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Abstract

We quantise the massless vector potential A of electromagnetism in the presence of a
classical electromagnetic (background) current, j, in a generally covariant way on arbitrary
globally hyperbolic spacetimes M . By carefully following general principles and procedures
we clarify a number of topological issues. First we combine the interpretation of A as a
connection on a principal U(1)-bundle with the perspective of general covariance to deduce
a physical gauge equivalence relation, which is intimately related to the Aharonov-Bohm
effect. By Peierls’ method we subsequently find a Poisson bracket on the space of local, affine
observables of the theory. This Poisson bracket is in general degenerate, leading to a quantum
theory with non-local behaviour. We show that this non-local behaviour can be fully explained
in terms of Gauss’ law. Thus our analysis establishes a relationship, via the Poisson bracket,
between the Aharonov-Bohm effect and Gauss’ law – a relationship which seems to have gone
unnoticed so far. Furthermore, we find a formula for the space of electric monopole charges
in terms of the topology of the underlying spacetime. Because it costs little extra effort, we
emphasise the cohomological perspective and derive our results for general p-form fields A
(p < dim(M)), modulo exact fields, for the Lagrangian density L = 1

2
dA ∧ ∗dA + A ∧ ∗j.

In conclusion we note that the theory is not locally covariant, in the sense of Brunetti-
Fredenhagen-Verch. It is not possible to obtain such a theory by dividing out the centre
of the algebras, nor is it physically desirable to do so. Instead we argue that electromagnetism
forces us to weaken the axioms of the framework of local covariance, because the failure of
locality is physically well-understood and should be accommodated.

1 Introduction

The number of rigorous studies into a quantised, free electromagnetic field system propagating in
a globally hyperbolic spacetime is fairly small and unfortunately these studies have been plagued
by problems, or limitations, which are related to the topological properties of the background
spacetime. The main goal of this paper is to give a new presentation which overcomes these short-
comings and which fully clarifies all the topological properties of the theory. In this introduction
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we will briefly describe the geometric point of view that will be expounded in the remainder of our
paper and we will indicate the problems that previous investigations encountered and how they
will be overcome.

Historically, electromagnetism was described by a field strength F in Minkowski spacetime,
which is a two-form that contains both the electric field strength E and the magnetic field strength
B. The Maxwell equations for F entail that it is closed, dF = 0, and as the topology of Minkowski
spacetime is trivial we may always write F = dA, where A is the so-called vector potential. Instead
of using F as a fundamental object, one may use gauge equivalence classes of vector potentials A,
where two vector potentials are identified when they give rise to the same field strength F . This
means that they differ by a closed, or, equivalently, an exact, one-form in Minkowski spacetime.
(See [9] for a description of electromagnetism in Minkowski spacetime from the perspective of
algebraic quantum field theory.)

When generalising the theory to more general spacetimes one encounters several topological
obstructions. Firstly, not every closed two-form F is exact, so there may not always be a vector
potential. Secondly, two vector potentials that give rise to the same field strength differ by a
closed one-form, but this one-form may not be exact, so the choice of gauge equivalence relation
to be used becomes relevant. This raises the question which of the three equivalent formulations of
electromagnetism in Minkowski spacetime leads to the correct generalisation in curved spacetimes:
the theory based on F , or a theory based on A with either choice of gauge equivalence.

In this paper we will identify connections on a trivial principal U(1)-bundle over a spacetime
M with vector potential one-forms A. Using general covariance this naturally leads to a gauge
equivalence relation that identifies vector potentials that differ by an exact one-form.1 This point of
view, which essentially coincides with that taken in the standard model of elementary particles, has
emerged in the course of time and incorporates the well-known Aharonov-Bohm effect [40, 17]. In
order to treat this effect most clearly, we will include in our description an electromagnetic current,
j, which is regarded as a given background structure. The choice of gauge equivalence that we
employ can then be motivated by the following physical considerations. Using the Aharonov-Bohm
effect, which is experimentally established [40], we can distinguish vector potentials that differ by
a closed one-form which is not exact. This means that the field strength F itself does not contain
enough information to account for all physical effects and also that a gauge equivalence on A using
closed forms, rather than exact ones, is too crude.

A few early studies in the quantisation of free electromagnetism focussed on some particular
(curved) spacetimes and used methods that are ill-suited for a generally covariant approach. [2]
noticed that in Kruskal spacetime there are many inequivalent Hilbert space representations for
free electromagnetism, which are labeled by magnetic and electric charges, when the field strength
F is taken as the basic object. The existence of inequivalent representations is a circumstance which
is now known to hold even for free scalar fields in general curved spacetimes and which is treated
in the modern literature by separating the construction of the abstract algebra of observables and
its representation. In [1] the usual Weyl quantisation in Minkowski spacetime is compared to an
interesting proposal for quantising the holonomies of the electric field together with the magnetic
field. The two approaches are found to be inequivalent, but the holonomy based approach seems
to make essential use of the choice of a Cauchy surface, which makes it doubtful that the approach
can be made generally covariant. We will follow the direction set out in the more recent literature,
starting with [16], that uses an algebraic approach based on the Weyl algebra, because it is the
most obvious way forward towards a generally covariant theory.

Some of the recent quantisations of free electromagnetism in curved spacetimes were inadequate
for describing the Aharonov-Bohm effect ([12, 13] and [33] Appendix A): they either took the field
strength as its basic object or they identified two vector potentials that differ by a closed one-form.
Other investigations run into problems in the quantisation procedure. Although the well-posedness
of the classical Maxwell equations was not in doubt (see e.g. [42] for p-form fields), [16, 20, 42] only
carry out the quantisation in spacetimes with a compact Cauchy surface (and [20] additionally

1Notice that, for any principal U(1)-bundle, the associated bundle of connections is an affine bundle modeled
on the space of one-forms on the base manifold [5].
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Field theoretic object Geometric interpretation Support

field configurations, modulo gauge ambient kinematic phase space F general
Euler-Lagrange solutions, modulo gauge dynamical phase space manifold S general
solutions to linearised equations around A0 tangent space TA0

S general
observables for the linearised equation cotangent space T ∗A0

S compact

Peierls’ bracket Poisson 2-vector field on S, i.e. an (n.a.)
antisymmetric bilinear form on T ∗S.

Table 1: The geometric interpretation of (classical) phase space, using a Lagrangian approach and
ignoring issues of infinite dimensional topology. The compact supports arise from a duality. Note
that in systems without gauge symmetry there is an injection G : T ∗A0

S → TA0
S, whose range

consists of spatially compact solutions. One may then interpret the Peierls’ bracket as a (densely
defined) symplectic form on TA0S. In the presence of gauge symmetries, however, G may fail to be
injective (see Remark 3.4 below) and the quantisation schemes based on symplectic and Poisson
structures are no longer equivalent.

assumes the triviality of a certain de Rham cohomology group). The reason appears to be that
they want to equip the space of spacelike compact solutions with a non-degenerate symplectic
form. This symplectic form gives rise to a Poisson space of observables, which is quantised [16, 42]
using (infinitesimal) Weyl algebras. [38] follows a similar path, but without imposing topological
restrictions. Although this quantisation procedure is successful on any spacetime, it does not
behave well under embeddings (cf. Remark 3.4). Alternatively, [12, 13] consider general spacetimes
and define a (degenerate) pre-symplectic space, which is quantised directly (see also [20]). This can
lead to algebras with a non-trivial centre, depending on the topology of the underlying spacetime,
which entails that the theory is not locally covariant in the sense of [11]. Indeed, when a spacetime
with non-trivial cohomology is embedded into Minkowski spacetime, this can lead to algebraic
embeddings which vanish on the non-trivial centre. Although the lack of injectivity was completely
characterised in these papers, its interpretation remained to be understood.

Our presentation differs2 by using Peierls’ method [41, 30] to directly find a Poisson structure
on the space of observables, bypassing the need for a symplectic form. This procedure fits in a
general geometric framework for Lagrangian field theories [24, 36], whose most salient aspects are
indicated in Table 1, and the resulting affine Poisson space may be quantised using ideas from
deformation quantisation, in particular Fedosov’s quantisation method (cf. [47]). Whereas the two
approaches are equivalent for the scalar field, where a non-degenerate symplectic form always
exists, this is no longer the case for electromagnetism, due to the gauge symmetry. In order to
obtain an equivalent formulation in terms of the space of classical spacelike compact solutions,
one would have to modify the gauge equivalence of those solutions in a subtle, but very relevant,
way. (This modification was also noted, but not explained, by [19] in the case of linearised gravity
(see also [31]). For spacetimes with compact Cauchy surfaces the two approaches are equivalent.)

Carefully computing the Poisson structure by the standard procedure (Peierls’ method), we
find a different space of degeneracies than [12, 13]. Furthermore, we show that there is a perfectly
satisfactory explanation for these degeneracies in the form of Gauss’ law. In particular, the lack of
injectivity of algebraic morphisms is only a lack of locality, not of general covariance, which occurs
when observables in a spacetime region M exploit Gauss’ law to measure charges that are located
elsewhere in spacetime. (Using classical spacelike compact solutions without modifying the gauge
equivalence, one would not find any degeneracies, but the theory would not behave well under
embeddings.) The logical relationship between the Aharonov-Bohm effect and Gauss’ law that we
establish by this procedure is indicated in Figure 1. In addition to a full clarification of the lack
of locality of the quantum vector potential, our analysis also leads to a formula for the space of

2We wish to point out that [33] seems to follow the same quantisation scheme as we do in its study of quantum
Yang-Mills theories. However, this paper does not compute the centre of the quantum algebra for the U(1) case
or investigate its interpretation in this setting. In fact, it only discusses these issues in its Appendix A, where an
alternative quantisation scheme is used.
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(general covariance)

Aharonov-Bohm effect

choice of gauge

equivalence

phase space with

Poisson bracket on

the observables

degenerate observables

for the Poisson bracket

Gauss’ law

Lagrangian and

Peierls’ method

computation

Figure 1: A diagrammatic representation of the logical relationship between the Aharonov-Bohm
effect and Gauss’ law via the Poisson bracket.

electric monopole charges in terms of the topology of the underlying spacetime. Moreover, with
little extra effort we derive our results for general p-form fields A, where p < n, the spacetime
dimension.

It is not possible to recover locally covariant theories by dividing out the centre of the algebras,
nor is this physically desirable. It is possible to obtain such theories by going to an off-shell algebra,
at the price of losing the dynamics, which is also physically undesirable. Instead, we argue that
one should generalise the axiomatic framework of local covariance, in order to accommodate the
lack of locality of electromagnetism, which is physically well-understood. What kind of axiomatic
restriction should be placed on the (lack of) injectivity for general spacetime embeddings, if any,
remains unclear. For the theories that we consider, injectivity of morphisms still holds for em-
beddings of spacetimes with trivial topology (in the spirit of [23]). However, a purely topological
resolution of this issue seems unlikely, because other theories (like linearised gravity [19]) possess
gauge symmetries that are not related to the spacetime topology alone, but also to the background
metric.

In the algebraic approach the construction of the algebras of the theory is only the first step,
which should be followed by a discussion of the class of physical states. This topic, however, lies
outside the scope of our paper, which aims to clarify the topological issues involved in the classical
theory and on preserving them during quantisation. Nevertheless we would like to remark here
that we expect that it should be possible to extend the results of [20] to define Hadamard states
for our theory on any globally hyperbolic spacetime and to prove the existence of such states
by a deformation argument. Also the construction of Hadamard states from a bulk-to-boundary
correspondence [13] is expected to remain valid. In addition we would like to point the interested
reader to [22], which constructs quasi-free Hadamard states on a large class of spacetimes with the
additional property that a Gupta-Bleuler type description of the representation remains valid.

We have organised the contents of our paper as follows. In Section 2 we will describe the
(essentially well-known) results on the classical dynamics of the vector potential and its p-form
generalisations. The main result is the well-posedness of the initial value formulation in the presence
of a background current, also for distributional field configurations. In Section 3 we find the Poisson
structure on the classical phase space, using Peierls’ method, and we study its degeneracy, which
is related to Gauss’ law and the spacetime topology. Due to the background current the phase
space is in general an affine Poisson space, which will be quantised in Section 4. A quantisation of
the field strength can be derived from that of the vector potential. Finally we will show that the
theory is not locally covariant and that the lack of locality may be interpreted in terms of Gauss’
law, also at the quantum level.
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2 Classical Dynamics of p-Form Fields

Most of the material that we present here on the classical dynamics of the vector potential and
its p-form generalisations is not new, but in view of our later applications it is fitting to give some
results and notations that go beyond standard treatments. This concerns in particular details on
distributional solutions to normally hyperbolic and the Maxwell equations. The Subsections 2.1
and 2.2 introduce the relevant results and notations from differential geometry, based on [10, 14],
and for the Cauchy problem for normally hyperbolic operators [3]. Subsequently we turn to the
Cauchy problem for the Maxwell equations, in Subsection 2.3, which is a slight generalisation of
the work of [42].

2.1 Geometric preliminaries

Consider a smooth, n-dimensional manifold M, which we assume to be Hausdorff, connected,
oriented and paracompact. We will denote by

∧pM the vector bundle of alternating p-linear
forms on TM and the space of their smooth sections, the p-forms on M, will be denoted by
Ωp(M). The exterior algebra of differential forms is Ω(M) = ⊕np=0Ωp(M), equipped with the
exterior (wedge) product. The exterior derivative d : Ω(M)→ Ω(M) maps p-forms to (p + 1)-
forms, does not increase the support and satisfies d ◦ d = 0. A differential form α is called closed
when dα = 0 and exact when α = dβ for some differential form β. The space of closed p-forms will
be denoted by Ωpd(M). Corresponding spaces of compactly supported forms are indicated with a
subscript 0 and we may define the de Rham cohomology groups of M

Hp(M) :=
Ωpd(M)

dΩp−1(M)
Hp

0 (M) :=
Ωp0,d(M)

dΩp−1
0 (M)

.

The orientation of M allows us to define integration as a linear map
∫
M :Ωn0→R and there is

a bilinear map

( , ) :Ωp(M)⊗ Ωn−p0 (M)→R (α, β) :=

∫
M
α ∧ β.

By Stokes’ Theorem we have (dα, β) = (−1)p+1(α, dβ) if α is a p-form. Moreover, the pairing ( , )
gives rise to the following isomorphism, known as Poincaré duality:

Hp
0 (M)∗ ' Hn−p(M).

When the de Rham-cohomology groups are finite dimensional we also have Hp
0 (M) ' Hn−p(M)∗.

Example 2.1 It is important to note that for a compactly supported, closed form α ∈ Ωp0,d(M)

the fact that [α] = 0 ∈ Hp
0 (M) trivially implies that [α] = 0 ∈ Hp(M), but the converse is

generally not true. A typical example in R is the form α := f(r)dr with f ∈ C∞0 (R). We always
have α = dβ, where β is the function β(r) :=

∫ r
−∞ f(s)ds, which vanishes in a neighbourhood of

r = −∞ and is constant in a neighbourhood of r = ∞. β is compactly supported if and only if∫
f = 0.

We denote by Dp(M) := Ωn−p0 (M)′ the space of distribution densities with values in the

dual vector bundle of
∧n−pM.3 The pairing ( , ) can be used to construct a canonical embedding

of Ωp(M) into Dp(M), given by α 7→ (α, .). Differential operators on distributions and exterior
products with smooth forms are to be understood by duality in terms of the pairing ( , ). As for
smooth differential forms we define a distributional differential form α to be closed, respectively

3In this paper the term distribution is always meant in the sense of analysis, because the differential geometric
notion of distribution (as it occurs e.g. in the formulation of Frobenius’ Theorem) will not be needed explicitly. In
the literature, however, distributional sections of

∧pM are often called currents, in order to avoid confusion. The
term current was introduced by de Rham (cf. [14]) because, in the setting of electromagnetism, such objects can
be interpreted as electromagnetic currents. Ironically, in this paper we will mostly consider smooth electromagnetic
background currents.
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exact, when dα = 0, respectively α = dβ. Compactly supported and closed distribution densities
are indicated by the same subscripts as in the smooth case.

An exact distributional form α = dβ ∈ Dp(M) vanishes on all closed γ ∈ Ωn−p0,d (M), because
(α, γ) = (−1)p(β, dγ) = 0. That the converse is also true is a result of de Rham ([14] Sec. 22, 23,
in particular Theorem 17’):

Theorem 2.2 α ∈ Dpd(M) is in dDp−1(M) if and only if (α, γ) = 0 for all γ ∈ Ωn−p0,d (M).

α ∈ Dp0,d(M) is in dDp−1
0 (M) if and only if (α, γ) = 0 for all γ ∈ Ωpd(M).

