⊂ �•

n . The argument is purely combinatorical, so it remains true in the analytic
case. ��

A much weaker condition than the µSC is the Hadamard condition. This condition
only places a restriction on the singularities of the two-point distribution so as to enable
the renormalisation of the stress-energy-momentum tensor of a free scalar field (see
[23]). Because our field need not be free we will consider the following immediate
generalisation of the Hadamard condition:

Definition 2.7. A state ω is called a generalised Hadamard state iff W F(ω2) ⊂ �2.

Note that a (generalised) Hadamard state need not be quasi-free. We will show in Sect. 3
that the generalised Hadamard condition reduces to the Hadamard condition in the case
of free fields.

To complete this section we will now collect some small but useful results on the rela-
tion between the generalised Hadamard condition and the two-point distribution. For this
purpose we define the symmetric and anti-symmetric part of the two-point distribution
by

ω2±(x2, x1) := 1

2
(ω2(x2, x1)± ω2(x1, x2)). (3)

Proposition 2.8. If ω is a generalised Hadamard state, then we have:

1. (x2, k2; x1, k1) ∈ W F(ω2±) iff (x1, k1; x2, k2) ∈ W F(ω2±) iff
(x2,−k2; x1,−k1) ∈ W F(ω2±),

2. W F(ω2+) = W F(ω2−) ⊂ �2 ∪ −�2,
3. W F(ω2) = W F(ω2−) ∩ �2.

Proof. The idea of this proof is borrowed from Proposition 6.1 in [21]. The positivity
of ω implies that ω2(x2, x1) = ω2(x1, x2), so from Eq. (3) we find that ω2±(x2, x1) =
ω2±(x1, x2) = ±ω2±(x2, x1), from which the first item follows. That W F(ω2±) ⊂
�2 ∪ −�2 for a generalised Hadamard state is clear from the definition. Now suppose
that (x2, k2; x1, k1) ∈ W F(ω2±). Then we can distinguish two cases, namely either
(x2, k2; x1, k1) �∈ W F(ω2) or (x2,−k2; x1,−k1) �∈ W F(ω2) by Eq. (3) and State-
ment 2 of Proposition 2.5. Using ω2± = ω2 −ω2∓ and the properties under the first item
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we find that either (x2, k2; x1, k1) ∈ W F(ω2∓) or (x2,−k2; x1,−k1) ∈ W F(ω2∓),
as the case may be, and hence that (x2, k2; x1, k1) ∈ W F(ω2∓). Thus W F(ω2+) ⊂
W F(ω2−) and the opposite inclusion can be proved in the same way, which proves the
second item. For the last item we use again the definition 2ω2− = ω2 − ω̃2, where
ω̃2(x2, x1) := ω2(x1, x2). By the assumption on ω2 we have W F(ω2) ∩ W F(ω̃2) = ∅.
Hence we deduce: W F(ω2) ⊂ W F(ω2−), W F(ω̃2) ⊂ W F(ω2−) and W F(ω2−) ⊂
W F(ω2) ∪ W F(ω̃2), from which it follows that W F(ω2−) = W F(ω2) ∪ W F(ω̃2).
Intersecting with �2 then gives the result. ��

The following result on the comparison of two generalised Hadamard states is well
known and lies at the basis of the renormalisation of the stress-energy-momentum tensor
in the free field case:

Lemma 2.9. For two generalised Hadamard statesω,ω′ we have thatω2−ω′
2 is smooth

iff ω2− − ω′
2− is smooth.

Proof. We define w(x2, x1) := (ω2 −ω′
2)(x2, x1), w̃(x2, x1) := w(x1, x2) and w2− :=

1
2 (w − w̃) and argue as in the proof of Proposition 2.8: W F(w) ⊂ �2, W F(w̃) ⊂
−�2, and hence W F(w) ∩ W F(w̃) = ∅. It then follows from w − w̃ = 2w2− that
W F(w2−) = W F(w) ∪ W F(w̃). Now W F(w2−) = ∅ if and only if W F(w) = ∅,
which proves the statement. ��

3. Generalised Free Fields in Curved Spacetime

In this section we define a number of physical properties that the state ωmay satisfy and
derive some easy results concerning them:

Definition 3.1. The state ω is called causal iff ω descends to a state on UM/J , where
J ⊂ UM is the ∗-ideal generated by all elements of the form f ⊗ h − h ⊗ f where the
supports of f, h ∈ C∞

0 (M) are causally disjoint.
A state ω satisfies the Klein-Gordon equation with mass m and scalar curvature

coupling ξ iff ω descends to a state on UM/J , where J ⊂ UM is the ∗-ideal generated
by all elements of the form (� + m2 + ξ R) f , where � is the d’Alembertian and R the
scalar curvature.

