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We describe the free Dirac field in a four-dimensional spacetime as a locally covariant
quantum field theory in the sense of Brunetti, Fredenhagen and Verch, using a represen-
tation independent construction. The freedom in the geometric constructions involved
can be encoded in terms of the cohomology of the category of spin spacetimes. If we
restrict ourselves to the observable algebra, the cohomological obstructions vanish and
the theory is unique. We establish some basic properties of the theory and discuss the
class of Hadamard states, filling some technical gaps in the literature. Finally, we show
that the relative Cauchy evolution yields commutators with the stress-energy-momentum
tensor, as in the scalar field case.
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1. Introduction

Quantum field theory in curved spacetime is relevant for several purposes, such as
the construction of cosmological models and to obtain a better understanding of
quantum field theory in Minkowski spacetime. In order to achieve these goals in
a more realistic setting, it is important to go beyond the well-studied free scalar
field. In this paper, we will present a proof, already contained in [1], of the fact
that the free Dirac field in a four-dimensional globally hyperbolic spacetime can be
described as a locally covariant quantum field theory in the sense of [2].

Our presentation of the Dirac field is representation independent and we empha-
size categorical methods throughout in order to point out an interesting problem
concerning the uniqeness of the theory. The obstruction for the definition of a unique
theory can be formulated in terms of the cohomology of the category of spacetimes
with a spin structure, in particular its first Stiefel–Whitney class. It seems diffi-
cult to compute this class for a category, but we will show that a unique theory
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can always be obtained by restriction to the observable algebras generated by even
polynomials in the field, in which case the cohomological obstructions vanish.

Hadamard states can be defined in terms of a series expansion of their two-point
distribution, detailing their local singularity structure. Alternatively, they can be
characterized by a microlocal condition. The equivalence of these two definitions
has been investigated by several authors using different techniques of proof, but
in our opinion none of these arguments has been fully convincing. In our discus-
sion, we hope to close any remaining gaps in the different proofs and establish the
equivalence on firm ground.

We also compute the relative Cauchy evolution of this field and obtain com-
mutators with the stress-energy-momentum tensor, in complete analogy with the
scalar field case ([2]). For this, we use a point-splitting procedure to renormalize
the stress-energy-momentum tensor. Because we only need commutators with this
tensor we do not need to treat the so-called trace anomaly, a finite multiple of the
identity operator, in detail. We refer the interested reader to [3], who also con-
struct the extended algebra of Wick powers, relevant for perturbation theory. A
Spin-Statistics Theorem in a generally covariant framework may be found in [4].

The contents of this paper are organized as follows. In Sec. 2, we review some of
the mathematical background material that we need in order to describe the Dirac
field. This includes first of all the Dirac algebra and the Spin group, followed by
a categorical formulation of some of the differential geometry that we will need.
In Sec. 3, we describe the classical free Dirac field, starting with the geometric
and algebraic aspects in Secs. 3.1 and 3.2 and the equations of motion and their
fundamental solutions in Sec. 3.3. We discuss the uniqueness of the functorial con-
structions and their cohomological obstructions in Sec. 3.4. We then proceed to the
quantum Dirac field in Sec. 4. In Sec. 4.1, we quantize the classical Dirac field in a
local and covariant way and collect some of its basic properties. Section 4.2 deals
with Hadamard states and includes a discussion of the existing results concerning
the equivalence of the microlocal and the series expansion definitions. For this pur-
pose we also refer to Appendix A, which contains several relevant and useful (but
expected) results in microlocal analysis. Section 4.3 contains our discussion of the
relative Cauchy evolution of the free Dirac field, obtaining commutators with the
stress-energy-momentum tensor, but the proof of our main result there is deferred
to Appendix B, because it consists of rather involved computations. Finally we end
with some conclusions.

Our presentation of locally covariant quantum field theory is based on the orig-
inal [2] and on [5]. For the Dirac field in curved spacetime, we largely follow [6, 7],
as well as our earlier [1]. For results on Clifford algebras, we refer to [8] (see also [9]
for a short review).