Consequently, the cohomology groups for distributional p-forms, which are defined by

(H ′)p(M) :=
Dpd(M)

dDp−1(M)
(H ′)p0(M) :=

Dp0,d(M)

dDp−1
0 (M)

can be identified with those for smooth p-forms as follows (cf. [14] Theorem 14):

(H ′)p(M) ' Hn−p
0 (M)∗ ' Hp(M), (H ′)p0(M) ' Hp

0 (M).

As a further piece of notation we consider a smoothly embedded, oriented submanifold Σ ⊂M,
so that the vector bundles

∧pM restrict to vector bundles
∧pM|Σ. In general these restricted

bundles cannot be canonically identified with
∧p

Σ, except for p = 0, as can be seen by consid-
ering their dimensions. With some abuse of notation we will write Ωp(M)|Σ for smooth sections
of
∧pM|Σ over Σ, and similarly for the case of compactly supported sections and distribution

densities on Σ. Note that the restriction of a density from M to Σ incurs an additional factor,
when compared to ordinary sections, due to the change in volume form.

By a spacetime M = (M, g) we mean an n-dimensional manifold M as above with n ≥ 2,
endowed with a smooth pseudo-Riemannian metric g of signature +− . . .−. We will assume that
M is globally hyperbolic, which means by definition that it admits a Cauchy surface. The latter is a
subset which is intersected exactly once by each inextendible timelike curve. A globally hyperbolic
spacetime can be foliated by smooth, spacelike Cauchy surfaces [6]. In the remainder of our paper
we will only consider Cauchy surfaces which are spacelike and smooth.

It will occasionally be useful to consider forms whose support properties are related to the
Lorentzian geometry of a spacetime M as follows [45, 25, 3, 19]:

Ωpsc(M) = {α ∈ Ωp(M)| supp(α) ⊂ J(K) for some compact K ⊂M}
Ωptc(M) =

{
α ∈ Ωp(M)| supp(α) ⊂ J+(Σ−) ∩ J−(Σ+) for two Cauchy surfaces Σ± ⊂M

}
.

The subscripts “sc” and “tc” stand for spacelike compact and timelike compact, respectively. We
note that Ωpsc(M)∩Ωptc(M) = Ωp0(M), by global hyperbolicity. Distribution densities with timelike,
resp. spacelike, compact support will be denoted similarly by Dptc(M), resp. Dpsc(M).

In terms of local coordinates and an arbitrary (local) derivative operator ∇a, the differential
geometric calculus given above can be expressed as follows. A p-form α corresponds to a fully
anti-symmetric tensor αa1···ap . We have dxa1 ∧ · · · ∧ dxap = p!dx[a1 ⊗ · · ·⊗ dxap], where the square
brackets denote antisymmetrisation as an idempotent operator. The exterior product is given by

(α∧β)a1···ap+q = (p+q)!
p!q! α[a1···apβap+1···ap+q ] and the exterior derivative takes the form (dα)a0···ap =

(p+ 1)∇[a0αa1···ap]. The metric volume form is given by (dvolg)a1···an =
√
|det(gµν)|εa1···an , with

the Levi-Civita tensor satisfying ε1···n = 1.
The metric volume form allows us to define a fibre-preserving linear involution ∗ :

∧p
(M)→∧n−p

(M), called the Hodge dual. In local coordinates we have

(∗α)ap+1···an =

√
|det(gµν)|
p!

εa1···anα
a1···ap ,

which gives rise to a support preserving map ∗ : Ωp(M)→Ωn−p(M). For any embedding Σ ⊂ M
the Hodge dual ∗ restricts to a map on the restricted vector bundle

∧
M |Σ which has the same

6



pointwise properties. In addition, if Σ is not null, we can consider the Hodge dual in the induced
metric, which we denote by ∗Σ. For α, β ∈

∧p
xM and γ ∈

∧n−p
x M we have the following identities:

∗∗ α = (−1)n−1+p(n−p)α ∗ α ∧ ∗γ = (−1)n−1α ∧ γ ∗ α ∧ β = (−1)p(n−p)α ∧ ∗β

α ∧ ∗β = β ∧ ∗α =
1

p!
αa1···apβa1···apdvolg.

From this it is easy to see that the Hodge dual can be extended to an operation on distributions,
by duality.

The exterior co-derivative is defined by δ := (−1)p ∗−1 d∗, when acting on p-forms. It defines
a linear map δ : Ωp(M)→Ωp−1(M) which does not increase the support and in local coordinates
it takes the form

(δα)a2···ap = −∇a1αa1···ap .

A differential form α is called co-closed when δα = 0 and co-exact when α = δβ for some dif-
ferential form β. The space of co-closed p-forms will be denoted by Ωpδ(M) and similarly for the
distributional and compactly supported case. Because δ ◦ δ = 0 one can also define cohomology
groups, but these are easily seen to be isomorphic to the de Rham cohomology groups, by Hodge
duality. For α, β ∈ Ωp(M) and γ ∈ Ωn−p+1

0 (M) we note that

(α, ∗β) = (β, ∗α) (δα, γ) = (−1)p(α, δγ) (δα, ∗β) = −(α, ∗dβ),

where the last equality is valid when the supports of α and β have a compact intersection.

2.2 The Cauchy problem for normally hyperbolic operators

In preparation for the initial value formulation of the Maxwell equations, we first review the
Cauchy problem for a normally hyperbolic operator P acting on sections of a vector bundle V over
M [3]. The example that is of prime importance in this paper is the de Rham-Laplace-Beltrami
operator � := dδ + δd, whose action on A ∈ Ωp(M) is given in local coordinates by ([14] Sec. 26)

(�A)a1···ap = −∇b∇bAa1···ap + pR
b

[a1
A|b|a2···ap] −

(
p
2

)
R

bc
[a1a2

A|bc|a3···ap]. (1)

Note that � is indeed a normally hyperbolic operator on Ωp(M) for any p ∈ {0, . . . , n} (cf. [3]).
In general we denote the smooth sections of V over M by Γ(V) and the distribution densities

with values in the dual bundle V∗ by Γ′(V∗) := Γ0(V)′, where the subscript indicates a compact
support, as usual. The duality

(α,A) :=

∫
M

α(A)dvolg, α ∈ Γ0(V∗), A ∈ Γ(V)

allows us to identify Γ(V) with a subspace of Γ′(V). P has a formally adjoint operator P ∗ on
V∗, which satisfies (α, PA) = (P ∗α,A) and which is also normally hyperbolic. Given P there is a
uniquely associated P -compatible connection on V, which we denote by ∇a (cf. [3] Lemma 1.5.5).

If we denote the restriction of the bundle to a Cauchy surface Σ by V|Σ, then the main result
on the Cauchy problem can be formulated as follows:

Theorem 2.3 Given j ∈ Γ(V) and A0, A1 ∈ Γ(V|Σ), where Σ ⊂ M is a Cauchy surface with
future pointing unit normal vector field na, there is a unique A ∈ Γ(V) such that

PA = j, A|Σ = A0, na∇aA|Σ = A1,

where ∇a is the P -compatible connection. A depends continuously on the data (j, A0, A1) (in
the usual Fréchet topology of smooth sections). Furthermore, A is supported in J(K) with K :=
supp(j) ∪ supp(A0) ∪ supp(A1).

7



For the case of compactly supported data (j, A0, A1) (and the test-section topology on Γ0(V) and
Γ0(V|Σ)) a proof can be found in [3], Theorems 3.2.11 and 3.2.12. For data with general supports,
the proof of existence, uniqueness and the support property is directly analogous to that of the
scalar case, which is given in [29] Corollary 5. The continuity for general data follows from the
compactly supported case, in light of the support properties of the solution.

Below we will show that the regularity of the initial data is not essential, if one also allows
distributional solutions. First, however, we will establish some useful results concerning fundamen-
tal solutions for P . Using Theorem 2.3 one can prove the existence of unique advanced (−) and
retarded (+) fundamental solutions G± for P . These are defined as distributional sections of the
bundle V � V∗ over M×2 and by their support properties they naturally define continuous linear
maps [3, 45]

G± : Γ0(V)→ Γsc(V), G± : Γtc(V)→ Γ(V).

If we let (G±)∗ denote the advanced and retarded fundamental solutions for P ∗ we find from a
formal partial integration that

((G±)∗α,A) = (α,G∓A), α ∈ Γ0(V∗), A ∈ Γ0(V), (2)

because the supports of (G±)∗α and G∓A have compact intersection (cf. [3] Lemma 3.4.4). This
equality remains true when either α or A only has timelike compact support.

The fundamental solutions can be used to find (distributional) solutions A ∈ Γ′(V) to the wave
equation PA = 0, simply by setting A := Gβ with β ∈ Γ′tc(V) and G := G− −G+ and exploiting
the duality to define the action of G on distribution densities. If β is smooth, then so is A. We
will see below that all solutions are of this form and that for Gβ ∈ Γ′sc(V) we may choose β to be
compactly supported. Moreover, G can be used to give a useful expression of a general solution A
in terms of its initial data, as the next lemma shows.

Lemma 2.4 If A ∈ Γ′(V) satisfies PA = j ∈ Γ(V) and α ∈ Γ0(V∗), then

(α,A) =
∑
±

∫
J±(Σ)

((G∓)∗α)(j)dvolg +

∫
Σ

(G∗α)1(A0)− (G∗α)0(A1),

where Σ is a Cauchy surface with future pointing unit normal vector field na, G∗ := (G−)∗−(G+)∗,
A0 := A|Σ, A1 := na∇aA|Σ, (G∗α)0 := G∗α|Σ, (G∗α)1 := na∇∗aG∗α|Σ, and ∇a, resp. ∇∗a, are the
P -compatible, resp. P ∗-compatible, connections.

Proof: In the smooth case this follows from Stokes’ Theorem by a well-known computation:

(α,A) =
∑
±

∫
J±(Σ)

(P ∗(G∓)∗α)(A)dvolg

=
∑
±

∫
J±(Σ)

((G∓)∗α)(j)−∇a((∇∗a(G∓)∗α)(A)− ((G∓)∗α)(∇aA))dvolg

=
∑
±

∫
J±(Σ)

((G∓)∗α)(j)dvolg +
∑
±

∫
Σ

±na((∇∗a(G∓)∗α)(A)− ((G∓)∗α)(∇aA))dvolh

=
∑
±

∫
J±(Σ)

((G∓)∗α)(j)dvolg +

∫
Σ

(na∇∗aG∗α)(A)− (G∗α)(na∇aA))dvolh.

For the distributional case we note that the initial data of A are well-defined, because PA = j is
smooth, soWF (A) only contains light-like vectors.4 The computation above can then be performed
in an analogous fashion, by multiplication with the characteristic functions of the sets J±(Σ). �

We are now ready to consider the well-posedness of the Cauchy problem in the distributional
case.

4For a definition of the wave front set WF (A) and background material on microlocal analysis we refer to
[43, 34].
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Theorem 2.5 Given j ∈ Γ(V) and A0, A1 ∈ Γ′(V|Σ), there exists a unique A ∈ Γ′(V) such that

PA = j, A|Σ = A0, na∇aA|Σ = A1

and A depends continuously on the data (j, A0, A1) (in the distributional topology on the Ai).
Furthermore, A is supported in J(K) with K := supp(j) ∪ supp(A0) ∪ supp(A1).

Proof: The expression in Lemma 2.4 proves that the solution A is uniquely determined in terms
of the data (j, A0, A1). Moreover, it proves the existence of a solution A, because the right-hand
side of that expression depends continuously and linearly on α, as the maps α 7→ (G±)∗α and the
subsequent restriction to initial data are linear and continuous. Furthermore, if we define A by the
right-hand side, then A solves the desired equation (as α = P ∗β has (G±)∗α = β) and one may
check that it reproduces the given initial data (by approximating the Ai by smooth data). Finally
we note that A depends continuously on the data (j, A0, A1), which again follows immediately
from the expression in Lemma 2.4, and that its support property follows from those of (G±)∗. �

If j ∈ Γ′(V) with WF (j) ∩N∗Σ = ∅, where N∗Σ is the conormal bundle of Σ ⊂ M (cf. [34]),
then the proof of existence and uniqueness still works. To prove the continuous dependence of A
on j, however, one presumably needs to impose some Hörmander topology on j near Σ, so that
the products χ±j with the characteristic functions χ± of J±(Σ) depend continuously on j. In any
case, in the remainder of our paper we will only be concerned with smooth j, so that the wave
front set of the solution A only contains light-like covectors and its initial data are well-defined on
all spacelike Cauchy surfaces.

The fundamental solutions G± are also useful to characterise the freedom involved in writing
a solution A of the homogeneous wave equation in the form Gβ (cf. [16] Prop.4):

Proposition 2.6 In the notation of Theorem 2.5, A has spacelike compact support if and only
if all of j, A0, A1 have spacelike compact support. When j = 0, A = Gα for some α ∈ Γ′tc(V).
If A has spacelike compact support we can choose α ∈ Γ′0(V) and if A is smooth, then α can be
chosen smooth also. Finally, if Gα = 0 with α ∈ Γ′tc(V), then α = Pβ for some β ∈ Γ′tc(V), β has
compact support if and only if α does and β can be chosen smooth if and only if α is smooth.

Proof: Suppose A has spacelike compact support, supp(A) ⊂ J(K) with compact K ⊂ M . The
initial data on any Cauchy surface Σ are compactly supported, because J(K) ∩ Σ is compact,
while the support of j = �A is contained in that of A, so j also has spacelike compact support.
For the converse of the first claim we first consider compactly supported j, in which case the
result follows directly from Theorem 2.5. By linearity it then only remains to consider the case
of vanishing initial data on Σ and, moreover, j ≡ 0 on a neighbourhood of Σ. Let K ⊂ M be a
compact set such that J(K) contains the support of j. J(K) has a compact intersection L with
Σ and we note that supp(j) ∩ J±(Σ) ⊂ J±(L). Now let φn ∈ Ω0

0(I+(Σ)) be a partition of unity

of I+(Σ), with n ∈ N, and let jn := φnj. We may then consider the solutions AN :=
∑N
n=0G

+jn
of PAN =

∑N
n=0 jn, which have vanishing initial data on Σ and their support is contained in

J+(L). The limit A+ := limN→∞AN is well-defined, because for every Cauchy surface Σ′ the set
J−(Σ′) ∩ J+(Σ) ∩ supp(j) is compact in I+(Σ), so for M,N sufficiently large we have AN = AM
on J−(Σ′). Moreover, supp(A+) ⊂ J+(L), because this is true for all N . Constructing a solution
A− of PA− = j on I−(Σ) in a similar way we find A := A+ +A− with spacelike compact support
satisfying PA = j on all of M and with vanishing initial data. This completes the proof of the
first statement.

When j = 0 it is clear that Gα is a solution (with spacelike compact support, when α is
compactly supported), by the properties of G±. Conversely, given initial data Ai ∈ Γ′(V|Σ) we
may define β ∈ Γ′tc(V) by

(β, η) := −
∫

Σ

A0(nb∇bη)−A1(η), η ∈ Γ0(V).

Because the identity (2) can be extended to the case where one of the sections is a distribution,
we see that for any D ∈ Γ0(V)

(Gβ, η) = −(β,Gη) = (A, η),
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where we used Lemma 2.4 for the final equality. Therefore A = Gβ. Now let χ ∈ Ω0(M) be
identically 1 to the future of some Cauchy surface Σ+ and identically 0 to the past of some
Cauchy surface Σ−. We let α := −PχA ∈ Γ′tc(V) and note that α = ∇a((∇aχ)A)−(∇aχ)∇aA. The
compact support, resp. smoothness, of α follow from spacelike compact support, resp. smoothness,
of A. Because χG−β and (1− χ)G+β are compactly supported too we have

G±α = −G±P (χG−β) +G±PG+β −G±P ((1− χ)G+β) = −χG−β +G±β − (1− χ)G+β

and hence Gα = Gβ = A. This proves the second statement.
Finally, if Gα = 0 for α ∈ Γ′tc(V), then β := G−α = G+α has timelike compact support and

α = Pβ. Moreover, β is smooth, resp. compactly supported, if and only if α is smooth, resp.
compactly supported. This completes the proof. �

Remark 2.7 The solution map S : Γ′(V|Σ)⊕2→Γ′(V) is not only continuous (by Theorem 2.5),
but also a homeomorphism onto its range. To see why the inverse is continuous, fix two test-
sections α0, α1 ∈ Γ0(V∗|Σ). Using Theorem 2.5 and Proposition 2.6, applied to P ∗, we find a
test-section α ∈ Γ0(V∗) such that G∗α has initial data α0, α1. Because of Lemma 2.4 this means
that the convergence of solutions A on M implies the convergence of their initial data.