Given a bi-distribution E on M×2 we say that the state ω is a generalised free field
state with commutator E iffω satisfies the commutation relations with commutator
E, i.e. iff ω descends to a state on UM/J , where J ⊂ UM is the ∗-ideal generated by all
elements of the form f ⊗ h − h ⊗ f − i E( f, h)I .

A generalised free field state ω on a globally hyperbolic spacetime is called a free
field state iff it satisfies the Klein-Gordon equation with mass m and scalar curvature
coupling ξ and E = Em,ξ , the difference of the advanced and retarded fundamental
solutions of the Klein-Gordon equation (� + m2 + ξ R)φ = 0.

The first three properties above can be written equivalently in terms of the represented
field as:

[
�ω( f ),�ω(h)

] = 0, supp f ∩ J (supp h) = ∅, (4)

(� + m2 + ξ R)�ω = 0, (5)[
�ω( f ),�ω(h)

] = i E( f, h)I. (6)
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We have chosen to allow very general distributions E to appear in the commutation
relations in order to emphasise that their precise form does not matter for our arguments.
In particular, our commutation relations need not imply causality and our arguments
also hold for anti-commutation relations. However, it is important that the commuta-
tor of two smeared field operators is a scalar. Note that E must be anti-symmetric,
E( f, h) = −E(h, f ) for all f, h ∈ C∞

0 (M), for the commutation relations to make
sense.

Instead of the free field commutator E = Em,ξ one can take for example E(x2, x1) :=∫ ∞
0

∫
Em,ξ (x2, x1) f (m, ξ)dξdm, where f is a compactly supported smooth function.

In fact, in the Wightman framework in Minkowski spacetimeone can use the Källen-
Lehmann representation of the two-point distribution to prove that E must be of this form
for a suitable distribution f (m)δ(ξ). (We can take ξ = 0 because R ≡ 0 in Minkowski
spacetime.) Whether such a result still holds in curved spacetime is not clear, because
no suitable replacement of the Källen-Lehmann is currently available. We leave these
issues for a future investigation.

It is worthwhile to note the following:

Proposition 3.2. If ω is a generalised Hadamard state and a generalised free field
state with commutator E, then E = −2iω2−, W F(E) ⊂ �2 ∪ −�2 and W F(ω2) =
W F(E) ∩ �2.

Proof. The first equality follows by applying ω to the commutation relations (6). The
others follow from the last two items of Proposition 2.8. ��

Note that W F(Em,ξ ) ⊂ �ll
2 ∪ −�ll

2 , so in this case we must have W F(ω2) ⊂ �ll
2 .

Corollary 3.3. If a state ω satisfies the Klein-Gordon equation with parameters m, ξ
on a globally hyperbolic spacetime M and the commutation relations with commutator
Em,ξ , then it is a generalised Hadamard state if and only if it is a Hadamard state.

Proof. The result of Radzikowski implies that a free field state on a globally hyperbolic
spacetime which satisfies the commutation relations with commutator Em,ξ is a Hadam-
ard state if and only if W F(ω2) = W F(Em,ξ ) ∩ �2. The result therefore follows from
Proposition 3.2. ��

We see from Proposition 3.2 and Lemma 2.9 that for two generalised free field states
ω and ω′ with commutator functions E and E ′ respectively, ω2 − ω′

2 is smooth iff
E − E ′ is smooth. In general, however, even Em,ξ − Em′,ξ ′ will not be smooth, even
though both have the same wave front sets. Indeed, if Em,ξ − Em′,ξ ′ is smooth and if
we define Kx2 := � + m2 + ξ R acting on the variable x2 and similarly for K ′, then the
following is also smooth:

K ′
x2
(Em,ξ − Em′,ξ ′)(x2, x1) = K ′

x2
Em,ξ (x2, x1)

= (K ′
x2

− Kx2)Em,ξ (x2, x1)

= ((m′)2 − m2 + ξ ′ R(x2)− ξ R(x2))Em,ξ (x2, x1).

Because Em,ξ (x2, x1) is singular whenever x1 and x2 can be connected by a light-like
geodesic, we would then have to have (m′)2 − m2 + ξ ′ R(x2)− ξ R(x2) ≡ 0. In general,
however, this is not the case.

We conclude this section by proving a useful equivalent characterisation of general-
ised free fields in terms of the truncated n-point distributions (see note added in proof):
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Proposition 3.4. A state ω is a generalised free field state iff all the truncated n-point
distributions ωT

n with n �= 2 are symmetric in their arguments.

In the case where we have anti-commutation relations instead of commutation relations
a similar proof shows that the truncated n-point distributions are anti-symmetric for
n �= 2.