2. Mathematical Preliminaries

To prepare for our discussion of the locally covariant Dirac field, we present in the
current section some mathematical preliminaries concerning the Dirac algebra, the
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Spin group and a categorical formulation of relevant aspects of differential geometry.
These merely serve to fix our notation and set the scene for the subsequent sections.
We also point out the relations with some other definitions and conventions in the
literature.

2.1. The Dirac algebra and the Spin group

The Spin group can be embedded in the Clifford algebra of Minkowski spacetime,
which we call the Dirac algebra. Therefore, we will first briefly recall some results
on Clifford algebras, for wich we refer to [8] (note the difference in sign convention
in the Clifford multiplication).

Let R
r,s be a finite dimensional real vector space with dimension n = r + s

and with a non-degenerate bilinear form gab which has r positive and s negative
eigenvalues. The Clifford algebra Clr,s is defined as the R-linear associative algebra
generated by a unit element I and an orthonormal basis ea of Rr,n−r subject to the
relations:

eaeb + ebea = 2gabI.

This definition is independent of the choice of basis. We may identify Rr,s ⊂ Clr,s
as the subspace of monomials in the basis ea of degree one. The even, respectively
odd, subspace of this Clifford algebra is the one spanned by monomials of even,
respectively odd, degree in the basis vectors and is denoted by Cl0r,s, respectively
Cl1r,s. Note that the even subspace is also a subalgebra. In the following we will be
especially interested in Minkowski spacetime,M0 := R1,3, where the bilinear form is
η = diag(1,−1,−1,−1) and where we choose an orthonormal basis ga, a = 0, 1, 2, 3
with ‖g0‖2 = 1, ‖·‖2 denoting the Minkowski pseudo-norm squared. The associated
Clifford algebra is called the Dirac algebra D := Cl1,3 and it is characterized by

gagb + gbga = 2ηabI. (1)

As a vector space, the Clifford algebra is naturally isomorphic to the exterior
algebra. This motivates the term volume form for the element g5 := g0g1g2g3 (or
in general e := e1 · · · er+s). Note the following properties:

Lemma 2.1. We have g2
5 = −I and g5vg−1

5 = −v for all v ∈M0. More generally,
if u ∈ M0 has u2 = ‖u‖2I �= 0, then u−1 = 1

‖u‖2 u and v �→ −uvu−1 defines a
reflection of M0 in the hyperplane perpendicular to u.

Proof. These equalities follow directly from Eq. (1). For the last claim, e.g., we
compute:

−uvu−1 = v − (uv + vu)u−1 = v − 2〈u, v〉
‖u‖2

u, v ∈M0.

Standard arguments with Clifford algebras [8] give:

D = Cl1,3 	 Cl01,4 	 Cl04,1, Cl4,1 	M(4,C),
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where M(4,C) denotes the algebra of complex (4×4)-matrices. In fact, Cl4,1 is gen-
erated by the generators ga of D together with a central element ω, corresponding
to iI ∈M(4,C). Hence:

M(4,C) 	 C ⊗R D. (2)

This also implies that the center of D is spanned by I (over R). The following
Fundamental Theorem provides all the essential information we need on the Dirac
algebra (for an elementary algebraic proof, we refer to Pauli [10].):

Theorem 2.2 (Fundamental Theorem). The Dirac algebra D is simple and
has a unique irreducible complex representation (i.e. an R-linear representation
π :D →M(n,C)), up to equivalence. This is the representation π0 :D →M(4,C)
determined by π0(ga) = γa with the Dirac matrices

γ0 :=
(

0 I

I 0

)
, γi :=

(
0 −σi

σi 0

)
,

where σi are the Pauli matrices σ1 :=
(0 1
1 0

)
, σ2 :=

(0 −i
i 0

)
and σ3 :=

(1 0
0 −1

)
. The

equivalence with another irreducible complex representation π of D is implemented
by π(S) = Lπ0(S)L−1 for all S ∈ D, where L ∈ GL(4,C) is unique up to a non-zero
complex factor.