To conclude this subsection we return to the special case of the de Rham-Laplace-Beltrami
operator �. One easily verifies that

d� = �d, δ� = �δ, ∗� = �∗

and (α, ∗�β) = (�α, ∗β) when either α or β has compact support. We now let G± denote the
advanced and retarded fundamental solutions for � on Ω(M) and we note that their restrictions
to any Ωp(M) are the corresponding fundamental solutions for the restriction of � to Ωp(M). It
follows that ([42] Prop. 2.1)

dG± = G±d, δG± = G±δ, dG = Gd, δG = Gδ,

as may easily be checked by noticing that for any source α ∈ Ωptc(M) the solutions β = dG±α −
G±dα and β = δG±α−G±δα of �β = 0 vanish to the past or future of some Cauchy surface and
hence β = 0.

Corollary 2.8 Let α ∈ Dptc(M).

1. dGα = 0 if and only if dα = dδβ for some β ∈ Dp+1
tc,d (M). If, in addition, δα = 0, then

α = δβ.

2. δGα = 0 if and only if δα = δdβ for some β ∈ Dp−1
tc,δ (M). If, in addition, dα = 0, then

α = dβ.

In both cases β can be chosen smooth, resp. compactly supported, whenever α is smooth, resp.
compactly supported.

Proof: We first note that if 0 = dGα = Gdα, then dα = �β for some β ∈ Dp+1
tc (M), by

Proposition 2.6. β can be chosen smooth, respectively compactly supported, whenever α is smooth,
respectively compactly supported, by the same proposition. Note that 0 = ddα = d�β = �dβ,
so dβ = 0, because it has timelike compact support. Thus we have dα = dδβ. Conversely, if
dα = dδβ and dβ = 0, then dGα = Gdδβ = −Gδdβ = 0. Now, if in addition δα = 0, then
�(α− δβ) = δd(α− δβ) = 0, so α = δβ by the timelike compact support of α− δβ. The proof for
the case δGα = 0 is completely analogous. �
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2.3 The Maxwell equations for p-form fields modulo gauge equivalence

We now turn to the Cauchy problem for the Maxwell equations. In Paragraph 2.3.1 we set the
scene by considering the geometric setting for electromagnetism and we discuss the Lagrangian
formulation for p-form fields. Paragraph 2.3.2 establishes a parametrisation for the initial data of
p-form fields that is suitable for solving the Maxwell equations [42, 38]. This leads to computations
which are somewhat involved, because [A] is most easily described in terms of differential geometric
notation, whereas the initial data are most naturally described in terms of tensor calculus. Finally,
in Paragraph 2.3.3, we discuss the Cauchy problem for the Maxwell equations.

2.3.1 The geometric setting of the vector potential

Let us then consider the physical situation of electromagnetism. A classical vector potential, in the
most general setting, is a principal connection on a principal U(1)-bundle P over M (see [39] Ch.
10.1 or [4] for more details). This U(1)-bundle arises as the structure (gauge) group of matter fields
that carry electric charge, but we will not need an explicit description of these matter fields. We
may identify the connection A with a one-form A ∈ Ω1(M). (This one-form is not canonical. The
space of all connections is an affine space modeled over Ω1(M), cf. [4, 5].) A gauge transformation
on P can then be described by a U(1)-valued function λ on M , which changes the connection
one-form A into A′ := A − iλ−1dλ.5 We will denote the space of all U(1)-valued functions on
M by G(M). In particular we may choose λ = eiχ for any χ ∈ Ω0(M), so that A′ := A + dχ.
This means that A is gauge equivalent to A′ whenever A−A′ ∈ dΩ0(M), but the converse is not
necessarily true, because not all U(1)-valued functions are necessarily of the exponential form eiχ.

A generally covariant perspective brings to light a problem that indicates that the space G(M)
is too large to act as the physical gauge group. To exemplify this we consider an embedding
ψ :M→M̃ of two spacetimes together with two connection one-forms Ã, Ã′ on M̃ and their pull-
backs A := ψ∗(Ã), A′ := ψ∗(Ã′) to M . Now suppose that A and A′ are gauge equivalent, which
means that we cannot distinguish between A and A′ by performing measurements in M . Based
on general covariance one would expect that it follows that Ã and Ã′ cannot be distinguished
by any measurements in ψ(M). In other words, given a λ ∈ G(M) one expects that there is a
λ̃ ∈ G(M̃) such that ψ∗(λ̃−1dλ̃) = λ−1dλ−1. However, in Example 3.1 below, where we describe
the Aharonov-Bohm effect, we will see explicitly that this is not always true. This problem can
even occur when ψ is causal, so no classical information from the spacelike complement ψ(M)⊥

in M̃ should influence the physical description in ψ(M).
To resolve this issue we take the perspective of general covariance and show how it motivates

us to modify the gauge equivalence. In analogy to [11] we introduce the following two categories:

Definition 2.9 • Spac is the category whose objects are globally hyperbolic spacetimes M =
(M, g) and whose morphisms are orientation and time orientation preserving embeddings
ψ :M→M̃ such that ψ∗g̃ = g and ψ(M) ⊂ M̃ is causally convex (i.e. ψ∗(J̃±(ψ(p))) = J±(p)
for all p ∈M).

• Grp is the category whose objects are groups and whose morphisms are group homomor-
phisms.

There is a functor G : Spac→ Grp such that G(M) = G(M) and G(ψ) = ψ∗ is the pull-back.
We will endow the space G(M) with the topology of uniform convergence of all derivatives on all
compact sets of M (cf. [32]).

Theorem 2.10 There exists a unique functor G0 :Spac→Grp such that

1. G0(M) ⊂ G(M),

5Here the term λ−1dλ is to be interpreted in adapted local coordinates, viewing U(1) as a subset of C. The
gauge transformations are exactly all fibre bundle automorphisms of P covering the identity which preserve the
Lagrangian (3) of the theory, assuming that the matter fields that give rise to j also transform appropriately.
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2. for any morphisms ψ :M→M̃ in Spac, G0(ψ) = G(ψ)|G0(M̃) = ψ∗|G0(M̃) has a dense range

(in the relative topology induced by the G(M)),

3. for any functor G′0 satisfying the first two properties we have G′0(M) ⊂ G0(M).

If the spacetime dimension n ≥ 3, then

G0(M) =
{
eiχ| χ ∈ Ω0(M)

}
.

G0(M) is the largest subgroup of G(M) which avoids the problem indicated above, up to a topo-
logical closure. For this reason we make the following definition:

Definition 2.11 We call G0(M) := G0(M) the physical gauge group.

Proof: Let F be the set of functors satisfying the first two conditions. F is not empty, because
it contains the trivial functor with M 7→ {e} where e is the identity element of G(M). Now define

G0(M) := {γ1 · · · γj | γi ∈ Fi(M),Fi ∈ F}.

Because G(M) is a commutative group, G0(M) is a subgroup. Because the product in G(M) is
jointly continuous one may verify directly that G0 ∈ F . Furthermore, for any F ∈ F we have
F(M) ⊂ G0(M) for all M , by construction. This maximality property also entails the uniqueness
of G0.

Now consider the functor F0 with

F0(M) :=
{
eiχ| χ ∈ Ω0(M)

}
and F0(ψ) = ψ∗. Any morphism ψ :M→ M̃ is an embedding, so the push-forward ψ∗ : Ω0

0(M)→
Ω0

0(M̃) is well-defined. By considering λ̃ = eiψ∗χ with χ ∈ Ω0
0(M) we see that ψ∗(λ̃) = eiχ, so

ψ∗(F0(M̃)) contains eiχ for all χ ∈ Ω0
0(M). This is already a dense set in F0(M), so F0 ∈ F .

Let λ ∈ G(M) be arbitrary. Locally λ is always of exponential form, λ = eiχ, where χ is unique
up an additive constant in 2πZ. To see if λ is globally of exponential form we fix a base point
x0 ∈ M and a χ0 ∈ R such that λ(x0) = eiχ0 . For each x1 ∈ M we can find a smooth curve
γ : [0, 1]→M starting at x0 and ending at x1, because M is arcwise connected. For each such curve
there is a unique smooth function ξγ on γ such that λ = eiξγ on γ and ξγ(x0) = χ0. For x1 = γ(1)
we may try to define χ(x1) := ξγ(γ(1)) and the only question is whether this is independent of the
choice of γ. In other words, λ is globally of exponential form if and only if for each loop γ : [0, 1]→M
starting and ending at x0 ∈ M we have ξγ(γ(1)) = ξγ(γ(0)). (Using suitable approximations in
contractible neighbourhoods of the end points, the loop may always be chosen smooth.) Note that
this condition is invariant under homotopy, so the condition is equivalent to the vanishing of all
holonomies (cf. [39, 37]). Also note that the holonomy along a curve γ depends continuously on λ.

If M is simply connected, then G(M) = F0(M) and hence G0(M) = F0(M). To prove this
equality for general M (and n ≥ 3) we proceed in several small steps. First we suppose that for
some M there is a λ ∈ G0(M) which has a non-zero holonomy a along a loop γ. We may pick
an arbitrary (smooth, spacelike) Cauchy surface Σ0 ⊂ M and foliate M = (M, g) by Cauchy
surfaces, such that there is a diffeomorphism ψ :M→ R × Σ for which the projection T onto
the first coordinate yields a global time function t = ψ∗T with Σ0 = t−1(0) [7]. We then write
γ(s) = (t(s), ρ(s)) and we construct a homotopy H between γ and the curve γ0(s) := (0, ρ(s)),
simply by setting H(τ, s) := ((1 − τ)t(s), ρ(s)). As holonomies of λ are homotopy invariant, we
see that the holonomy along γ0 is again a 6= 0. Thus we see that it suffices to consider loops in an
arbitrary Cauchy surface of M .

As a second step we consider a morphism ψ :M→M̃ . If there exists a λ ∈ G0(M) which has a
non-zero holonomy a along a loop γ in M and ε > 0, then by assumption on the functor G0 there
exists a λ̃ ∈ G0(M̃) which has a holonomy along ψ∗(γ) in (a− ε, a+ ε). Choosing ε small enough
we can arrange for this holonomy to be non-zero, so the existence of non-zero holonomies for G0

in M implies the existence of non-zero holonomies for G0 in M̃ . When the range of ψ(M) contains
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a Cauchy surface for M̃ , the converse is also true by the previous paragraph. Using the functorial
properties of G0 and a spacetime deformation argument [18, 26] we may then conclude that the
existence of non-zero holonomies for G0 in M is equivalent to the existence of non-zero holonomies
for G0 in any spacetime M̃ diffeomorphic to M . In particular we may choose M̃ to be ultrastatic,
by endowing Σ with a complete Riemannian metric h and setting M̃ = (R× Σ,−dt2 + h). (Note
that such a spacetime is always globally hyperbolic [44].)

For the third step we consider an embedding γ of S1 into the Cauchy surface Σ0 = t−1(0) of an
ultrastatic spacetime M = (R×Σ,−dt2 +h), where t is the Killing time coordinate. With a slight
abuse of notation we will denote the range of the embedding again by γ. We may choose a tubular
neighbourhood V of γ [32] Theorem 4.5.2, i.e. a vector bundle V over S1 with an embedding
τ : V →M such that τ(V ) is an open neighbourhood of γ in M and the restriction of τ to the
zero section of V coincides with the embedding γ. By construction the tubular neighbourhood is
diffeomorphic to the normal bundle Nγ of γ in Σ, where we use the Riemannian metric on Σ to
identify Nγ as a subbundle of TΣ|γ . Consider the short exact sequence of vector bundles

0→ Tγ → TΣ|γ → Nγ → 0

and note that both Tγ and TΣ|γ are orientable vector bundles, because both S1 and Σ are
orientable. It follows from [32] Lemma 4.4.1 that V ' Nγ is also an orientable vector bundle.
Now consider another embedding γ̃ of S1 into Σ̃ := Rn−1, viewed as a Euclidean space. Such an
embedding exists when n ≥ 3. We may again choose a tubular neighbourhood Ṽ of γ̃, which is an
orientable vector bundle by the same argument as for V . Moreover, we may ensure that the range
of τ̃ is bounded. By [32] Section 4.4 Exercise 2 there is a (vector bundle) isomorphism ψV :V → Ṽ ,
because V and Ṽ are both orientable and they are of the same dimension. This means that there
is a diffeomorphism ψ := τ̃ ◦ ψV ◦ τ−1 between the tubular neighbourhoods τ(V ) of γ in Σ and
τ̃(Ṽ ) in Σ̃.

By using a partition of unity on Σ subordinate to the cover
{
τ̃(Ṽ ), Σ̃ \ γ̃

}
we may construct a

complete Riemannian metric h̃ on Σ̃ which coincides with ψ∗h on a neighbourhood Ũ of γ̃. (Here
we use the fact that the range of τ̃ is bounded, so we may recover the usual Euclidean metric
outside a bounded set and thus ensure completeness of h̃.) We let M̃ be the ultrastatic spacetime
M̃ = (R × Σ̃,−dt̃2 + h̃). Note that there is an isometric diffeomorphism ψ−1 : Ũ→U onto some
neighbourhood U ⊂ Σ of γ. We can extend this to an isometric diffeomorphism Ψ of D(Ũ) onto
D(U) ⊂M by setting Ψ(t̃, ψ(p)) := (t, p), where t and t̃ are the Killing time coordinates on D(U)
and D(Ũ), which vanish on U and Ũ , respectively. (Note that the range of t with (t, p) ∈ D(U) is
exactly equal to the range of t̃ with (t̃, ψ(p)) ∈ D(Ũ).)

Because M̃ is simply connected, there is no λ̃ ∈ G0(M̃) with a non-zero holonomy along γ̃.
Hence the same is true for the subspacetime D(Ũ) ⊂ M̃ . Because γ = ψ∗ ◦ γ̃ we see that there
cannot be any λ ∈ G0(D(U)) with a non-zero holonomy. Moreover, as the loop γ was an arbitrary
embedding into Σ, we see that there can be no non-zero holonomies along any embedding γ :S1→Σ.

To complete the proof we note that for n ≥ 4, any loop γ into Σ can be approximated arbitrarily
closely by an embedding ([32] Theorem 2.2.13), so there are no non-zero holonomies. For n = 3,
γ can be approximated by an immersion with clean double points, i.e. when γ(s0) = γ(s1) and
s0 6= s1, then there are disjoint open neighbourhoods Ui ⊂ S1 of si such that the restrictions
γ|Ui are embeddings whose ranges are in general position ([32] Theorem 2.2.12 and Exercise 1 of
Section 3.2). Note that for any s0 ∈ S1 there are at most finitely many points s1, . . . , sk ∈ S1 with
γ(si) = γ(s0), because S1 is compact. It follows that there is an open neighbourhood U0 of s0

such that γ(U1) contains at most one double point. Using compactness of S1 again there are at
most finitely many double points in the range of γ. We may now partition γ into a finite number
of piecewise smooth loops γj in Σ without double points. The corners of the γj can be smoothed
out within a contractible neighbourhood, without changing its holonomy, so we may take the γj
to be embeddings. As before, all holonomies along the γj must now vanish. The holonomy of any
λ along γ is the sum of the holonomies along the γi, so it too must vanish. This completes the
proof. �
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Remark 2.12 1. For n = 2 one may show that G0 = G. Instead of giving this case the
separate treatment that it deserves, we will prefer to consider the ”unphysical” gauge group
F0 consisting of exponential type gauge transformations. This makes our arguments more
convenient, as it is in line with the higher dimensional case. Note that F0(M) 6= G0(M) if
and only if M has the topology of a cylinder R× S1.

2. A remark on the general geometric situation is in order (see [39] Ch. 10.1 or [4] for more
details). In the presence of non-trivial principal U(1)-bundles P the analog of Theorem 2.10
is less clear, because a morphism ψ : M → M̃ may not necessarily admit a fibre bundle
morphism Ψ :P → P̃ covering ψ. We will ignore this issue for the time being, because it is
unclear whether it has any physical relevance. In fact, if the tangent bundle TM of M is
isomorphic to a trivial bundle, one may choose to describe spinors using the Clifford algebra
bundle over TM . In this way one may argue that, at least for electrodynamics, all physically
relevant bundles are trivial. Even though it is not entirely clear whether this assumption
holds for all four-dimensional globally hyperbolic spacetimes,6 we should also note that even
a non-trivial principle U(1)-bundle P still has a trivial adjoint bundle (cf. e.g. [5]). Because
A takes values in this adjoint bundle, any physical effects would have to be very subtle.

3. The identification of the affine space of connections with sections of A ∈ Ω1(M) is not
unique, as it uses a reference connection (cf. [4]). Note, however, that by considering the
Maxwell equations with a source term, we will already automatically end up with an affine
Poisson space. A more proper treatment of the affine space of connections will be given in
[5].