Proof. First assume that ωT
n is symmetric for all n �= 2. For n ≥ 2 we then use Eq. (1)

to see that for any 1 ≤ i < n,

ωn(xn, . . . , x1)− ωn(xn, . . . , xi , xi+1, . . . , x1)

= 2ω2−(xi+1, xi )ωn−2(xn, . . . , x̂i+1, x̂i , . . . , x1).

Here we noted that most terms cancel out, either by the hypothesis or by the fact that i
and i +1 are subsequent indices. The remaining terms have been collected together using
once again Eq. (1). By definition this equation means that ω satisfies the commutation
relations with commutator E = −2iω2−.

For the opposite direction we assume that ω satisfies the commutation relations (nec-
essarily with E = −2iω2−). We use similar arguments as above to prove by induction
that ωT

n is symmetric for n ≥ 3 (for n = 1, 2 there is nothing to prove):

ωT
3 (x3, x2, x1)− ωT

3 (x2, x3, x1)

= ω3(x3, x2, x1)− ω3(x2, x3, x1)− (ωT
2 (x3, x2)− ωT

2 (x2, x3))ω
T
1 (x1)

= 2ω2−(x3, x2)ω1(x1)− 2ω2−(x3, x2)ω1(x1) = 0.

A similar result holds for the transposition in the indices 1 and 2, from which the invari-
ance under all permutations follows for n = 3. Next we consider n > 3 and assume
that the claim holds for all ωT

n′ with 0 ≤ n′ ≤ n − 1. Again it suffices to prove that
ωT

n (xn, . . . , x1) is invariant under a transposition of the indices i and i + 1 for some
1 ≤ i ≤ n − 1, because such transpositions generate the group of all permutations.
Using the induction hypothesis we find similarly:

ωT
n (xn, . . . , x1)− ωT

n (xn, . . . , xi , xi+1, . . . , x1)

= ωn(xn, . . . , x1)− ωn(xn, . . . , xi , xi+1, . . . , x1)

−(ωT
2 (xi+1, xi )− ωT

2 (xi , xi+1))ωn−2(xn, . . . , x̂i+1, x̂i , . . . , x1) = 0.

This completes the proof. ��
The previous proposition is reminiscent of, but certainly not equivalent to, the result
in [10] that a vacuum state ω of a Wightman field theory is causal if and only if the
n-point distributions ωn , extended to suitable complex domains, are symmetric in their
arguments in those domains. That result, however, uses the Bargmann-Hall-Wightman
theorem, whereas our result relies solely on elementary combinatorics (cf. [10] Sect. 4.4,
[6,11]).

Finally we note the following corollary of Proposition 3.42:

Corollary 3.5. A quasi-free state satisfies the commutation relations with commutator
E = −2iω2−.

Proof. By Definition 2.2 of a quasi-free state ωT
n is symmetric for n �= 2. ��

2 We thank Prof. Rehren for pointing this out to us at an early stage.
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4. Equivalence of the Hamadard and Microlocal Spectrum Conditions

We now start our analysis of the singularities of higher n-point distributions of a gener-
alised free field state with a result that exploits the positivity of the state.

Proposition 4.1. Let ω be a generalised Hadamard state and assume that for n ≥ 1 we
have (xn, kn; . . . ; x1, k1) ∈ W F(ωn). Then (x1, k1) ∈ V ∗+∪Z and (xn, kn) ∈ V ∗−∪Z .
In particular, W F(ω1) = ∅.

Proof. The positivity ofω impliesωn( fn, . . . , f1) = ωn( f̄1, . . . , f̄n), and hence the sec-
ond statement follows from the first. In fact, the positivity allows us to perform the GNS-
construction, which yields a representation πω of UM on a Hilbert space Hω by closable
operators and a vector�ω ∈ Hω such that ω(A) = 〈�ω, πω(A)�ω〉 for all A ∈ UM . We
can then define the Hω-valued distributions φm( fm, . . . , f1) := πω( fm ⊗ . . .⊗ f1)�ω
for all m ∈ N. Using the inner product of Hω we can write:

ωn( fn, . . . , f1) = 〈
φn−1( f̄2, . . . , f̄n), φ1( f1)

〉
,

ω2( f2, f1) = 〈
φ1( f̄2), φ1( f1)

〉
.

The calculus of Hilbert space-valued distributions (see e.g. [21] Proposition 2.2 or [18]
Theorem A.1.6) now means that (xn, kn; . . . ; x1, k1) ∈ W F(ωn) implies (x1, k1) ∈
W F(φ1) ∪ Z and if k1 �= 0 then (x1,−k1; x1, k1) ∈ W F(ω2). The conclusion follows
from the assumption that W F(ω2) ⊂ �2. ��

Proposition 4.1 has some nice consequences in the case of generalised free fields:

Theorem 4.2. Let ω be a generalised Hadamard state which is also a generalised free
field state. Then ωT

2 − ω2 and ωT
n for all n �= 2 are smooth functions.