Consequently, for every set of matrices γ′a ∈ M(4,C) satisfying Eq. (1) there
is an L ∈ GL(4,C), unique up to a non-zero complex constant, such that γ′a =
LγaL

−1.

Proof. One can show [8] that D 	 M(2,H), where H is the skew field of quater-
nions. This algebra is simple, because it is a full matrix algebra. The given matrices
γa satisfy the Clifford relations (1) and therefore extend to a representation of D
in M(4,C).

Any complex representation π :D →M(n,C) extends to a complex representa-
tion π̃ of M(4,C), using Eq. (2) and the trivial center of D, which is irreducible if π
is irreducible. As M(4,C) has only one irreducible representation up to equivalence
(see [11]), namely the defining one on C4, this determines π up to equivalence, as
stated. If K,L ∈ GL(4,C) are two matrices which implement the same equivalence,
then KL−1 commutes with D and hence K = cL, where c ∈ C is non-zero because
K is invertible. Note that π′(ga) := γ′a extends to a complex representation of D
in M(4,C) which is faithful (as D is simple). The last statement then follows from
the previous one.

For notational convenience, we define γ5 := π0(g5).
We can define a determinant and trace function on D by detS = detπ(S) and

Tr(S) = Tr(π(S)) for all S ∈ D, where π is any irreducible complex representation
of D. This is well-defined by the Fundamental Theorem. The following lemma is
often useful in computations:

Lemma 2.3. We have Tr(gagb) = 4ηab and Tr([gb, gc]gdga) = 8(ηcdηba − ηbdηca).
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Proof. Using the cyclicity of the trace and Eq. (1) we find: Tr(gagb) = 1
2Tr(gagb +

gbga) = Tr(ηabI) = 4ηab and

Tr([gb, gc]gdga) = Tr(gb[gc, gdga]) = Tr(gb{gc, gd}ga − gbgd{gc, ga})
= 2 Tr(ηcdgbga − gbgdηca) = 8(ηcdηba − ηbdηca).

We now turn to the Spin group, which is the universal covering group of the
special Lorentz group, a double covering which can be constructed in an elegant
way inside the Dirac algebra.

Definition 2.4. The Pin and Spin groups of Clr,s are defined as

Pinr,s := {S ∈ Clr,s | S = u1 · · ·uk, ui ∈ Rr,s, u2
i = ±I},

Spinr,s := Pinr,s ∩ Cl0r,s.
We let Spin0

1,3 denote the connected component of Spin1,3 which contains the iden-
tity.

We also define the Lorentz group L := O1,3, the special Lorentz group L+ :=
SO1,3 and the special ortochronous Lorentz group L↑

+ := SO0
1,3, which is the con-

nected component of L+ containing the identity.

The special ortochronous Lorentz group preserves the orientation and time-
orientation. For S ∈ Pin1,3 the map v �→ SvS−1 on M0 is a product of reflections
(up to a sign) by Lemma 2.1. Together with the fact that detu = ‖u‖4 for all
u ∈M0 this gives rise to another useful characterisation of the group Pin1,3, which
we shall not provea:

Proposition 2.5. Pin1,3 = {S ∈ D | detS = 1, ∀ v ∈M0SvS
−1 ∈M0}.

It can be seen from Proposition 2.5 that Pin1,3 and Spin1,3 are indeed Lie
groups. For the universal covering homomorphism Λ between Pin1,3 and the
Lorentz group, we have the following formulaeb,c:

Proposition 2.6. The map Λ:Pin1,3 → L defined by S �→ Λa
b(S) ∈ M(4,R)

such that SgbS
−1 = gaΛa

b(S) is the universal covering homomorphism of Lie
groups, which restricts to the universal covering homomorphism Spin0

1,3 → L↑
+. We

have Λa
b(S) = 1

4Tr(gaSgbS
−1) and the inverse of the derivative dΛ:spin0

1,3 → l↑+ at

aThe definition of the Spin group in [12] corresponds to our group Pin1,3. In [6, 7] one uses the
term Spin group for the group