For general p-form fields we will consider the kinematic space of field configurations

Fp(M) := Dp(M)/dDp−1(M),

consisting of gauge equivalence classes of p-forms. For p = 1 and n ≥ 3 this is in line with Theorem
2.10. By Theorem 2.2, the denominator is a closed subspace (in the distributional topology), so we
can endow Fp(M) with the quotient topology, making it a Hausdorff locally convex topological
vector space. The space of continuous linear maps is then simply Fp(M)∗ = Ωp0,δ(M), under the
duality (., ∗.) (cf. [35] 14.5).

We consider the dynamics for [A] ∈ Fp(M), p < n, against the background of a fixed metric
g and electromagnetic current density j ∈ Ωp(M). The equations of motion are derived from the
Lagrangian density

L :=
1

2
F ∧ ∗F +A ∧ ∗j, (3)

where F := dA. The Euler-Lagrange equations are the Maxwell equations:

δdA = j. (4)

Note that this equation is well-defined for gauge equivalence classes, because [A] = 0 entails
dA = 0.

For p = 1 the relation between equation (4) and the usual form of the Maxwell equations can be
seen by noting that dF = 0 and δF = j and writing out these equations in terms of local Gaussian
coordinates near a Cauchy surface Σ. We will do this in some detail in the next paragraph, where
we consider a suitable parametrisation of the initial data.

2.3.2 Initial data for p-forms

If Σ is a Cauchy surface with future pointing unit normal vector field na, we may extend na to a
neighbourhood of Σ by defining it as the coordinate vector field of a Gaussian normal coordinate.
The extended vector field satisfies

nana ≡ 1, na∇anb ≡ 0, ∇[anb] = 0, (5)

6The results of Geroch [28, 27] only hold for spatially compact spacetimes. We are grateful to an anonymous
referee for pointing this out to us.
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where the last equation can be derived using Frobenius’ Theorem (e.g. [46] Theorem B.3.2). We
let P b

a := δ b
a − nanb. On Σ, P b

a |Σ is just the pointwise orthogonal projection of TM |Σ onto TΣ.
Throughout this paragraph we will assume that A ∈ Dp(M) satisfies WF (A) ∩ N∗Σ = ∅, so

that A has well-defined initial data on Σ. We may decompose these data as follows:

A0 = a+ n ∧ φ, A1 = ȧ+ n ∧ φ̇,

where n is viewed as a one-form na and we introduced the tangential and normal components of
Ai, defined by

aa1···ap := P b1
a1 · · ·P bp

ap Ab1···bp |Σ
ȧa1···ap := na∇aP b1

a1 · · ·P bp
ap Ab1···bp |Σ

φa2···ap := na1Aa1···ap |Σ
φ̇a2···ap := nb∇bna1Aa1···ap |Σ.

Note that, by the properties of na, the normal derivative commutes with the contraction with na

and with the projections P b
a . For p = 1 we may interpret a as the spatial vector potential, φ as

the scalar potential, and φ̇, ȧ as their normal derivatives. In further analogy to the p = 1 case
we may consider the field strength F = dA ∈ Dp+1(M) (which for p = 1 is the curvature of the
connection, F = dA−A ∧A = dA). Decomposing this in a similar way yields

F |Σ = B + n ∧ E,

where

Ea1···ap := na0(dA)a0···ap |Σ
Ba0···ap := P b0

a0 · · ·P bp
ap (dA)b0···bp |Σ.

The expression for B entails that B = ι∗Σ(dA) = dΣι∗ΣA = dΣa, because the exterior derivation
commutes with the pull-back under the canonical embedding ιΣ :Σ→M .

In order to reparametrise the initial data in more differential geometric terms we need the
following

Lemma 2.13 If A ∈ Dp(M) satisfies WF (A) ∩ N∗Σ = ∅ on a Cauchy surface Σ ⊂ M and its
initial data are given by (a, ȧ, φ, φ̇), then

Ea1···ap |Σ = ȧa1···ap − (dΣφ)a1···ap + p(∇[a1n
c)a|c|a2···ap]

(δA)a2···ap |Σ = −φ̇a2···ap − (δΣa)a2···ap − p(∇a1n[a1)φa2···ap] − (n ∧ δΣφ)a2···ap .

Proof: The proof is a straightforward computation, using in particular [46] Lemma 10.2.1, which
states that

∇Σ
c T

a1···ak
b1···bl = P a1

d1
· · ·P ak

dk
P e1
b1
· · ·P el

bl
P f
c ∇fT

d1···dk
e1···el ,

where T is a tensor field on Σ and∇Σ is the Levi-Civita derivative of the induced metric h on Σ. For
the first expression we now expand the anti-symmetrisation in dA, perform a partial integration and
then pull back to Σ. For the second expression we write (δA)a2···ap = −(na0na1−ha0a1)∇a0Aa1···ap
and then insert a factor δ b

a = P b
a +nan

b for each of the indices of A, to the right of the derivative
operator. We omit the details. �

Introducing a notation for the pull-back of δA,

ωa2···ap := P b2
a2 · · ·P bp

ap (δA)b2···bp |Σ,

we can parametrise the initial data of A as follows:

Corollary 2.14 There is a linear homeomorphism on Dp(Σ)⊕2 ⊕ Dp−1(Σ)⊕2 which maps the
initial data (a, ȧ, φ, φ̇) of A ∈ Dp(M) to (a,E, φ, ω).
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The same statement is also valid for data in Ωp(Σ)⊕2 ⊕Ωp−1(Σ)⊕2, or in Ωp0(Σ)⊕2 ⊕Ωp−1
0 (Σ)⊕2.

Proof: Lemma 2.13 shows how to express E and ω in terms of the initial data (a, ȧ, φ, φ̇). From
these expressions we also see that ȧ can be expressed in terms of (a, φ,E) and φ̇ in terms of (a, φ, ω)
and the maps in both directions are clearly continuous. �

Corollary 2.15 If A ∈ Dp(M) satisfies �A = j ∈ Ωp(M) and α ∈ Ωp0(M), then

(A, ∗α) =
∑
±

∫
J±(Σ)

j ∧ ∗G∓α+

∫
Σ

φ ∧ ∗Σωα − a ∧ ∗ΣEα − φα ∧ ∗Σω + aα ∧ ∗ΣE,

where Σ is a Cauchy surface with future pointing unit normal vector field na and the initial data
(a,E, φ, ω) refer to A, whereas (aα, Eα, φα, ωα) refer to Gα.

Proof: The proof is similar to that of Lemma 2.4, but now performing partial integrations using d
and δ. We refer to [42] Proposition 2.2 for more details on the proof, but we note that this reference
uses compactly supported j, so it gets away with using G±α on J±(Σ), rather than G∓α. This
causes an overall sign difference for the integrations of the initial data. �

In addition we will also make use of the following technical lemma:

Lemma 2.16 If A ∈ Dp(M) has initial data on Σ such that φ = ω = 0, then δA|Σ = 0 and

na∇aδA|Σ = pna1(�A)a1···ap |Σ − p(δΣE)a2···ap |Σ.

Proof: Note that for any X ∈ Dp(M) with WF (X) ∩N∗Σ = ∅ we have

na2(δX)a2···ap |Σ = −∇a1na2Xa1···ap |Σ = ha0a1∇a0na2Xa1···ap |Σ (6)

= −ha0a2∇Σ
a0Ya2···ap |Σ = (δΣY )a3···ap |Σ,

where Ya2···ap := na1Xa1···ap |Σ and we used the antisymmetry of X and the symmetry of ∇anb. In
case X = A we have Y = φ = 0, so the equality above proves that the normal component of δA
on Σ vanishes. Together with ω = 0 this implies δA|Σ = 0. Similarly we can consider the normal
component of the normal derivative:

na1na2∇a1(δA)a2···ap |Σ = −na0na2∇a0∇a1Aa1···ap |Σ
= −na0na2∇a1∇a0Aa1···ap |Σ
= (∇a1na0)na2∇a0Aa1···ap |Σ −∇a1na0na2∇a0Aa1···ap |Σ
= (∇a0na1)∇a0na2Aa1···ap |Σ +∇a2na0∇a0na1Aa1···ap |Σ
= −(∇a0na2)∇Σ

a0φa2···ap |Σ + (δΣφ̇)a2···ap |Σ,

where the interchange of derivatives gives no curvature terms because of φ = 0 and we repeatedly
used ∇[anb] = 0, the anti-symmetry of A and the symmetry of (∇anb)(∇anc) in (bc). Now note
that φ = 0 and δA|Σ = 0, so φ̇ = δΣa and hence δΣφ̇ = 0 too. For the spatial component of the
normal derivative of δA we eliminate the second order derivative in the normal direction in favour
of �A as follows:

na1∇a1(δA)a2···ap |Σ = pna1(dδA)a1···ap |Σ + (p− 1)na1∇[a2(δA)|a1|a3···ap]|Σ
= pna1(�A)a1···ap |Σ − pna1(δdA)a1···ap |Σ

+(p− 1)na1∇[a2(δA)|a1|a3···ap]|Σ.

The normal component of the last term vanishes, as we have just seen. Furthermore, the pull-back
of the last term also vanishes, as this is just dΣδΣφ. Using X = dA in the first paragraph we can
rewrite the second term on the right-hand side as −pδΣE, which completes the proof. �
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2.3.3 The Cauchy problem for the Maxwell equations

In order to solve the Maxwell equations, we first show that each equivalence class [A] ∈ Fp(M)
has sufficiently nice representatives:

Lemma 2.17 (Lorenz gauge) For any A ∈ Dp(M), [A] ∈ Fp(M) has a representative A′ sat-
isfying the Lorenz gauge condition δA′ = 0. Furthermore, if A ∈ Dpsc(M) we can choose A′ such
that A′ −A ∈ dDp−1

sc (M).

Proof: Let φ+ ∈ Ω0(M) such that φ+ ≡ 0 in a neighbourhood of a Cauchy surface Σ+ and such
that φ− := 1 − φ+ ≡ 0 in a neighbourhood of another Cauchy surface Σ−. Given A, let χ± be
the unique solutions of �χ± = −δ(φ±A) with vanishing initial data on Σ± (cf. Theorem 2.5).
Note that χ± vanishes near Σ± and that �δχ± = δ�χ± = 0, so δχ± = 0. Furthermore, χ±

has spacelike compact support if and only if A does (cf. Proposition 2.6). Hence χ := χ+ + χ−

satisfies δχ = 0, �χ = −δA and it has spacelike compact support if and only if A does. Setting
A′ := A+ dχ completes the proof. �

Note that the lemma does not require that A has well-defined initial data on some Cauchy
surface. Also note that there is a residual gauge freedom: A ∼ A′ and δA = δA′ = 0 hold if and
only if A−A′ = dχ with χ ∈ Dp−1(M) such that δdχ = 0. Interestingly, this is the homogeneous
Maxwell equations for a p−1 form. A further gauge fixing, which is often possible, is the temporal
gauge, which consists in setting φ = 0 on a given Cauchy surface:

Lemma 2.18 (Temporal gauge) Let A ∈ Dp(M) with WF (A) ∩ N∗Σ = ∅ and initial data
(a,E, φ, ω). Then there is a representative A′ ∈ [A] with initial data (a,E, φ′ = 0, ω′ = 0). In
particular, δA′ = 0.

Proof: We solve �χ = −δA with initial data (0,−φ, 0, 0) for χ. By Lemma 2.16 and equation (6)
we see that the initial data of δχ on Σ vanish. As �δχ = 0 we have δχ = 0, so A′ := A+ dχ has
δA′ = 0. One may verify directly that E′ = E, φ′ = 0 and a′ − a = ι∗Σ(dχ) = dΣι∗Σχ = 0. �

Remark 2.19 Lemma 2.18 implies that the Lorenz gauge, δA = 0, and the temporal gauge,
φ = 0, can be achieved simultaneously. [42] uses the term Coulomb gauge for this combination of
gauge conditions, but in the physics literature the term Coulomb gauge usually refers to the gauge
condition δΣa = 0. If a given [A] has any Coulomb gauge representatives, then it has representatives
that satisfy Lorenz, temporal and Coulomb gauge simultaneously.

Note that both the Coulomb and the temporal gauge are required to be valid only on the prescribed
Cauchy surface.

We now make the following fundamental observation:

Lemma 2.20 Let M = (M, g) be a globally hyperbolic spacetime, Σ a Cauchy surface with future
pointing unit normal vector field na and let j ∈ Ωp(M) with δj = 0. Any A ∈ Dp(M) solves

δdA = j, δA = 0, (7)

if and only if it solves
�A = j, δA|Σ = 0, na∇aδA|Σ = 0, (8)

in which case it also solves
δdA = j. (9)

Proof: If A solves (7), it clearly also solves (9) and (8). On the other hand, if A solves (8), then
�δA = δ�A = δj = 0, so δA satisfies a wave equation with vanishing initial data. From Theorem
2.3 we find δA = 0, so A solves (7). �

The requirement that the current j is conserved, δj = 0, is no real restriction, because if δj 6= 0
there can be no solutions to δdA = j, in view of δ2 = 0. In fact, by the same reasoning we should
even restrict attention to co-exact source terms j.
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When considering gauge equivalence classes [A] we encounter the problem that not all represen-
tatives A may have well-defined initial data on a given Cauchy surface Σ, due to their distributional
nature. We deal with this issue using the following definition:

Definition 2.21 We say that an [A] ∈ Fp(M) has well-defined initial data on a Cauchy surface
Σ if and only if every Lorenz gauge representative A has WF (A)∩N∗Σ = ∅. In this case we write
ι∗Σ([A]) for [ι∗Σ(A)] with any Lorenz gauge representative.

Note that it suffices to find one Lorenz gauge representative satisfying the wave front set condition.
Indeed, for any residual gauge term dχ we may use Lemma 2.17, with χ in the role of A, to write
dχ = dχ′ where �χ′ = δχ′ = 0, so WF (χ′) ∩N∗Σ = ∅ and WF (dχ) = WF (dχ′) ⊂WF (χ′).

Applying Lemma 2.17 to A in the same way we see that it suffices to study the equation (8)
instead of equation (9). Thus we obtain our main result:

Theorem 2.22 Given j ∈ Ωp(M), E ∈ Dp(Σ) and [a] ∈ Dp(Σ)/dDp−1(Σ), there is at most one
[A] ∈ Fp(M) with well-defined initial data on Σ, such that

δdA = j, ι∗Σ([A]) = [a], na0(dA)a0···ap |Σ = Ea1···ap . (10)

Such a solution exists if and only if j is co-closed and

(δΣE)a2···ap = na1ja1···ap |Σ. (11)

Moreover, if we define

Dp
j (Σ) :=

Dp(Σ)

dDp−1(Σ)
⊕
{
E ∈ Dp(Σ)| δΣE = naja···|Σ

}
,

endowed with the topology that is obtained from the distributional topology by taking relative topolo-
gies, quotients and direct sums, then [A] depends continuously on ([a], E) ∈ Dp

j and on j ∈ Ωp(M).

Note that for any Cauchy surface Σ, Dp
j (Σ) is the space of initial data, modulo gauge equiva-

lence, satisfying the constraint equation (11). It is empty when j is not co-exact (because j = δdA),
while it is otherwise an affine space modeled over the linear space

Dp
0 (Σ) =

Dp(Σ)

dDp−1(Σ)
⊕Dpδ (Σ).

Proof: We first prove existence of a solution. If a is some representative of [a], then there exists
a unique A ∈ Dp(M) which solves �A = j with initial data (a,E, φ = 0, ω = 0), by Theorem 2.5
and Corollary 2.14. Furthermore, na∇a(δA)|Σ = 0, by Lemma 2.16, so δA = 0 by Lemma 2.20.
This implies that A is a Lorenz gauge solution to δdA = j with the prescribed initial data. Any
other Lorenz gauge solution in [A] has the same E and [a].

To prove uniqueness we let A,A′ ∈ Dp(M) be two solutions to equation (10), both in Lorenz
gauge. Then B := A−A′ is in Lorenz gauge and satisfies �B = δB = 0 with na0(dB)a0···ap |Σ = 0
and ι∗Σ(B) = dΣb for some b ∈ Dp−1(Σ). By the previous paragraph we may solve δdχ = 0, with
initial data such that ι∗Σχ = b and na1(dχ)a1···ap |Σ = na1Ba1···ap |Σ, because (cf. equation (6))

−(∇Σ)a2na1Ba1···ap |Σ = na2(δB)a2···ap |Σ = 0.