Proof. From Proposition 4.1 and Eq. (1) we see that (xn, kn; . . . ; x1, k1) ∈ W F(ωT
n )

implies (x1, k1) ∈ V ∗+ ∪ Z and (xn, kn) ∈ V ∗− ∪ Z . However, because ω is a gener-
alised free field state all truncated n-point distributions with n �= 2 are symmetric by
Proposition 3.4. This means that each (xi , ki )must be in (V ∗+ ∪ Z)∩ (V ∗− ∪ Z) = Z ,
i.e. ki = 0. It follows that W F(ωT

n ) = ∅ and hence ωT
n is smooth for n �= 2. The result

for n = 2 follows from ω2 − ωT
2 = ω1 ⊗ ω1. ��

Corollary 4.3. Let ω be a generalised Hadamard state which is also a generalised free
field state. Thenω satisfies theµSC with smooth, resp. causal, resp. light-like immersions
if W F(ω2−) ⊂ �•

2 , where • denotes no superscript, resp. c, resp. ll. More precisely, for
each point in W F(ωn) we can find an instantiating graph G ∈ Gn which is a discon-
nected union of graphs in G2 that instantiate points in W F(ω2) = W F(E) ∩ �2.

Proof. This follows immediately from Theorem 4.2, Eq. (1) and the properties of the
cones �•

n in Proposition 2.5. ��
The singularity structure that we derived in Theorem 4.2 and Corollary 4.3 is what

one would expect of quasi-free states, because of Eq. (1) (see [2]). It is nice to see that
this form persists when the state is only required to satisfy scalar commutation relations.
Analogous results also hold in the analytic case, for vector-valued fields and in the case
of anti-commutation relations.

[2] describes a point in T ∗M5\Z that is not in �c
5 and one wonders whether such

a point can be in the wave front set of the 5-point distribution of a state. We have just
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proved that for generalised free fields this possibility is excluded. Moreover, our result
also implies that the µSC with light-like curves includes more than just free fields and
their Wick powers [2], namely generalised free fields with any suitable commutator func-
tion. (We will leave the existence of a sufficiently large class of such fields in curved
spacetime for a future publication.)

An easy consequence of the analytic case of Theorem 4.2 is the following character-
isation of generalised free field states:

Proposition 4.4. Let ω be a causal state satisfying the AµSC. Then ω is a generalised
free field state if and only if ωT

n is analytic for all n �= 2.

Proof. If ω is a generalised free field state the conclusion follows from the analytic
version of Theorem 4.2. For the converse we use causality to prove by induction on
n that every ωT

n is symmetric when all arguments are space-like separated. Analytic
continuation for n �= 2 then proves their symmetry everywhere and we may then apply
Proposition 3.4. ��

As another easy result we show that the class of generalised Hadamard states of a
generalised free field is closed under operations:

Proposition 4.5. Let ω be a generalised Hadamard and generalised free field state on
UM and let A ∈ UM be any operator such that ω(A∗ A) = 1. Then the state ωA, defined
by ωA(B) := ω(A∗B A), is a generalised Hadamard and generalised free field state
on UM .

Notice that for given A the expression ω(A∗ B A) may involve arbitrary high n-point
distributions, depending on the choice of B, so without an estimate on the wave front
sets of higher n-point distributions this result sounds rather surprising.

Proof. We may write A = ∑n
i=1 f (i)i ⊗ · · · ⊗ f (i)1 for some n and f (i)j ∈ C∞

0 (M). The

two-point distribution of ωA is then a sum of terms of the form

ωi+k+2

(
f (i)1 , . . . , f (i)i , x2, x1, f (k)k , . . . , f (k)1

)

which are distributions in x1, x2. The wave front set of each such term can be estimated
using standard arguments (see [9] Theorem 8.2.12) as a subset of

{(x2, k2; x1, k1)| (y1, 0; . . . ; yi , 0; x2, k2; x1, k1; zk, 0; . . . ; z1, 0) ∈ W F(ωi+k+2)}

which is a subset of �2. The wave front set of a sum of such terms is also contained
in �2 by Proposition 2.5 and therefore ωA is a generalised Hadamard state. That it is a
generalised free field state follows from Eq. (6). ��

To close this section we prove the following lemma on the comparisons of the n-point
distributions of two states, generalising Lemma 2.9.