S := {S ∈ M(4, C) | det S = 1, SvS−1 ∈ M0 for all v ∈ M0}.
Note that this group cannot give a double covering of the Lorentz group, as claimed in [6] (but
not in [7]), because for any S ∈ S the matrices iS,−S,−iS are in S too. Its usefulness is based
on its simple definition and the fact that S0 = Spin0

1,3.
bThese results are well known, but we record them for definiteness to correct a sign error in the
spin connection (5) that has occured in [6, 7, 13].
cLower case Latin indices are raised and lowered with ηab, respectively, ηab throughout.
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S = I is given by:

(dΛ)−1(λb
a) =

1
4
λb

agbg
a.

Proof. For the first sentence we refer to [8, Theorem 2.10] and subsequent remarks.
Using the Clifford relations (1), we see that

Λa
b(S) =

1
4
ηac Tr(ηcdΛd

b(S)I) =
1
8
ηac Tr((gcgd + gdgc)Λd

b(S))

=
1
4
ηac Tr(gcgdΛd

b(S)) =
1
4

Tr(gaSgbS
−1).

Expanding Λ(S+εs+O(ε2)) up to second order in ε we find dΛ(s)a
b = 1

4Tr([gb, g
a]s).

We check that L(λb
a) := 1

4λ
b
agbg

a is an inverse of dΛ:

dΛ(L(λd
e))

a
b =

1
16
ηacηefλd

e Tr([gb, gc]gdgf ) =
1
2
ηacηefλd

e(ηcdηbf − ηbdηcf )

=
1
2
(λa

b − ηaeηbdλ
d
e) = λa

b,

where we used Lemma 2.3 and the symmetry properties of λd
e ∈ l↑+ in the last

line.

2.2. Some category theory and differential geometry

The language of locally covariant quantum field theory uses category theory to
express the physical ideas of locality and covariance. Any object or construction
that is extended from a single spacetime (usually Minkowski spacetime) to the
categorical framework gets the adjective “locally covariant”. The essence of local
covariance seems to have a geometric origin and, because the Dirac field in curved
spacetimes involves a substantial amount of geometric constructions, it will be
convenient to present the relevant differential geometry in a categorical setting
here. We refrain from the urge to call this “locally covariant differential geometry”,
which appears to be a pleonasm.

A category C consists of a set of objects c and a set of morphisms or arrowsd

γ :c1 → c2 between objects of C, such that the composition of morphisms, when
defined, is associative and each object admits an identity morphism (we refer
to [14] for more details). A (covariant) functor F :C → B is a map between cat-
egories, which maps objects c to objects F(c) and morphisms γ :c1 → c2 to mor-
phisms F(γ) :F(c1) → F(c2) such that an identity morphism maps to an identity
morphism and the composition of morphisms is preserved. A contravariant func-
tor F :C → B is defined similarly, but reverses the direction of the morphisms:
F(γ) :F(c2) → F(c1). A natural transformation t:F ⇒ G between covariant func-
tors F :C → B and G :C → B is a map which assigns to each object c a morphism
t(c) of B, called the component of t at c, such that for every morphism γ :c1 → c2

dIt is very often convenient to depict the morphisms in a diagram as arrows between objects.
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of C we have t(c2) ◦ F(γ) = G(γ) ◦ t(c1), which can be depicted as a commutative
diagram. When a natural transformation t admits another natural transformation
s such that t(c) ◦ s(c) = idc = s(c) ◦ t(c) for all objects c, then t is called a
natural equivalence. In this case, we write t:F ⇔ G. A natural transformation
between contravariant functors or between a covariant and a contravariant func-
tor is defined similarly, except that some arrows in the commutative diagram are
reversed.

A subcategory B of C consists of a subset of the objects of C and a subset of its
morphisms in such a way that B still satisfies the axioms of a category. In our case,
all categories will be concrete, i.e. the objects will be sets with a certain structure
and the morphisms will be maps between sets. The identity morphism will always
be the identity map and the composition of maps, when defined, is automatically
associative. In short, our categories will be subcategories of the category Set, whose
objects are setse and whose morphisms are maps.