Then, C := B − dχ solves �C = δC = 0 and the initial data, in the form of Corollary 2.14,
are easily seen to vanish, as e.g. ι∗Σ(C) = ι∗Σ(B) − dΣι∗Σ(χ) = 0. Hence, C = 0 and B = dχ,
proving that [A] = [A′]. The continuous dependence on that data follows by taking a Lorenz
gauge representative and using Corollary 2.15. �

The statement of Theorem 2.22 also holds if we assume j ∈ Ωpsc(M) with data E ∈ Dp0(Σ) and
[a] ∈ Dp0(Σ)/dDp−1

0 (Σ) and if we replace the gauge equivalence by A ∼ A′ iff A − A′ = dχ with
χ ∈ Dp−1

sc (M). The proof is completely analogous.
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Remark 2.23 The solution map spj :Dp
j →Fp(M) is not only continuous, but it is also a homeo-

morphism onto its range (when taken in the relative topology). This follows from Corollary 2.15,
using Lorenz and temporal gauge representatives of [A] and the following observation: for any
test-forms (aα, Eα) on Σ we can find a solution χ ∈ Ωpsc(M) to equation (7) with vanishing source
term and initial data (aα, Eα, 0, 0). (This follows e.g. from Theorem 2.22.) By Proposition 2.6
we may write χ = Gα with α ∈ Ωp0(M). When the pairing with (aα, Eα) in Corollary 2.15 is
gauge invariant, so is the pairing with A. In that case the convergence of [A] on M implies the
convergence of its initial data.

Remark 2.24 Let ιΣ : Σ→M be the canonical embedding of a Cauchy surface Σ in a globally
hyperbolic spacetime M . Theorem 2.22 entails in particular that if j is co-closed and na1ja1...ap |Σ
is co-exact, then j is co-exact. This is the Hodge dual statement of the fact that the restriction of
the pull-back map ι∗Σ :Ωp(M)→Ωp(Σ) to closed forms descends to an isomorphism ι∗Σ :Hp(M)→
Hp(Σ). Similarly, a closed form α ∈ Ωp(M) is of the form α = dχ for some χ ∈ Ωpsc(M) if and
only if [ι∗Σα] = 0 ∈ Hp

0 (Σ).
To prove these statements we note that exterior derivatives commute with pull-backs, so the

restriction ι∗Σ descends to a well-defined map between the cohomology groups. By the Künneth
formula, these groups are vector spaces of the same dimension, so it suffices to show that ι∗Σ is
injective. For a given cohomology class [α] we may define j := ∗α ∈ Ωn−pδ (M). If ι∗Σα = dΣβ, then
na1ja1...an−p |Σ = (δΣ ∗Σ β)a2...an−p . We may then consider the Maxwell equations δdA = j with
Cauchy data (a,E, φ, ω) = (0, ∗Σβ, 0, 0). This satisfies the constraint equation (11), so by Theorem
2.22 there exists a solution A, which explicitly shows that j = δdA is co-exact and hence α is exact.
Similarly, when α = dχ with χ ∈ Ωpsc(M), then ∗Σβ has compact support. Conversely, when ∗Σβ
has compact support, then A ∈ Ωn−psc (M) and hence α = (−1)p(n−p)+1dδA ∈ dΩp−1

sc (M).

3 The Poisson Structure for p-Form Fields

In this section we will consider the phase space of solutions to the Maxwell equations and we
will explain in some more detail how the Aharonov-Bohm effect is related to the choice of gauge
equivalence in Subsection 3.1. Next we endow the space of local, affine observables with a Poisson
bracket in Subsection 3.2, which will be used to quantise the theory in Section 4. Moreover, we
will compute the degeneracies of the Poisson bracket in Subsection 3.3 and show how they may
be interpreted in terms of Gauss’ law.

3.1 Observables and the space of solutions

We have already introduced the kinematic space of field configurations

Fp(M) = Dp(M)/dDp−1(M),

and the continuous dual space Fp(M)∗ = Ωp0,δ(M), under the duality (., ∗.). We will interpret the
elements of the dual space Fp(M)∗ as local, linear observables on F and we will write

Fα(A) :=

∫
M

fα(A), fα(A) := A ∧ ∗α

with α ∈ Fp(M)∗. As an illustration of these observables we will now elaborate how the Aharonov-
Bohm effect can be described within our mathematical framework.

Example 3.1 The following example is illustrated in Figure 2. Let M0 denote Minkowski space-
time and let ζ denote the solid cylinder along the z-axis, which is given in cylindrical coordinates
(r, ϕ, z, t) by r ≤ 1. We suppose that the cylinder ζ contains a conducting coil with a current
running through it and we denote the current density 1-form by j. The flux of the current through
the t = z = 0 plane will be denoted by Φ. The current generates a vector potential, which can be

represented in very good approximation by AΦ = φ(r)
2π dϕ, for some φ which equals Φ outside the
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Figure 2: An illustration of the Aharonov-Bohm effect, as described in Example 3.1, for p = 1. The
observable α, proportional to the differential dϕ of the angular coordinate, is supported in a ring-
shaped region and essentially measures the magnetic flux through a disc of radius R intersecting
the coil.

coil. (The approximation lies in the fact that in reality the current also has a small component
along the z-axis, which we ignored.)

In the Aharonov-Bohm experiment one uses quantum particles that, effectively, go around the
coil and measure a quantum phase shift that is proportional to the integral of A along its circular
path. (For a more proper description see [40].) We model this observable by the compactly supported
1-form α = r−1f(r −R)f(z)f(t)dϕ, where f ∈ C∞0 (R) has its support in (−1, 1) and R > 2. One
may verify that α is co-closed, so α ∈ F1(M0)∗ does indeed define an observable, in our sense.

A short computation yields Fα(AΦ) = Φ
(∫
f
)3

. This observable is therefore non-trivial, unless∫
f = 0.

We now focus on the region of spacetime M1 = M0 \ J(ζ) ' R×3 × S1. In this region, AΦ is
closed, but not exact. Nevertheless, α is supported only in M1 and defines a non-trivial observable
there, as evidenced by the Aharonov-Bohm effect. (By Hodge duality, α is not co-exact on M1.)
For this reason we cannot identify vector potentials whose difference is not exact. Interpreting AΦ

as a connection one-form we see that AΦ = −iλ−1dλ with λ := exp(i Φ
2πϕ) ∈ G(M1). However, ϕ

is not a well-defined smooth function on M1 and λ is not in G0(M1), because it has a non-trivial
holonomy. (Cf. Subsection 2.3.1.)

It is not difficult to construct higher dimensional analogues of this example. Indeed, let M0

be the n-dimensional Minkowski space and choose p such that 1 ≤ p ≤ n − 2. In the time zero
Cauchy surface Σ0 we now remove a hyperplane H of codimension p + 1 to obtain a surface
Σ := Σ0\H ' Rn−2−p×Sp×R>0. We let M := D(Σ) ⊂M0, so that M ' Rn−1−p×Sp×R>0. Let ω

denote the volume form on Sp and define the p-form potential AΦ := φ(r)∫
ω
ω, where φ(r) takes some

constant value Φ on r > 1. One may verify by direct computation that dAΦ = 0 on the region where
φ ≡ Φ and in particular it solves the homogeneous analogue of Maxwell’s equation there. Choosing
f and R as above we may define the compactly supported p-form α := r−pf(x1) · · · f(xn−p−2)f(t)ω,
which is again co-closed, so it defines an observable. We then find Fα(AΦ) = Φ(

∫
f)n−p. For a

physical interpretation analogous to the Aharonov-Bohm effect we note that the observable α must
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now describe an experiment involving (p−1)-dimensional objects, rather than particles. (For p = 0
the spacetime M would no longer be connected. For p = n−1 one could still take a Cauchy surface
Σ ' Sn−1 and find a closed A which is not exact, but this can no longer be obtained by removing
a hyperplane from M0, so an interpretation analogous to the Aharonov-Bohm experiment seems
less obvious.)

Example 3.1 motivates us to make the following definition, for p-forms:

Definition 3.2 A field configuration [A] ∈ Fp(M) is called an Aharonov-Bohm configuration if
and only if 0 6= [A] ∈ Hp(M). Furthermore, we call an observable α ∈ Fp(M)∗ a field strength
observable if and only if α ∈ δΩp+1

0 (M).

The definition of field strength observables is motivated by the fact that an observable α = δβ is
only sensitive to the field strength dA, because Fα(A) =

∫
M
dA ∧ ∗β. Equivalently, they are the

observables that vanish on all Aharonov-Bohm field configurations.
For any given background current j ∈ Ωp(M) we let Spj denote the phase space of solutions of

(9) :
Spj := {[A] ∈ Fp(M)| δd[A] = j} = {A ∈ Dp(M)| δdA = j} / ∼,

where we divide out the gauge equivalence relation. For any [A′] ∈ Spj , the map

e[A′] : Sp0 3 [A] 7→ [A+A′] ∈ Spj

is a well-defined bijection. Furthermore,

e[A′](0) = [A′], e[A′](B) = e[A](B + e−1
[A]([A

′])).

This means that Spj is an affine space modeled over the vector space Sp0 .
If we equip Dp(M) with the usual distribution topology, then the set Sp0 is a quotient of closed

linear subspaces. (That the denominator is closed follows from Theorem 2.2.) Sp0 will be equipped
with the quotient topology of the relative topology and we equip Spj with the unique topology that
makes all the maps e[A′] homeomorphisms.

The affine space Spj can be identified with the space Dp
j of initial data satisfying the constraint

equation, via the map spj : Dp
j → S

p
j , which sends (equivalence classes of) initial data to the

corresponding (equivalence classes of) solutions to equation (10). Note that the spj are affine
bijections, by the well-posedness of the initial value problem, Theorem 2.22. Moreover, if we
endow Dp

j with the topology that is obtained from the distributional topology by taking quotients
and direct sums, then all spj are homeomorphisms (cf. Remark 2.23).

We may view Spj as an infinite dimensional manifold, where we use e−1
[A′] as a single coordinate

chart. By considering smooth curves into Spj one finds that the (kinematic) tangent bundle of this
manifold is given by

TSpj ' S
p
j × S

p
0 .

For the (kinematic) cotangent bundle we consider the continuous linear maps on each tangent
space, so we define

T ∗Spj ' S
p
j × (Sp0 )∗.

We now establish an explicit representation for (Sp0 )∗:

Proposition 3.3 We have

(Sp0 )∗ =
Ωp0,δ(M)

δdΩp0(M)
(Dp

0 )∗ =
Ωp0(Σ)

dΣΩp−1
0 (Σ)

⊕ Ωp0,δ(Σ).

There are isomorphisms G : (Sp0 )∗→Sp,∞sc and ρ :Sp,∞sc →(Dp
0 )∗ with

Sp,∞sc := {A ∈ Ωpsc(M)| �A = δA = 0} /dΩp−1
sc (M)

and ρ(A) := (ι∗Σ([A]), na(dA)a···|Σ).
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Proof: Because there is a homeomorphism sp0 :Dp
0→S

p
0 it is clear that (sp0)∗ is a homeomorphism of

(Sp0 )∗ to (Dp
0 )∗ (cf. Remark 2.23). The expression for (Dp

0 )∗ follows immediately from Theorem 2.2,
keeping in mind the general facts that for a closed subspace L ⊂ T of a locally convex topological
vector space T we have (T/L)∗ = L⊥ and L∗ = T ∗/L⊥, where L⊥ ⊂ T ∗ is the subspace that
annihilates L (cf. [35] 14.5).

The map ρ is a well-defined linear isomorphism, by the smooth version of Theorem 2.22. We
now show that G descends to an isomorphism from

V := Ωp0,δ(M)/δdΩp0(M)

to Sp,∞sc . For any α ∈ Ωp0,δ(M) we have �Gα = 0 and δGα = Gδα = 0. Furthermore, if α = δdβ

for some β ∈ Ωp0(M), then Gα = Gδdβ = −Gdδβ = dχ with χ := −Gδβ ∈ Ωp−1
sc (M). This means

that G descends to a well-defined linear map from V to Sp,∞sc . Now suppose that A ∈ Sp,∞sc . By
Proposition 2.6 there is an α ∈ Ωp0(M) such that A = Gα. As δA = 0 we conclude from Corollary
2.8 that δα = δdβ for some β ∈ Ωp−1

0 (M). Defining γ := α− dβ we have δγ = 0, so [γ] ∈ V , while
Gγ = A− dGβ ∼ A in Sp,∞sc . This means that G is surjective.

To prove injectivity of G we choose α ∈ Ωp0,δ(M) and we assume that Gα = dχ for some

χ ∈ Ωp−1
sc (M). Without loss of generality we may assume that δχ = 0 (cf. Lemma 2.17). Note

that dGα = 0, so by Corollary 2.8 that α = δβ for some β ∈ Ωp+1
0,d (M). Furthermore, �χ = δdχ =

δGδβ = 0, so that χ = Gη for some η ∈ Ωp−1
0 (M). As 0 = δχ = δGη we have δη = δdσ for some

σ ∈ Ωp−2
0,δ (M), by Corollary 2.8. Putting everything together we have G(δβ − dη) = Gα− dχ = 0,

so we can find τ ∈ Ωp0(M) with δβ = dη + �τ (cf. Proposition 2.6). Note that �(β − dτ) =
d(δβ−�τ) = d2η = 0, which means that β = dτ , by the compact supports. Hence, α = δβ = δdτ ,
so [α] = 0 in V and G is injective.

From Corollary 2.15, taking [A] in Lorenz and temporal gauge, we see that the composition
ρ ◦G on V is just the dual map to the solution map sp0. In particular, (Sp0 )∗ = V . �

3.2 The Poisson structure

Our next goal is to deduce a Poisson structure on the phase space Spj , using Peierls’ method (cf.
[41], or [30] Section I.4). For this purpose we consider for any observable Fα, α ∈ Fp(M)∗, and
for any ε > 0 the modified Lagrangian

Lε := L+ εfα(A).

This gives rise to the equations of motion

δdA = j + εα.

Given [A] ∈ Spj we let [A±ε,α] denote the gauge equivalence class of solutions to the modified
equation which coincide (up to gauge equivalence) with [A] in the past (+), resp. future (−), of
the support of α. Due to the affine structure of the equation of motion these solutions are uniquely
defined, up to gauge equivalence, and they are represented by

A±ε,α = A+ εG±α.

The function Fα then defines a vector field on Spj by setting

[A] 7→ δFα [A] := ∂ε(A
+
ε,α −A−ε,α)|ε=0 = −Gα.

For another function Fβ on Fp(M), β ∈ Ωp0,δ(M), we then define the anti-symmetric bilinear map

{Fα, Fβ} := δFα(Fβ) = −(Gα, ∗β) = (α, ∗Gβ). (12)

This map descends to an anti-symmetric bilinear map on (Sp0 )∗, by similar computations as in
the proof of Proposition 3.3. We define the quotient map to be the Poisson bracket, which is an
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anti-symmetric bilinear map on each cotangent space T ∗[A]S
p
j ' (Sp0 )∗ (it defines a 2-vectorfield).

The canonical trivialisation of the cotangent bundle ensures that the Poisson bracket takes a form
which is independent of the base point [A] ∈ Spj .

In terms of the initial data (aα, Eα, φα, 0) of Gα and (aβ , Eβ , φβ , 0) of Gβ on a Cauchy surface
Σ we have:

{Fα, Fβ} (A) ≡
∫
M

α ∧ ∗Gβ =

∫
Σ

Eβ ∧ ∗Σaα − Eα ∧ ∗Σaβ , (13)

as may be seen directly from Corollary 2.15. Also note that the constraint equation δΣEα =
δΣEβ = 0 is satisfied, by Theorem 2.22.

Remark 3.4 Our proof of Proposition 3.3 also shows the rather remarkable fact that (Sp0 )∗ is iso-
morphic to Sp,∞sc , which is a space of spacelike compact, smooth solutions to the Maxwell equations,
in Lorenz gauge (see [36] Sec.5.3 for similar comments). Furthermore, under this identification the
Poisson bracket that we have derived, using Peierls’ method, takes the same form as the usual (pre-
)symplectic form, or Lichnerowicz propagator, on Sp,∞sc . This makes it tempting to believe that the
two quantisation schemes, using the Poisson bracket on observables or using the (pre-)symplectic
structure on the spacelike compact solutions, are equivalent.

However, there is an important, but subtle difference: the gauge equivalence on Sp,∞sc is defined
by dΩp−1

sc (M), so it differs from the original gauge equivalence dΩp−1(M). Using the wrong gauge
equivalence would lead to a theory without non-local behaviour [38], which, however, does not
behave well under embeddings.7 The previous literature has dealt with this subtle difference in
various ways: it was either evaded, by considering only compact Cauchy surfaces [16, 20, 42], the
field strength tensor [12] or a different choice of gauge equivalence [13], or at best it was taken into
account in an ad hoc fashion (cf. [19] for the case of linearised gravity, or [31] for a more axiomatic
approach). The point of our paper is that the origin of this subtle difference can be understood: it
stems from taking the dual space of Sp0 as the space of observables, in line with Peierls’ method.