Lemma 4.6. Consider two generalised Hadamard states ω,ω′, which both satisfy com-
mutation relations with the same commutator E such that W F(E) �= ∅. For any n ≥ 0
we have that ωn+2 − ω′

n+2 is smooth if and only if ωn ≡ ω′
n.
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Proof. The case n = 0 follows from Lemma 2.9. For n ≥ 1 we first suppose that
ωn ≡ ω′

n . For any index 1 ≤ i < n we then have (ωn+2−ω′
n+2)(xn+2, . . . , x1) = (ωn+2−

ω′
n+2)(xn+2, . . . , xi , xi+1, . . . , x1), where we swapped the indices i and i +1 and the com-

mutator terms vanish by the assumption. We can therefore permute indices ad lib. and in
this way we derive (ωn+2 −ω′

n+2)(xn+2, . . . , x1) = (ωn+2 −ω′
n+2)(x1, . . . , xn+2). Using

the assumption that both states are generalised Hadamard states and Items two and four
of Proposition 2.5 we find that W F(ωn+2 − ω′

n+2) ⊂ �n+2 ∩ −�n+2 = ∅. This proves
that ωn+2 − ω′

n+2 is smooth.
For the opposite direction we assume that ωn+2 −ω′

n+2 is smooth and we let the sym-
bol ∼ denote equality modulo termsw such that W F(w)∩ T ∗M × V ∗+ × T ∗M ×· · ·×
T ∗M = ∅, i.e. we are interested in the direction of the covectors in the n + 1st slot
(from the right). Using the expressions for ωn+2 and ω′

n+2 in terms of truncated n-point
distributions (1) we compute:

0 ∼ ωn+2 − ω′
n+2 ∼ ω2 ⊗ ωn − ω′

2 ⊗ ω′
n

∼ ω2 ⊗ ωn − ω2 ⊗ ω′
n = ω2 ⊗ (ωn − ω′

n),

where we used the result for n = 0 to get to the last line. Ifwn := ωn−ω′
n �= 0 is not iden-

tically 0 then we can find test-functions f1, . . . , fn such that c := wn( fn, . . . , f1) �= 0,
which leads to a contradiction as follows. Notice that

W F(ω2) = W F(c · ω2) = W F(ω2 · wn( fn, . . . , f1))

⊂ {(xn+2, kn+2; xn+1, kn+1)| for some xi ∈ supp( fi ), i = 1, . . . , n

(xn+2, kn+2; xn+1, kn+1; xn, 0; . . . ; x1, 0) ∈ W F(ω2 ⊗ wn)},
by Theorem 8.2.12 of [9]. Because ω2 ⊗ wn ∼ 0 and because ω2 is a generalised Had-
amard state we find that W F(ω2) = ∅. However, by Proposition 3.2 this implies that
W F(E) ∩ �2 = ∅ and hence W F(E) ∩ −�2 = ∅ and W F(E) = ∅. This contradicts
the assumption on E , so we must have wn ≡ 0. ��
The same statement still holds when the commutators E and E ′ of the two states differ
by a smooth function.

5. Two Theorems Generalised to Curved Spacetimes

We now discuss the generalisation of two theorems from Wightman field theory to curved
spacetimes, illustrating the strength and the limitations of the commutation relations in
that setting. First we generalise a result due to Borchers and Zimmermann [1] concerning
the self-adjointness of field operators. Then we consider the generalisation of (a weak
form of) the Jost-Schroer theorem.

The result of [1] gives a sufficient condition for the symmetric operator �ω( f ) with
a given f ∈ C∞

0 (M,R) to be self-adjoint. To discuss its generalisation we recall the
following notion:

Definition 5.1. A vector ψ in a Hilbert space H is an analytic vector for a (possibly
unbounded) linear operator T on H iff the series

∑∞
n=0

‖T nψ‖
n! zn has a non-zero radius

of convergence. (In particular we require that ψ is in the domain of each T n.)

Notice that for a bounded linear operator T all vectors are analytic. The following ele-
mentary lemma is adapted from [1]:
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Lemma 5.2. For a vector ψ in the Hilbert space H and a symmetric linear operator T
on H the following are equivalent:

1. ψ is analytic for T ,
2. there is a constant c > 0 such that ‖T nψ‖ ≤ n!cn,
3.

∑∞
n=0

|〈ψ,T nψ〉|
n! zn has a non-zero radius of convergence,

4. there is a constant c > 0 such that |〈ψ, T nψ〉| ≤ n!cn.

Proof. See loc. cit. Sect. 2. ��
For a Wightman field theory in Minkowski spacetime Borchers and Zimmermann

[1] used causality and the Reeh-Schlieder theorem to prove that a field operator �ω( f )
is self-adjoint as soon as the vacuum vector �ω is analytic. An analogous proof can be
given in curved spacetime, whenever the state ω is causal and has the Reeh-Schlieder
property, i.e. the GNS-vector�ω is cyclic for all local algebras. The latter can be ensured
e.g. by imposing the AµSC (see [17,21]), but unfortunately it is not clear whether all
analytic spacetimes admit states satisfying the AµSC, or whether all (smooth) space-
times have states with the Reeh-Schlieder property. We now prove that the conclusion of
Borchers and Zimmermann can also be obtained without recourse to the Reeh-Schlieder
theorem if we assume that the state is a generalised free field state. For the proof we
adapt an idea of Nelson [14].

Theorem 5.3. If ω is a generalised free field state on UM with some commutator E and
�ω is an analytic vector for�ω( f ) for some f ∈ C∞

0 (M,R), then all vectors πω(A)�ω
with A ∈ UM are analytic vectors for�ω( f ) and this operator is essentially self-adjoint.

Proof. First assume that ψ ∈ πω(UM )�ω is an analytic vector for �ω( f ) for given
f ∈ C∞

0 (M,R). For any h ∈ C∞
0 (M) we will prove that �ω(h)ψ is an analytic vector

for �ω( f ). To see this we note that for n ≥ 1 we have

�( f )n�(h) = �(h)�( f )n + ni E( f, h)�( f )n−1,

which may easily be proved by induction. Using this we compute:

|〈�ω(h)ψ,�ω( f )n�ω(h)ψ〉| ≤ |〈�ω(h)�ω(h)ψ,�ω( f )nψ〉|
+ n|E(F, h)| · |〈�ω(h)ψ,�ω( f )n−1ψ〉|

≤ c‖�ω( f )nψ‖ + cn‖�ω( f )n−1ψ‖,
where the constant c > 0 may depend on f and h, but not on n. The assumption that ψ
is analytic then implies that (see Lemma 5.2)

|〈�ω(h)ψ,�ω( f )n�ω(h)ψ〉| ≤ c(c′)nn! + cn(c′)n−1(n − 1)! ≤ Cnn!
for suitable constants c′,C > 0. By Lemma 5.2 this implies that�ω(h)ψ is an analytic
vector for �ω( f ).

Now assume that�ω is an analytic vector for�ω( f ). We can then repeatedly apply the
result of the previous paragraph to prove that any vector of the form�ω(hm) · · ·�ω(h1)

�ω is an analytic vector. Because the set of analytic vectors for a given operator is a
linear space, every vector in πω(UM )�ω is analytic. This provides a dense set of analytic
vectors, so we can apply Nelson’s theorem ([14] Lemma 5.1) to conclude that�ω( f ) is
essentially self-adjoint. ��
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The analyticity of �ω can be formulated conveniently in terms of the n-point
distributions by Lemma 5.2 and in terms of the truncated n-point distributions too (for
a proof we refer to [1]):

Proposition 5.4. �ω is an analytic vector for�ω( f ) if and only if there is a d > 0 such
that |ωT

n ( f ⊗n)| < n!dn for all n ∈ N.

The condition of the previous theorem may not always be satisfied, as we will now
illustrate with the following

Example. In Minkowski spacetime we will construct a translation invariant free field
state ω̃ which satisfies the AµSC, but whose G N S-vector �ω̃ is not analytic for any
non-zero smeared field operator �ω̃( f ), f ∈ C∞

0 (M0,R). (We will not discuss the
question whether these operators are essentially self-adjoint.)

Let ω denote the Minkowski vacuum state with two-point distribution ω2. We set
w2(x2, x1) := ∫

e−ik·(x1−x2)e−k2
0 δ(k2 − m2)dk, which is an analytic, real-valued, sym-

metric and translation invariant bi-solution of the Klein-Gordon equation of positive
type. Next we define the two-point distributionsω j

2 := e jw2 +ω2 for each j ∈ N and we

note that the anti-symmetric part isω j
2− = ω2−. Eachω j

2 defines a quasi-free stateω j on
the Weyl-algebra (see [12]) and hence also on the Borchers-Uhlmann algebra, because
a quasi-free state is regular (cf. Proposition 5.4). Each of the states ω j is a translation
invariant, Hadamard, free field state satisfying the AµSC. (Note however that they are
not Lorentz-invariant, because w2 is not Lorentz invariant.)