3.3 Degeneracies of the Poisson bracket

In general the Poisson bracket is degenerate, which means that there can be degenerate elements
α ∈ (Sp0 )∗, i.e. elements such that {Fα, Fβ} = 0 for all β ∈ (Sp0 )∗. The subspace Cp(M) of
degenerate elements of (Sp0 )∗ can be fully characterised in terms of the topology (and causal
structure) of M :

Proposition 3.5 We have

Cp(M) :=
δ(Ωp+1

0 (M) ∩ dΩptc(M))

δdΩp0(M)
' Ωp0(Σ) ∩ dΣΩp−1(Σ)

dΣΩp−1
0 (Σ)

=: Cp(Σ).

Proof: We start with the expression for Cp(Σ), which is easiest to obtain. Using the formula for
(Dp

0 )∗ (Proposition 3.3), the Poisson bracket as given in equation (13) and Poincaré duality one
sees that ([a], E) ∈ (Dp

0 )∗ is degenerate if and only if E = 0 and any representative a of [a] is
exact, a ∈ dΣΩp−1(Σ), but not necessarily in dΣΩp−1

0 (Σ). The expression for Cp(Σ) then follows.
Next we note that any α ∈ δ(Ωp+1

0 (M) ∩ dΩptc(M)) does define a degenerate observable in
(Sp0 )∗, because if α = δdβ for some β ∈ Ωptc(M), then every γ ∈ Ωp0,δ(M) satisfies (α, ∗Gγ) =
−(Gδdβ, ∗γ) = (Gdδβ, ∗γ) = −(Gδβ, ∗δγ) = 0. It follows from Proposition 3.3 that there is a
linear injection from the second expression into Cp(M). To prove that this map is surjective we
suppose that α ∈ (Sp0 )∗ is degenerate. For any γ ∈ Ωp0,δ(M) we must then have (Gα, ∗γ) = 0.

7To prove these claims one uses arguments as in the proof of Proposition 3.3 to find the space of observables

Ωp0,δ(M)/δdΩptc(M) ' Ωp0(Σ)/dΩp−1(Σ)⊕ Ωp0,δ(Σ).

By Corollary 2.15 one sees that the Poisson bracket has no degeneracies. However, item 2 of Remark 3.10 below
gives an example where this theory behaves badly under embeddings, because the usual push-forward on Ωp0,δ(M)

would map a trivial observable to a non-trivial one.
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This implies firstly that Gα is closed (by choosing γ ∈ δΩp+1
0 (M)) and even that Gα is exact, by

Poincaré duality. Thus Gα = dχ for some χ ∈ Ωp−1(M). Now, following the penultimate paragraph
of the proof of Proposition 3.3, but allowing supports to be timelike compact only, where needed,
we find that α = δdτ for some τ ∈ Ωptc(M) with β := dτ ∈ Ωp+1

0 (M). This completes the proof. �

Remark 3.6 Since the moment we made our choice of gauge equivalence, we have only followed
standard procedures to find Cp(M). It is therefore tempting to think that observables in Cp(M) are
related to the Aharonov-Bohm effect, which motivated our choice of gauge equivalence. However,
Cp(M) consists entirely of field strength observables (cf. Def. 3.2), which are not sensitive to the
Aharonov-Bohm effect. (This is in accord with the observations of [2].)

It is clear that Cp(M) is trivial whenever Σ is compact, or whenever Hp
0 (Σ) ' Hp+1

0 (M)
is trivial. Furthermore, if Hp(M) ' Hp(Σ) is trivial, then Cp(M) = δHp+1

0 (M) and Cp(Σ) =
Hp

0 (Σ). To close this section we will give an alternative description of Cp(Σ) for general p and
general spacetimes M . This will allow us to physically interpret the degeneracies in the case of
electromagnetism, p = 1.

Suppose, then, that [α] ∈ Cp(Σ), and let β ∈ Ωp−1(Σ) be such that α = dΣβ. Note that β is
unique up to a closed form and therefore [α] = 0 if and only if there is a closed form γ ∈ Ωp−1

d (Σ)
such that β − γ has compact support. We will first argue that it suffices to find γ such that β − γ
is exact outside a compact set. Indeed, if β−γ = 0 in some region, then it is certainly exact there.
Conversely, if β−γ is exact on the complement Kc := Σ\K of some compact set K, β−γ = dΣζ,
then we may use a partition of unity subordinate to Kc and some relatively compact V ⊃ K to
find a ζ ′ ∈ Ωp−2(Σ) which coincides with ζ outside K ′ := V . Hence, γ′ := γ + dΣζ ′ is closed and
β − γ′ vanishes outside K ′. This means that [α] = 0 as an observable if and only if we can find
[γ] ∈ Hp−1(Σ) and a compact K ⊂ Σ such that [(β − γ)|Kc ] = 0 in Hp−1(Kc).

For any compact K the canonical embedding ι :Kc→Σ gives rise to the linear restriction map
ι∗ :Hp−1(Σ)→Hp−1(Kc). If K contains the support of α, then β is closed on Kc and determines
an element [β|Kc ] ∈ Hp−1(Kc). We then see that [α] = 0 if and only if [β|Kc ] is in the range
of ι∗, for some compact K ⊃ supp(α). By Poincaré duality this is equivalent to the fact that
[β|Kc ], interpreted as a linear map on Hn−p

0 (Kc), vanishes on the kernel of the push-forward map
ι∗ :Hn−p

0 (Kc)→Hn−p
0 (Σ).

When p = 1 this situation simplifies, because H0(Σ) consists only of all constant functions and
H0(Kc) of locally constant functions. Let us decompose supp(α)c into connected components Vi,
i ∈ I some index set, and assume that I is finite. Let I ′ ⊂ I be the subset of indices for which Vi
has a non-compact closure in Σ. Note that [α] = 0 if and only if β takes the same constant value
on all regions Vi with i ∈ I ′. Indeed, if this is not the case, then β − γ can never have compact
support for any constant γ. Conversely, if β|Vi = γ for all i ∈ I ′, then β − γ has support in the
compact set K := supp(α)

⋃
i∈I\I′ Vi, because it vanishes on Kc =

⋃
i∈I′ Vi.

Note that in order to have [α] 6= 0 in C1(M), I ′ must contain at least two distinct indices. As
a physical interpretation, one may think of one of the regions Vi, i ∈ I ′, as a neighbourhood of
infinity, whereas the others may be seen as regions which are influenced by some electric charges
(which themselves lie outside of the spacetime). The support of α separates all these regions, and
we may interpret Fα as an observable which exploits Gauss’ law to measure the electromagnetic
flux through a surface that separates the regions with charge from the neighbourhood of infinity.

We have already seen a concrete example of a non-trivial C1(Σ) in Example 2.1, where Σ ' R
and the observable is given by α = f(r)dr for some f ∈ C∞0 (R). We now elaborate the relationship
between this example and Gauss’ law:

Example 3.7 The following example is illustrated in Figure 3. Let M0 be n-dimensional Minkoswki
spacetime, n ≥ 3, and let Σ0 := {t = 0} for some inertial time coordinate t. Define M := D(Σ) ⊂
M0, with Σ := Σ0 \B1, where B1 is the closed unit ball. (The case n = 2 requires slight modifica-
tions, as Σ would be disconnected.) Then Σ is a Cauchy surface for M and Σ ' R>1 × Sn−2. We
consider the 1-form α = f(r)dr, where f ∈ C∞0 ((1,∞)) and r ∈ R>1 is the radial coordinate on
Σ ⊂ Σ0. In analogy to Example 2.1, α ∈ Ω1

0(Σ) and α = −dβ with β(r) :=
∫∞
r
f(s)ds. β vanishes

24



Figure 3: An illustration of Gauss’ law, as described in Example 3.7. The observable α = dβ =
f(r)dr, supported near a sphere of radius R around the locus of the electric point charge Q,
essentially measures the electric flux through the surface of that sphere.

near r = ∞ and it is constant in a neighbourhood of the (removed) unit ball B1. β is compactly
supported if and only if

∫
f = 0.

This example can be extended from the Cauchy surface Σ to the spacetime M as follows. Let τ ∈
Ω0

0(R) with
∫
τ = 1 and support sufficiently close to the origin to ensure that α′(r, t) := α(r)∧τ(t)dt

is in Ω2
0(M). We have α′ = dβ′ with β′(r, t) := −β(r) ∧ τ(t)dt and β′ is compactly supported if

and only if
∫
f = 0. Now consider the observable ν := −δα′ = −δdβ′. Note that ν ∈ δdΩ1

tc(M),
so ν ∈ C1(M). We will show that ν is not trivial, i.e. ν 6∈ δdΩ1

0(M). For this purpose we consider
the field configuration AQ := Q

(3−n)cn−2rn−3 dt when n ≥ 4, or AQ := Q
2π log(r)dt when n = 3,

with Q ∈ R and cn−2 is the volume of the unit sphere Sn−2. One may verify that AQ ∈ Sp0 is a
(Lorenz gauge) solution to the Maxwell equations without source. In fact, it is the field generated
by a point charge at the origin in M0, but the region of charge has been removed from M . Direct
computations now show that dAQ = Q

cn−2rn−2 dr ∧ dt and

(ν, ∗AQ) = (α′, ∗dAQ) =

∫
M

f(r)τ(t)
Q

cn−2rn−2
dvolM =

∫
Σ

f(r)
Q

cn−2rn−2
dvolΣ = Q

∫
f.

This proves that ν 6= 0 ∈ (Sp0 )∗, by Proposition 3.3. Moreover, the final equation exhibits the
relation between the form ν and Gauss’ law.

The discussion above and these examples motivate us to make the following definition

Definition 3.8 An observable α ∈ C1(M) is called an (external) electric monopole observable.
We call a field configuration A ∈ F1(M) free of (external) electric monopoles if and only if
Fα(A) = 0 for all α ∈ C1(M).

Remark 3.9 Our theory does not contain any magnetic monopole observables, because F = dA
is always exact. To obtain such magnetic monopoles one could e.g. directly quantise the theory for
F (see [12] and Remark 4.6 below), or one can use a 3-form field B such that F = δB and with
a gauge equivalence based on co-closed or co-exact forms. In these cases F can be closed without
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being exact and magnetic monopoles can occur. On the other hand, the theory would no longer
be able to describe the Aharonov-Bohm effect. Alternatively, one may obtain magnetic monopoles
by quantising a theory of principal U(1)-connections [5], or by adding by hand a space of central
magnetic monopole observables, indexed e.g. by a basis of a suitable cohomology group. The latter
approach, however, is somewhat ad hoc and it does not seem amenable to the geometric techniques
that we advocate, using Lagrangians and Peierls’ method. This means in particular that any choice
of a space of extra central observables cannot be motivated from a geometric analysis similar to
the space of electric monopole observables (at least not without reverting to other theories, e.g. the
one based on F ).

Our interpretation offers a nice explanation for the fact that Cp(M) is trivial when M has
compact Cauchy surfaces. Namely, such a spacetime can only be isometrically embedded in one
with a diffeomorphic Cauchy surface. Thus, in particular, it is not possible to embed M into a
spacetime with an electric charge located outside of the image of the embedding.

For future convenience we make here a remark, which is closely related to the previous example
of Gauss’ law:

Remark 3.10 Consider two embeddings of Σ := R × Sn−2, n ≥ 3, into other manifolds. The
first is an embedding ψ1 : Σ→ Rn−1, which is defined as the identity in polar coordinates. The
second is an embedding ψ2 : Σ→ S1 × Sn−2, where we used an embedding R → S1 in the first
factor. Now consider the compactly supported 1-form α of Example 3.7 on Σ with

∫
f 6= 0, and

its push-forwards αi := (ψi)∗α. Because the exterior derivative commutes with the push-forward,
both αi are closed. Recall that α ∈ dΩ0(Σ), but α 6∈ dΩ0

0(Σ). For the αi this is different:

1. α1 ∈ dΩ0
0(Rn−1).

2. α2 6∈ dΩ0(S1 × Sn−2).

The first statement follows from the fact that H1
0 (Rn−1) is trivial for n ≥ 3. For the second

statement we argue by contradiction and suppose that α2 = dβ2 for some function β2 on S1×Sn−2.
Note that the complement of the range of ψ2 is connected, and that β2 is constant there. Without
loss of generality we may assume that β2 vanishes there, so it follows that β := ψ∗2(β2) satisfies
dβ = α and β vanishes outside a compact set. However, we know from the Examples 2.1 and 3.7
(and from the discussion above Example 3.7) that this cannot be the case, as

∫
f 6= 0.

To close this subsection we provide an example concerning degenerate observables for p = 2,
indicating why an interpretation in terms of charge is more complicated in that case.

Example 3.11 For p > 1 one may easily find degenerate observables by generalising Example
3.7, taking Σ = R>0×R×p−1×Sn−1−p and α = dΣβ with β = (

∫ r
1
f)f(x2) · · · f(xp)dx2∧ . . .∧dxp,

where the xi are Cartesian coordinates on Rp−1. Then α has compact support and β has compact
support if and only if

∫∞
1
f = 0.

Perhaps a more interesting example for p = 2 can be obtained by taking Σ := R2 \ {x1, x2},
where the xi are two distinct points. We let V0 ⊂ R2 denote the complement of a closed ball which
contains both xi and we let V1, V2 ⊂ R2 be punctured open balls around x1, x2, respectively, such
that the closures of V0, V1, V2 are pairwise disjoint. We will view V0, V1, V2 as subsets of Σ and we
note that their topologies are all equal to R×S1. For i = 0, 1, 2 we may choose ηi ∈ Ω1

0,d(Vi) which is

not exact, so that [ηi] generates H1
0 (Vi), and we may choose βi ∈ Ω1(Σ) such that (ηi, βj |Vi) = δij,

the Kronecker delta.
For any given constants bi ∈ R we can now construct a one-form β ∈ Ω1(Σ) such that β|Vi =

biβi, simply by using a suitable partition of unity. Setting α := dΣβ we see that α ∈ Ω2
0(Σ) has

support in the compact set V c0 . We may wonder whether α = dΣβ′ for some β′ ∈ Ω1
0(Σ) with

compact support. Now note that [γ] ∈ H1(Σ) is uniquely determined by ci := (ηi, γ) with i = 1, 2
only. Moreover, the complement of any compact set K ⊂ Σ will contain representatives of all three
[ηi]. Hence, for β−γ to be exact on Kc we would need (ηi, β−γ) = 0 for i = 0, 1, 2. We can choose
γ to ensure this equality for i = 1, 2, but the remaining equality puts a necessary restriction on β.
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Indeed, in Σ the three [ηi] are linearly dependent, say [η2] = [η0]− [η1]. A short computation then
shows that the necessary condition for [α] = 0 is b2 = b0 − b1. This condition is also sufficient.

Note that the equation b2 = b0 − b1 involves all three constants bi, which changes the inter-
pretation somewhat. If we identify V0 as a neighbourhood of infinity we may choose γ such that
(η0, β − γ) = 0, meaning that there is no charge at infinity. Replacing β by β̃ := β − γ we are left
with the condition that b̃2 = −b̃1, where b̃i = (ηi, β̃). In the analogous case for p = 1 we would find
conditions involving only one constant b̃i, which we could then interpret as a charge located at xi,
i = 1, 2. In the present case, however, it seems we must attribute the charge instead to the union
of the two points.

Note that the situation above can also be formulated in R3, simply by adding an extra dimension,
removing two parallel lines, choosing [ηi] ∈ H2

0 (Vi), etc. If we would instead remove a circle and a
line from R3, then the linear dependence between the [ηi] would only involve two of these classes
and we would obtain an interpretation in terms of a charge located on the line. On the other hand,
if we remove two circles, then the three [ηi] would be linearly independent, so no charge is present.
This seems to be independent of whether the removed circles are knotted or linked in any way.

4 The Quantised p-Form Field and Field Strength

After studying the classical dynamics of the p-form field in the presence of a given background
current j, we now discuss the corresponding quantum theory. In the case where j = 0 we can
directly quantise the linear Poisson space and let the Poisson bracket correspond to a commu-
tator between operators in the usual way. In the general case, however, we only have an affine
Poisson space. For this reason we will first discuss a general method for quantising affine Poisson
spaces, which can be viewed as a special case of Fedosov’s quantisation scheme from the theory of
deformation quantisation [47].

4.1 The quantisation of affine Poisson spaces

In this subsection we consider a real affine space V , modeled over a real linear topological vector
space V0. (Requiring a topology is no loss of generality, because one may always choose the discrete
topology.) This means that for every x ∈ V there is an affine bijection ex :V0→V such that

ex(0) = x, ex(v) = ey(v + e−1
y (x)) ∀y ∈ V.

We equip V with the unique topology that makes each ex a homeomorphism, so we may view ex
as a coordinate chart covering the affine manifold V . We denote by V ∗0 the topological dual of V0

and we denote the space of continuous affine maps on V0 by V ′0 ' R ⊕ V ∗0 . We may identify the
tangent and cotangent bundles of V with

TV ' V × V0, T ∗V ' V × V ∗0 .