Now we define the state ω̃ by ω̃ := e−1 ∑∞
j=0

1
j !ω

j . Note that ω̃(A∗ A) ≥ 0 and

ω̃0(I ) = 1, so it is indeed a state. It follows from the properties of the ω j that ω̃ is
translation invariant and that it is a free field state. To see that ω̃ is continuous we note
that ω̃2n−1 = 0 for n ∈ N and that for all n, N ∈ N:

e−1
N∑

j=0

1

j !ω
j
2n = e−1

∑

P∈Pn

N∑

j=0

1

j ! (e
jw2 + ω2)

⊗n ◦ πP

= e−1
∑

P∈Pn

n∑

k=0

N∑

j=0

ek j

j !
(
w⊗k

2 ⊗ ω
⊗(n−k)
2 + · · · + ω⊗(n−k)

2 ⊗ w
⊗(n−k)
2

)
◦ πP ,

where the operation πP denotes the permutation that corresponds to the partition P of
the set {1, . . . , n} (see Eq. (1) and Definition 2.2) and the dots in the last line indicate
all the different orderings of the factors w2 and ω2. Taking the limit we see that the sum
over j converges so that

ω̃2n =
∑

P∈Pn

n∑

k=0

eek−1
(
w⊗k

2 ⊗ ω
⊗(n−k)
2 + · · · + ω⊗(n−k)

2 ⊗ w
⊗(n−k)
2

)
◦ πP , (7)

which exhibits ω̃2n as a finite sum of distributions. It also follows from Eq. (7) that ω̃
satisfies the AµSC.

Finally we prove that �ω̃ is not an analytic vector for any non-zero �ω̃( f ) with
f ∈ C∞

0 (M0,R). Suppose that �ω̃ is an analytic vector for a given �ω̃( f ). By Lemma
5.2 there is a constant c > 0 such that

c2n(2n)! ≥ ω̃2n( f ⊗2n) ≥ (2n)!
2nn! een−1w2( f, f )n,
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where we used Eq. (7) and the positive type of ω2 and w2 for the last inequality. Using
ln n ≤ n we find n! ≤ nn ≤ en2

and hence

c2n ≥
(
w2( f, f )

2

)n

en3/6−n2
.

If w2( f, f ) �= 0 we can take logarithms on both sides and let n → ∞ to find a contra-
diction. If w2( f, f ) = 0, on the other hand, we use the positivity and the support of ŵ2

to deduce that ω2( f, f ) = 0 too and hence ω̃2( f, f ) = 0. This means that�ω̃( f ) anni-
hilates �ω̃ and it commutes with all other smeared field operators, so that �ω̃( f ) = 0
(cf. the proof of Proposition 5.5 below).

Now we turn to an analogue of the Jost-Schroer theorem (see [4,11,15]), which pro-
vides a way to recognise free field states. In the Wightman framework this theorem says
that any state whose two-point distribution is that of a free field must be a free field
state3. (Recall that this means it satisfies the Klein-Gordon equation and the canonical
commutation relations.)

As before we can prove our result by using commutation relations to replace the ana-
lyticity that is due to the spectrum condition of the Wightman axioms. Note, however,
that this makes part of the result, namely the proof of the commutation relations, trivial.
The following is therefore a generalisation of a very weak form of the Jost-Schroer
theorem:

Proposition 5.5. Let ω be a generalised free field state and assume that ω2 is the two-
point distribution of a free-field state, i.e. it satisfies the Klein-Gordon equation for some
mass m and scalar curvature coupling ξ and ω2− = i

2 Em,ξ . Then ω is a free field state.

(The same result also works for other linear partial differential operators.)

Proof. Let K denote the Klein-Gordon operator with mass m and coupling ξ . For any
f ∈ C∞

0 (M) we have K�( f ) = �(K f ), because the Klein-Gordon operator is for-
mally self-adjoint. This implies that

|ωn( fn, . . . , f2, K f1)| ≤ ‖�ω( f 2) · · ·�ω( f n)�ω‖ · ‖�ω(K f1)�ω‖ = 0,

because ‖�ω(K f1)�ω‖2 = ω2(K f̄1, K f1) = 0. Therefore every ωn satisfies the Klein-
Gordon equation in the first (rightmost) argument. One proves by induction that the same
is then true for ωT

n , using Eq. (1). For a generalised free field state we can then apply
Proposition 3.4 and find that ωT

n satisfies the Klein-Gordon equation in all arguments
for n �= 2. For n = 2 this is true by the assumption on ω2. Using Eq. (1) once more
shows that the ωn satisfy the Klein-Gordon equation in all arguments, which completes
the proof. ��

3 A related result, due to Greenberg [5], says that a state must be a generalised free field state if the
Källen-Lehmann representation of the two-point distribution

ω2−(x2, x1) =
∫
ρK L (m

2)ωm
2−(x2, x1)dm2

in terms of the free field commutator functions of mass m, ωm
2−, has a positive measure ρK L whose support

satisfies certain restrictions. In the Wightman framework every ω2− allows a Källen-Lehmann representation,
but in curved spacetime such a tool is not available, so at present it makes no sense to consider the generalisation
of this result. Moreover, our current strategy of weakening the Wightman axioms and assuming commutation
relations instead would render the statement trivial.
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Alternatively we could drop the assumption thatω is a generalised free field state and
require causality and the AµSC (or the Reeh-Schlieder property) instead. This certainly
allows us to prove that ω satisfies the Klein-Gordon equation as follows:

Proposition 5.6. Let ω be a causal state satisfying the AµSC. If Kxω2(x, y) = 0 then
ω satisfies the Klein-Gordon equation.