In particular we can use the derivative D0ex at 0 to identify T0V0 ' V0 with TxV in a canonical
way, so there is an isomorphism ex ◦ (D0ex)−1 :TxV →V . We define a canonical affine connection
on TV using the maps σyx :TxV →TyV defined by σyx := D0ey ◦ e−1

y ◦ ex ◦ (D0ex)−1. This affine
connection is characterised by (x,D0exv) 7→ (y,D0ey(v + e−1

y x)). Because the connection is only
affine and not linear it will be convenient to introduce the bundle T ′V ' V × V ′0 , so that T ′xV is
the space of continuous affine maps on TxV .

Now assume that there is a Poisson structure on V , i.e. at each x ∈ V , Px is an antisymmetric,
bilinear map on T ∗xV . Equivalently, Px can be viewed as a bilinear map on T ′xV which vanishes
when at least one of the arguments is a constant map. For any x ∈ V we can pull-back Px to a
bilinear map πx on V ′0 (or on V ∗0 ), πx(ξ, η) := Px(ξ ◦ (D0ex)−1, η ◦ (D0ex)−1) for all ξ, η ∈ V ′0 . We
assume in addition that the Poisson structure is covariantly constant with respect to the canonical
affine connection on TV , i.e. Py(ξ, η) = Px(ξ ◦ σyx, η ◦ σyx) for all ξ, η ∈ T ′yV . The covariant
constancy is equivalent to πx(ξ, η) = πy(ξ ◦ e−1

x ◦ ey, η ◦ e−1
x ◦ ey) = πy(ξ, η) for all x, y ∈ V and all
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ξ, η ∈ V ′0 , where we used the fact that πy is bilinear and vanishes when one of the two arguments
is a constant. In other words, πx = πy for all x, y ∈ V . A further equivalent formulation uses the
identification of TxV with V by ex ◦ (D0ex)−1 to define an antisymmetric, bilinear map P on V ′

which vanishes when one of the arguments is a constant map. Note that P (ξ, η) = π(ξ ◦ ex, η ◦ ex)
for any x ∈ V .

Definition 4.1 By an affine Poisson space we mean a pair (V, P ), where V is an affine space,
modeled over a topological vector space V0, and P is an antisymmetric bilinear map on V ′. We
say that (P, V ) is modeled over the linear Poisson space (V0, π), where π is the push-forward of P
by any of the canonical isomorphisms ex :V0→V , x ∈ V .

Remark 4.2 If V0 is finite-dimensional, the specification of a non-degenerate antisymmetric bi-
linear map π on V ∗0 is equivalent to the specification of a (non-degenerate) symplectic form σ
on V0, using the linear isomorphism V ∗0 → V ∗∗0 ' V0 : ξ 7→ π(ξ, .). However, when σ or π is
degenerate, or when the space V0 is infinite dimensional, the situation is more complicated. Both
complications apply for the vector potential and its p-form generalisations.

For the linear Poisson space (V0, π) it is well-known how to construct the corresponding quan-
tum theory. One can construct a Weyl C∗-algebra W0, which is generated by linearly independent
Weyl operators W (ξ), ξ ∈ V ∗0 satisfying the Weyl relations

W (ξ)W (η) = e−
i
2π(ξ,η)W (ξ + η), W (ξ)∗ = W (−ξ).

Note that this also works in the case where π is degenerate [8]. The operators W (ξ) are unitary
and degenerate elements ξ ∈ V ∗0 generate the centre of W0. We will mostly be interested in the
infinitesimal Weyl algebra, A0, which is the ∗-algebra generated by an identity operator I and the
operators Φ(ξ) satisfying the relation

[Φ(ξ),Φ(η)] := Φ(ξ)Φ(η)− Φ(η)Φ(ξ) = iπ(ξ, η)I.

It may equivalently be described as a ∗-algebra of functions on V0, which are symmetric polynomials
in elements of V ∗0 , using a deformed (Weyl-Moyal) ?-product. For monomials F := ξl and G := ηm

with ξ, η ∈ V ∗0 this product is given by (cf. [47])

F ? G =

min(l,m)∑
n=0

in

n!2n
π(ξ, η)n

l!m!

(l − n)!(m− n)!
ξl−n ◦s ηm−n,

where ◦s denotes the symmetrised product. Using ξ ? η−η ? ξ = iπ(ξ, η) and identifying Φ(ξ) with
the linear map ξ we recover [Φ(ξ),Φ(η)] = iπ(ξ, η). Note that symmetric monomials of the form
ξl generate the linear space of all symmetric polynomials.

For the affine Poisson space (V, P ) we will construct an analogous algebra, using a prescription
that can be viewed as an application of Fedosov’s quantisation technique from the theory of
deformation quantisation [47]. For any x ∈ V we let Ax be the infinitesimal Weyl algebra of the
cotangent space T ∗xV , in the Poisson bracket Px at x ∈ V . It may be interpreted as a quantisation
of the perturbations of the system, around the fixed point x ∈ V . Taking the algebras for all
x ∈ V together, one may form a bundle A of ∗-algebras over V and then consider the algebra Ã
of sections of A, where algebraic operations are preformed pointwise in Ax. Of course the algebra
Ã is too big for physical purposes, because it does not take into account the relations between the
algebras Ax at different points x ∈ V . To remedy this defect, Fedosov’s construction suggests to
find a connection on the bundle A, suitably adapted to the Poisson structure P , and to consider
the subalgebra A of Ã generated by covariantly constant sections. We will now show that for an
affine Poisson space such a connection on A can be found, using the canonical affine connection
of V .

Consider two points, x, y ∈ V , and the affine isomorphism σyx between TxV and TyV . We view
Ay as the space of functions on TyV which can be written as symmetric linear polynomials in V ∗0 ,
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endowed with a ?-product. Pulling back these functions by e−1
y ex yields a linear isomorphism onto

Ax, which we denote by αxy. Under this isomorphism, a generator Φy((D0ey)∗ξ) at y ∈ V , with
ξ ∈ V ∗0 , gets mapped to

αxy(Φy((D0ey)∗ξ)) = Φx((D0ex)∗ξ) + ξ(e−1
y (x))I,

because ((D0ey)∗ξ) ◦σyx = (D0ex)∗ξ+ ξ(e−1
y (x)). One may verify that e−1

x (y) = −e−1
y (x), so that

σyx = σ−1
xy and αyx = α−1

xy . Furthermore, αxyαyz = αxz for all x, y, z ∈ V and, using the explicit
form for the ?-product,

αxy(F ) ? αxy(G) = αxy(F ? G).

As x, y range over V , the ∗-isomorphisms αxy piece together the desired connection α of the

algebra bundle A. A section of this bundle, F (x) ∈ Ã , is covariantly constant with respect to α if
and only if F (x) = αxy(F (y)) for all x, y ∈ V . The subalgebra A that we obtain from Fedosov’s
quantisation method is therefore isomorphic to any Ax.

The algebra A can also be constructed in a more direct and invariant way as follows. We
consider the algebra A of functions on V that can be written as antisymmetric polynomials in
elements of V ′, with a ?-product based on the antisymmetric bilinear map P on V ′. Equivalently,
we may define A as follows:

Definition 4.3 For an affine Poisson space (V, P ) we define the algebra A (V, P ), generated by
operators Φ(χ), χ ∈ V ′, satisfying

1. Φ(1) = I, where 1 is the constant function on V and I the identity operator,

2. χ 7→ Φ(χ) is linear,

3. Φ(χ)∗ = Φ(χ) (as χ is real-valued), and

4. [Φ(χ),Φ(ψ)] = iP (χ, ψ)I.

To see the relation between the generators Φ(χ) of A (V, P ) and Φx(ξ) of Ax for any x ∈
V , we view these algebras as linear spaces of functions on V , resp. TxV . The pull-back under
ex ◦ (D0ex)−1 :TxV →V provides a linear isomorphism αx :A (V, P )→Ax. For any χ ∈ V ′ we may
define the linear part ξχ of χ by ξχ(v) := (e∗xχ)(v)− (e∗xχ)(0). This is a continuous linear map on
V0, which is independent of the choice of x ∈ V , because (indicating the possible dependence on
x in the subscript)

ξχ,x(v) = χ(ex(v))− χ(x) = (e∗yχ)(v + e−1
y (x))− (e∗yχ)(e−1

y (x))

= ξχ,y(v + e−1
y (x))− ξχ,y(e−1

y (x)) = ξχ,y(v).

The map αx then satisfies

αx(Φ(χ)) = Φx((D0ex)∗ξχ) + χ(x)I.

One may directly verify that αx is a ∗-algebra isomorphism, because αx(F ) ? αx(G) = αx(F ?G).
Also note that αxy = αx ◦ α−1

y by construction.

Remark 4.4 A C∗-algebraic formulation exists along similar lines, because the maps σxy give
rise to Bogolyubov transformations of the second kind on the Weyl C∗-algebras Wx of each tangent
space TxV ' V0, cf. [8].

4.2 Quantising the p-form fields

The procedure described in the previous subsection applies in particular to the p-form fields, for
which we have seen that Spj is an affine Poisson space, modeled on the linear Poisson space Sp0
with the Poisson bracket {, }.
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Note that the notation can be made a bit more concrete by realising that the affine space Spj
is a subspace of the linear space Fp(M) and by using the maps e[A] (cf. Subsection 3.1). Any
continuous affine map χ in (Spj )′ can be extended to a continuous affine map on Fp(M) as follows.
First we may extend the linear part ξχ from Sp0 to Fp(M), so there is an α ∈ Fp(M)∗ such that
ξχ([A]) = Fα(A) for all [A] ∈ Sp0 . Then we may define the affine map χα on Fp(M) by

χα([A′]) := χ([A]) + Fα(A′ −A) = (χ([A])− Fα(A)) + Fα(A′)

for some given [A] ∈ Spj . The extension is not unique, because χα = χα′ if and only if α − α′ ∈
δdΩp0(M) (cf. Proposition 3.3).

Following the results of Subsection 4.1 we may now describe the quantum p-form field. Instead
of the space (Spj )′ we may consider Fp(M)′ ' R⊕Fp(M)∗, but we must divide out the equivalence
relation

(c, α) ∼ 0 ⇔ α = δdβ, β ∈ Ωp0(M), c = −Fα(A) = −(j, ∗β),

where A ∈ Spj is arbitrary. This leads to the following

Definition 4.5 The (on-shell) p-form field algebra is the ∗-algebra Aj(M) generated by a unit I
and the symbols A(α), α ∈ Fp(M)∗, subject to the relations

1. α 7→ A(α) is linear,

2. A(α)∗ = A(α), (as α and A are real-valued),

3. [A(α),A(β)] = i {Fα, Fβ} I,

4. (δdA)(β) = (j, ∗β)I for all β ∈ Ωp0(M).

Note that the constant maps (c, 0) give rise to multiples of the identity, whereas the linear maps
(0, α) give rise to the fields A(α). The equivalence relation (c, α) ∼ 0 gives rise to the equation
of motion. For the homogeneous case, where j = 0, this simply reduces to the usual infinitesimal
Weyl algebra A0.

Just like in Subsection 4.1 we may construct for each [A] ∈ Spj a unique ∗-isomorphism α[A] :
Aj→A0 which preserves the unit and satisfies

α[A](A(α)) = Fα(A)I + A0(α),

i.e. α[A](A)(x) := A(x)I + A0(x), where we wrote the field operators that generate A0 with a
subscript 0 for distinction. This ∗-isomorphism can be used to pull back states on A0 to states on
Aj . When A is smooth, the microlocal spectrum condition is preserved under pull-back by e[A]

(cf. [4]).
One may define the field strength F := dA also in the quantum case. More precisely, we

consider the field strength observables α = δβ with β ∈ Ωp+1
0 (M) and F(β) := −A(δβ). Together

with the unit I these operators generate a subalgebra Fj(M) of Aj(M) such that

1. β 7→ F(β) is linear,

2. F(β)∗ = F(β), (as β is real-valued),

3. [F(β),F(γ)] = i {Fδβ , Fδγ} I,

4. (δF)(γ) = j(γ)I for all γ ∈ Ωp0(M).

The homogeneous Maxwell equations dF = 0 already follow from the definition F = dA.

Remark 4.6 Note that the algebra Fj(M) differs from the field strength algebra considered in
[12], even for j = 0 and p = 1, because our approach only considers observables on field strength
configurations that are derived from a vector potential, whereas [12] constructs an algebra directly
for F . This is related to our ability to accommodate the Aharonov-Bohm effect and to our inter-
pretation of electromagnetism as a theory for the connections of a trivial principal U(1)-bundle.
We rely heavily on the existence of a Lagrangian formulation and on Peierls’ method to derive the
Poisson bracket. For this reason a direct application of our results to analyse the centre of the field
strength algebra of [12] is not straightforward.
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Proposition 3.5 implies the following result on the centre of Aj(M):

Corollary 4.7 The centre of Aj(M) is generated by I and F(β) = −A(δβ) with −δβ ∈ Cp(M).

A similar statement can be derived for the field strength algebra, whose centre is generated by I
and F(β) with β ∈ Hp+1

0 (M). This may be compared to [12], who quantised the field strength
tensor for p = 2 directly and whose results imply that the centre can be written as

Ω2
0,d(M) + Ω2

0,δ(M)

dΩ1
0(M) + δΩ3

0(M)
' H2

0 (M) +H2
0,δ(M).

Note that a globally hyperbolic spacetime has no γ ∈ Ω2
0(M) which is simultaneously closed and

co-closed, since �γ = 0 implies γ = 0. Hence, any ω ∈ Ω2
0,d + Ω2

0,δ can be written uniquely as

ω = α + β with α ∈ Ω2
0,d(M) and β ∈ Ω2

0,δ(M). Using this decomposition in the numerator and

denominator we see that the space of degeneracies found by [12] is isomorphic to H2
0 (M)+H2

0,δ(M).

4.3 General covariance and locality

The occurrence of a non-trivial centre as in Corollary 4.7 was first established by [12] in their model
of the field strength tensor, although the centre found in [12] is larger than ours, as it also contains
observables of the field strength tensor which are not observables of the vector potential. Those
authors also realised that the presence of this non-trivial centre implies that local covariance, in
the sense of [11], fails. As we will see in this subsection, this lack of local covariance is really only
a lack of locality. Moreover, the lack of locality is not surprising, because it already occurs at the
classical level in the form of Gauss’ law. We will now use our careful computation of the centre to
show that the lack of locality at the quantum level can be traced back to the same source, thereby
achieving the main goal of this paper, namely to clarify the topological origins of the non-local
(Gauss’ law) observables in the quantum theory.

Following the seminal paper [11] we may analyse the general covariance of our theory in a
categorical framework. For this purpose we introduce the following categories:

Definition 4.8 • SpacCurr is the category whose objects are triples (M, g, j), where M =
(M, g) is a globally hyperbolic spacetime and j ∈ Ωpδ(M), and whose morphisms are orien-

tation and time orientation preserving embeddings ψ :M→ M̃ such that ψ∗̃ = j, ψ∗g̃ = g
and ψ(M) ⊂ M̃ is causally convex (i.e. ψ−1(J̃±(ψ(p))) = J±(p) for all p ∈M).

• Alg is the category whose objects are unital ∗-algebras and whose morphisms are unit pre-
serving ∗-homomorphisms.

• Alg′ is the subcategory of Alg with the same objects and only injective morphisms.

The inclusion of j in the background structure is a natural modification of the framework of [11].
The original considered the category Spac (cf. Definition 2.9), which is the full subcategory of
SpacCurr consisting of objects with j = 0. (Alternatively, there is a forgetful functor from SpacCurr
to Spac.) Instead of Alg one may consider topological ∗-algebras (with continuous morphisms) or
C∗-algebras, but a choice of topology is not very relevant for our current investigation and has
been omitted.

The idea that physical theories should depend in a generally covariant way on the background
structure can now be stated in a concise way as follows:

Definition 4.9 A generally covariant quantum field theory with background current is a co-
variant functor A : SpacCurr → Alg. This theory is locally covariant if and only if its range is
contained in Alg′.

The definition of locally covariant quantum field theory is directly analogous to that of [11] (which
has no background current and uses Spac instead of SpacCurr). The slightly more general notion
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of generally covariant quantum field theory is new. It has been introduced to accommodate the
quantum p-form fields, as we will see shortly.

Let us first investigate the functorial behaviour of our quantisation scheme of affine Poisson
spaces. (This is in analogy to the functorial behaviour of the infinitesimal Weyl quantisation of
(pre)-symplectic spaces, cf. [21, 3].) For this purpose we need the following additional category
(cf. Def. 4.1):

Definition 4.10 AffPoiss is the category whose objects are affine Poisson spaces (V, P ) and whose
morphisms are continuous affine maps L :V → Ṽ such that P̃ = L∗P , i.e. P̃ (ξ, η) = P (ξ ◦L, η ◦L)
for all ξ, η ∈ Ṽ ′.