Proof. By AµSC, ω has the Reeh-Schlieder property, i.e. �ω is a cyclic vector for
every local algebra [21]. Now �ω(K f ) annihilates �ω for every f ∈ C∞

0 (M) and
�ω(K f ) · πω(B)�ω = 0 for any B that commutes with �( f ). By causality and the
Reeh-Schlieder property we conclude that �ω(K f ) annihilates a dense set of vectors
and hence �ω(K f ) = 0 (because the operator is closable). ��
Note, however, that it is not at all clear whether the state also satisfies the canonical com-
mutation relations. The proof of [15], e.g., uses Poincaré invariance, the full strength
of the spectrum condition and the uniqueness of the vacuum4. We will not investigate
what other assumptions are necessary to recover the strong version of the Jost-Schroer
theorem, but for completeness we do provide the following:

Example. We construct a state satisfying the assumptions of Proposition 5.6 with the
canonical commutator function, but which is not a generalised free field state. For this
purpose we let ω1 denote the quasi-free state on Minkowski spacetime with two-point
distribution ω1

2 = 2ω0
2, where ω0 is the Minkowski vacuum. We let ω2 be the state with

ω2
n = 0 for all n > 0 and we note that the mixed state ω3 := 1

2 (ω
1 + ω2) serves our

purpose by considering the four-point distribution:

ω3
4(x4, x3, x2, x1)− ω3

4(x3, x4, x2, x1) = 2iω3
2−(x4, x3)ω

3
2(x2, x1).

6. Applications and Outlook

[13] already mentions the class of Hadamard states whose truncated n-point distribu-
tions are smooth functions for all n �= 2 as an interesting class. Later [7,8] discuss
perturbation theory by constructing an extended ∗-algebra of Wick powers and time-
ordered products of a free field and find that the continuous states on this algebra are
exactly the Hadamard states of this class. Our Theorem 4.2 shows that the condition
on the truncated n-point distributions is automatically satisfied for (generalised) free
fields due to the scalar commutation relations, so the class of all Hadamard states is the
class of interest for perturbative quantum field theory. Furthermore, Corollary 4.3 shows
that for a generalised free field any generalised Hadamard state satisfies the µSC and
Proposition 4.5 tells us that the class of generalised Hadamard states is closed under
operations, which is useful to know from a fundamental point of view. Our Theorem 4.2
and Corollary 4.3 could find further applications in perturbative quantum field theory
around a generalised free field, rather than around a free field. Such an approach has
been suggested in [3] as a way to gain insight in the AdS-CFT correspondence.

Concerning the strength of the assumption that a state is a generalised free field state
we have discussed the generalisation of two results from the Wightman framework to
curved spacetimes. We showed that in some circumstances our assumption can replace

4 In this connection it should also be noted that generalised free fields need not have the time-slice prop-
erty, so then the commutation relations cannot be proved in curved spacetime via a spacetime-deformation
argument as in [22].
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the existing arguments based on analyticity, as in Theorem 5.3 that generalised a result
of Borchers and Zimmerman. For the Jost-Schroer theorem the situation was more del-
icate: a weak form of this theorem can be proved in curved spacetimes by assuming
that a state is a generalised free field state. However, it is not known if one can prove
that a state is a (generalised) free field under suitable circumstances without assuming
commutation relations in the first place.

Finally we note that the proofs we used were all elementary applications of the cal-
culus of wave front sets of (Hilbert space-valued) distributions and the combinatorics of
(truncated) n-point distributions. Both can be generalised to vector-valued fields and to
anti-commutation relations in a straightforward manner (see e.g. [18] Prop. 4.2.17 for
the result that a Hadamard state of the free Dirac field satisfies the µSC).

Note added in proof. Our Proposition 3.4 was already known as Lemma 5.2 of Gottschalk and Thaler, “An
indefinite metric model for interacting quantum fields on globally hyperbolic space-times”, Ann. Henri
Poincare 4 (2003) 637–659. We thank Thomas-Paul Hack for bringing this to our attention.
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