We can then prove:

Lemma 4.11 There is a contravariant functor Q :AffPoiss→Alg such that Q(V, P ) is the algebra
A (V, P ) of Definition 4.3 and such that for any morphism L :V → Ṽ , Q(L) :A (Ṽ, P̃ )→A (V, P ) is
the ∗-algebraic homomorphism determined by Q(L)(Φ̃(χ)) := Φ(χ◦L) for all χ ∈ Ṽ . Furthermore,
Q(L) is injective if and only if L∗ : Ṽ ′→V ′ is injective.

Proof: The non-trivial part is to show that Q(L) is well-defined, i.e. that it respects the relations
of the algebras A (V, P ) and A (Ṽ, P̃ ). This follows from the fact that the pull-back L∗ is linear,
and preserves the Poisson structure. (Alternatively one may show that (V, P ) 7→ (V ′, P ) is a
contravariant functor from AffPoiss to a category of pre-symplectic spaces and compose this
functor with the quantisation functor of [21].) For the last statement we deduce from Def. 4.3 that
Q(L) is injective if and only if it is injective on the generators Φ̃(χ), χ ∈ Ṽ ′, which is equivalent
to injectivity of L∗. �

In order to describe the p-form theory as a generally covariant quantum field theory, it remains
to show that there is a contravariant functor P :SpacCurr→AffPoiss, so that the theory can be
described by the composition Q ◦P. This is the subject of the following result:

Proposition 4.12 There is a contravariant functor P :SpacCurr→AffPoiss, which is defined as
follows. To each object (M, g, j), P assigns the affine Poisson space P(M, j) := Spj (M) (cf. Section

3). To each morphism ψ : (M, g, j)→(M̃, g̃, ̃), P assigns the pull-back P(ψ) :Sp̃ (M̃)→Spj (M), so

that P(ψ)(Ã) := ψ∗Ã.

Proof: The non-trivial part is to show that the morphisms are well-defined. To see this we first note
that each isometric embedding ψ :M→ M̃ yields a well-defined push-forward map ψ∗ : Ωp0(M)→
Ωp0(M̃) so, by duality, there are well-defined pull-back maps ψ∗ :Dp(M̃)→Dp(M). Furthermore,
ψ∗ commutes with exterior derivatives, so it maps exact forms to exact forms and hence descends
to a well-defined linear map ψ∗ :Fp(M̃)→Fp(M). For a morphism in SpacCurr, ψ∗ also respects
the equations of motion, so it restricts to a map ψ∗ :Spj (M̃)→Spj (M).

It remains to show that ψ∗ intertwines the Poisson structures of the two affine spaces. At
an abstract level this follows from the fact that ψ∗ preserves the Lagrangian densities and from
the well-definedness of Peierls’ method. In more detail we note that a continuous affine map Fα
on Spj (M), with α ∈ Ωp0,δ(M), gets mapped to Fα ◦ ψ∗ = Fψ∗α with ψ∗α ∈ Ωp0,δ(M̃). (A general

continuous affine map on Spj (M) is of the form Fα, up to a constant. Because the Poisson structures
vanish on constants, it suffices to consider only the Fα.) Expressing the Poisson structure in terms
of the advanced-minus-retarded fundamental solution G we need to verify that

(ψ∗α, ∗G̃ψ∗β) = (α, ∗Gβ).

It is well-known that this follows from the uniqueness of the advanced and retarded fundamental
solutions, together with the fact that the range ψ(M) is causally convex in M̃ (see for example [3,
Ch. 3]). Together these imply that ψ∗(G̃±ψ∗β) = G±β and using the fact that ψ is isometric the
result easily follows. �

Putting things together we find a functor A := Q ◦P from SpacCurr to Alg which describes
the p-form field in a generally covariant way. Furthermore, one may show that A is causal and
satisfies the time-slice axiom, by which we mean the following:
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Definition 4.13 We say that a generally covariant quantum field theory A with background cur-
rent is causal, if and only if for every pair of morphisms ψi : (Mi, gi, ji)→ (M, g, j), i = 1, 2, in
SpacCurr, whose ranges ψ1(M1) and ψ2(M2) are causally disjoint in M , [α1(A1), α2(A2)] = 0
in A(M, g, j), where we have written αi := A(ψi) and Ai := A(Mi, gi, ji) for brevity.

We say that a generally covariant quantum field theory A with background current satisfies the
time-slice axiom, if and only if for every morphism ψ : (M, g, j)→ (M̃, g̃, ̃) in SpacCurr, whose
range ψ(M) contains a Cauchy surface for M̃ , A(ψ) is an isomorphism.

The causality follows directly from the form of the Poisson structure, in particular from the support
properties of G. The time-slice axiom essentially follows from Corollary 2.15. (For j 6= 0 we note
that j(x)I is contained in every local algebra, so it does not spoil the time-slice axiom.) We omit
the details of the proofs, because they proceed along familiar lines (cf. [15] for the scalar field
case.)

We now turn to the issue of locality. It was already remarked in [12] that locality may fail, due
to the presence of a gauge equivalence. The following result shows that, when treated correctly,
the lack of locality may be interpreted in terms of Gauss’ law, also at the quantum level. For
completeness we also prove some no-go results for attempts to restore locality.

Theorem 4.14 The generally covariant theory A is not locally covariant. For any morphism
ψ : (M, g, j)→ (M̃, g̃, ̃) the kernel of A(ψ) is contained in the algebra generated by A(α) with
α ∈ Cp(M).

Proof: Quite generally, the kernel of A(ψ) is generated by the operators A(α) which A(ψ) maps
to 0 (cf. Lemma 4.11). This can only occur if α ∈ Cp(M), by the canonical commutation relations
(and the fact that morphisms preserve the unit I 6= 0). To show that A is not locally covariant,
we need to prove that non-injective morphisms do indeed exist. For p = 1 this can be seen from
Example 3.7 and Remark 3.10, where we have a canonical injection ι of a spacetime M into
Minkowski spacetime M0, both with vanishing currents j. M is constructed in such a way that
C1(M) is non-trivial (cf. Proposition 3.5), so the algebra A(M) has a non-trivial centre. However,
C1(M0) is trivial, and hence so is the centre of A(M0). Consequently, the A(ι) cannot be injective.

For general p we proceed as follows. Let Sp−1 be the unit sphere in Rp, with the induced
Riemannian metric. We consider the embedding of the spacetime M ×Sp−1 into M0×Sp−1 which
is trivial in the second factor. Now, if ω is the volume form on Sp−1, then α ∧ ω is a compactly
supported p-form on the Cauchy surface Σ× Sp−1, where Σ is the Cauchy surface for M used in
Example 3.7. Note that α ∧ ω = d(β ∧ ω), but β ∧ ω is not compactly supported. Indeed, if there
were some compactly supported γ with α ∧ ω = dγ, then 0 =

∫∞
1

∫
Sp−1 α ∧ ω =

∫∞
1
f ×

∫
Sp−1 ω,

which contradicts the choices of f and ω. �

For p = 1 the interpretation of Section 3.3 shows that the lack of injectivity is due to electric
monopole observables, which is in line with Gauss’ law.

Because the spaces Sp0 (M) are locally convex, the injectivity of ψ∗ on Sp0 (M)∗ is equivalent
to the surjectivity of ψ∗ on Spj (M) (by the Hahn-Banach Theorem). If p < n − 1 this leads to
another proof that injectivity fails, as follows. Consider any source j ∈ Ωpδ(M0) with support in
J(B1), where B1 is the unit ball of the Cauchy surface Σ0. Let A ∈ Ωp(M0) be any on-shell
configuration, solving δdA = j and δA = 0 (which exists as per Theorem 2.22). Let Σ ⊂ Σ0 \ B1

be any connected open set and define M := D(Σ), with canonical embedding ι :M→M0. The pull-
back of A to M solves the homogeneous Maxwell equations and generalises the electric monopole
configuration of Example 3.7. Now, if α ∈ Cp(M), then α = δν for some ν ∈ Ωp+1

0,d (M). As M0

is topologically trivial and p < n − 1 we may write ι∗ν = dβ for some β ∈ Ωp0(M0). Hence,
(α, ∗ι∗A) = (δdβ, ∗A) = (β, ∗j) =: c with c ∈ R and therefore

αι(A(α)− cI) = 0.

If non-trivial α exist, it follows that the kernel is non-trivial. The existence of non-trivial α is
equivalent to the fact that ι∗ is not surjective.
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By introducing background currents one can ensure that the electric monopole observables are
mapped to a non-zero constant, rather than to 0. However, one can still construct linear combi-
nations of electric monopole observables and the unit which are in the kernel of the embedding.
For this reason the inclusion of background currents does not help to restore local covariance.

Remark 4.15 We can also define an off-shell algebra for p-form fields, by dropping the equation
of motion from Definition 4.5. In other words, for each globally hyperbolic spacetime M (inde-
pendently of any background current) we quantise the (linear) Poisson space Fp(M), where the
Poisson structure on Fp(M)∗ is still given by {Fα, Fβ} := (α, ∗Gβ). For morphisms ψ we use once
more the pull-back to obtain a morphism of Poisson spaces. In this case there is no relation that
forces us to divide out a subspace of Ωp0,δ(M), so that the push-forward map on observables Fα is
now injective. This entails that the off-shell theory does abide to the principle of local covariance
and it is also causal. However, it contains no information on the dynamics, since no equation of
motion is imposed, and hence the time-slice axiom fails.

Alternatively, one might say that for the off-shell algebra the external current is left arbitrary.
Indeed, defining the current as a quantum operator j := δdA it is unrestricted. Thus it seems that
considering arbitrary background currents should restore local covariance and one may argue [23]
that a fully interacting theory like QED, where j is the usual normal ordered Dirac current, would
give rise to a locally covariant theory satisfying the time-slice axiom.

To conclude this section we consider an attempt to restore local covariance by dividing out
the centre of the algebras A(M, g, j). Although this procedure is well-defined for each individual
algebra, we now prove that it cannot be done in a functorial way, at least not for p = 1 and n ≥ 3:

Theorem 4.16 Consider the case p = 1 and n ≥ 3. For each spacetime M with background
current j, let Z(A(M)) denote the centre of the algebra A(M) and let A′(M) := A(M)/Z(A(M)).
Not all morphisms A(ψ), where ψ is a morphism in SpacCurr, descend to morphisms of the algebras
A′(M).

Proof: It suffices to provide one counterexample, which follows from the second item of Remark
3.10. A spacetime formulation of that remark provides an example of a morphism ψ : (M, g, j)→
(M̃, g̃, j̃) and a central operator Φ(α) in A(M) for which αψ(Φ(α)) is no longer in the centre.
Clearly αψ cannot descend to the quotient algebras. �

Remark 4.17 In analogy to A one may construct a generally covariant theory F for the field
strength tensor F := dA (cf. Remark 4.6 and [12]). This theory is causal and satisfies the time-
slice axiom, but similar arguments as for A show that F is not local either. In fact, we have an even
larger space of degeneracies than before, namely Hp+1

0 (M) (cf. Corollary 4.7 and the remarks below
it). Unlike for A, however, F does allow the centre of the algebra to be divided out in a functorial
way, leading to a locally covariant theory. Indeed, the observables are generated by I and F (β) with

β ∈ Ωp+1
0 (M)

Ωp+1
0,d (M)

, where we note that the latter space is well behaved under embeddings. Unfortunately,

the resulting theory is based on a classical phase space consisting of field configurations F which
are co-exact, F = dA = δB. Consequently, the theory cannot measure any electric charges or
electromagnetic currents whatsoever.

5 Conclusions

In this paper, we have described the dynamics of the vector potential and its p-form generalisations,
both at a classical and at a quantum level, on a generic globally hyperbolic spacetime and in
the presence of (classical) background currents. At the classical level we have recollected mostly
well-known results, which are based on imposing the Lorenz gauge, and extended them to a
distributional setting. Like [12] we found a quantum theory which fails to be generally locally
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covariant. However, unlike [12] we were able to ascribe the failure to the lack of locality at the
quantum level. At least for the vector potential (p = 1), the source of such a lack is the same as
at the classical level: Gauss’ law.

In order to accomplish this new understanding of the lack of locality, we made essential use
of three crucial ingredients. Firstly, we made a judicious choice of the gauge equivalence for the
vector potential. This choice was motivated by the geometric perspective of the standard model,
combined with insights from general covariance. It is experimentally justified by the Aharonov-
Bohm effect. Secondly, we used a quantisation scheme that improves on the ones that were used in
most of the previous literature by avoiding the use of (pre)-symplectic spaces. Instead of using a
space of classical solutions with spacelike compact support and using G to define a (pre-)symplectic
form, we followed the general geometric method of Peierls’, which automatically leads to a Poisson
structure on the space of local observables. Peierls’ method applies to any Lagrangian theory, even
if the equation of motion is non-linear. Because we were studying a linear equation (with source
term), the extension of the classical space of solutions to include distributional solutions allowed
us to view the space of observables as the continuous dual space, consisting of smooth test-forms.
In this way the Poisson bracket that we found was automatically well-defined on all observables.
Thirdly, we continued to use a geometric perspective by quantising the affine Poisson space using
ideas from deformation quantisation, in particular Fedosov’s method. It is not clear if (or how)
these methods can be extended to general Lagrangian theories, but in our case they allowed us
to interpret the quantum field operators in terms of observables, in direct analogy to the classical
case.

In addition to these general choices of procedure, our arguments relied on a somewhat involved
computation of the degeneracies of the Poisson bracket. Both at the classical and at the quantum
level we were able to relate these degeneracies to Gauss’ law (at least for p = 1) and they have
lead to a formula for the space of electric monopoles that can influence a spacetime. For the field
strength tensor associated to the vector potential we have mentioned that the degeneracies are
ruled by H2(M). These explanations vindicate the combination of the three procedural ingredients
mentioned above. In addition we would like to point out that the degeneracies are not directly
due to the Aharonov-Bohm effect, but our computation does establish that the Aharonov-Bohm
effect and Gauss’ law are related, via the Poisson bracket.

The quantum theory A that we constructed is not locally covariant. From a mathematical
point of view the reason can be ascribed to the degeneracy of the underlying Poisson structure,
which entails that the on-shell algebra possesses a non trivial centre, depending on the topology
of the underlying spacetime. Even though we motivated the gauge equivalence by viewing elec-
tromagnetism as a U(1) Yang-Mills theory in a general covariant setting, we did not analyse in
detail the effect of non-trivial principal U(1)-bundles on our results. Such a formulation may shed
further light on the geometric (or topological) causes of the failure of locality [5]. We also omitted
a detailed study of the special case n = 2, where a different choice of gauge equivalence would
be appropriate. Another potentially interesting research topic is the inclusion of Dirac fields and
their interaction with the vector potential at a perturbative level. In this framework, one may
expect that the on-shell algebra would behave well under general embeddings, leading to a locally
covariant theory (cf. Remark 4.15).

Although the quantum theory A is not locally covariant, we have argued that it is generally
covariant and that the failure of locality is a well-understood consequence of the gauge invariance.
Besides, we have shown that it is impossible to recover a locally covariant theory by dividing out
the degeneracies of the Poisson bracket, at least for the vector potential. For the field strength
such a procedure is possible, and the off-shell theory is locally covariant from the start, but these
theories are rather unphysical or have a limited physical applicability. Finally, the idealisation of
classical background currents is so useful that it should be considered as a perfectly satisfactory
model. In our opinion these are sufficient grounds to consider modifying the framework of locally
covariant quantum field theory, so as to accommodate physical theories with gauge symmetries
and non-local observables. Our notion of generally covariant quantum field theory is clearly general
enough for this purpose, but it is not clear whether it is too general.

In the spirit of [23] one could argue that the principle of local covariance wants to stress that
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algebras of arbitrarily small neighbourhoods of a point should depend only on the germ of the
metric at this point. This is in line with the fact that for the p-form theories under consideration,
the morphisms A(ψ) are injective as soon as the source spacetime of ψ has a trivial topology. Such
spacetimes could be used as building blocks for the entire theory, in such a way that topological
effects can be inferred out of a failure of Haag duality. (How this works in detail, and how these
ideas relate to the universal field strength algebra of [12], will hopefully be addressed by some of us
in a future investigation.) On the other hand, one could argue that the topology of the underlying
spacetimes is only relevant because the gauge symmetry of the p-forms fields is related to the
topology. Other linear gauge theories, in particular linearised general relativity, may have central
elements in their algebras which are sensitive to the background metric g as well as (or instead of)
the background topology ofM. This could force us to search for other remedies, which are not of
a purely topological nature. (This issue too will hopefully be addressed in a future investigation
involving one of us.)
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[3] C. Bär, N. Ginoux and F. Pfäffle, Wave equations on Lorentzian manifolds and quantization,
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