For our discussion of differential geometry we start with the following

Definition 2.7. The category Man
n of smooth manifolds is the category whose

objects are C∞ manifolds M of (finite) dimension n and whose morphisms are C∞

embeddings µ :M1 → M2.
The category Bund

′ of fiber bundles is the category whose objects are smooth
fiber bundles p :B → M over objects M of Man

n with bundle projection map p,
and whose morphisms are C∞ maps β :B1 → B2 covering a morphism µ :M1 → M2

of Man
n, i.e. such that p2 ◦ β = µ ◦ p1. We denote by Bund the subcategory whose

morphisms restrict to isomorphisms of the fibers.
The categories VBund

′
R, respectively VBund

′
C, of real (complex) vector bundles

is the subcategory of Bund
′ whose objects V are real (complex) vector bundles and

whose morphisms ν :V1 → V2 are real (complex) linear maps of the fibers. Again
we denote by VBundR and VBundC the subcategories whose morphisms restrict
to isomorphisms of the fibers.

We could have taken all smooth maps between manifolds as morphisms of Man
n or

allowed all dimensions. However, local diffeomorphisms allow us to transport more
structure, which enables us to describe more of the canonical differential geometric
constructions as functors. We describe the most important examples below. For
fiber bundles, on the other hand, it will be useful to allow maps which are not
isomorphisms on the fibers.f ,g

eSee [14] for some relevant remarks concerning the foundations of set theory and the use of small
sets.
fThe unprimed categories, whose morphisms are isomorphisms of the fibers, can be described as
fibered categories over Mann, cf. [15, p. 44].
gThe functors B :Mann → Bund′ below are all of a special type, namely, they associate to a
manifold M a fiber bundle whose base space is again M. Although we will only use functors
of this type when describing the Dirac field, the restriction is not technically necessary in our
definitions.
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Two of the most basic functors in differential geometry are

The tangent bundle functor T :Man
n → VBundR assigns to every manifold M

the tangent bundle TM and to every morphism µ :M1 → M2 the differential
dµ :TM1 → TM2.

The cotangent bundle functorh T∗ :Man
n → VBundR assigns to every manifold

M the cotangent bundle T ∗M and to every morphism µ :M1 → M2 the push-
forward µ∗ :TM1 → TM2, which is defined as µ∗ω := ω ◦ dµ−1.

In a similar way, one can define the functor Λk :Man
n → VBundR of exterior

k-forms and the exterior algebra functor Λ:Man
n → VBundR, both with push-

forwards. Another example is

The density bundle functor |Λn| :Man
n → VBundR assigns to every spacetime

M the one-dimensional trivial vector bundle of densities |ΛnM|, where n is
the dimension of M. This is the vector bundle whose fiber at x ∈ M consists
of functions d :Λn

xM → R such that d(rω) = |r|ω for all r ∈ R and ω ∈ Λn
xM

(cf. [16, Appendix A.3]). A morphism µ is mapped to the push-forward defined
by µ∗d := d ◦ µ∗, where µ∗ω := ω ◦ dµ is the pull-back.

By standard constructions, one can take (finite) direct sums and tensor products
of functors from Man

n into VBund
′
R which map M into a vector bundle over

M. One obtains another such functor in the obvious way. For functors V into
VBundR one can also define the dual, denoted by V∗, where the morphism between
dual vector bundles is the push-forward of the original morphism. This generalizes
the example of T∗ above. As another standard construction one can define the
complexification VC of any functor V into VBund

′
R (respectively, VBundR), which

is a functor into VBund
′
C (respectively, VBundC).

Now we turn to some examples of natural transformations:

The canonical pairing between a functor V :Man
n → VBundR which maps M

to a vector bundle VM over M and its dual V∗ is a natural transformation
〈 , 〉:V∗ ⊗ V ⇒ Λ0 whose components cover the identity morphism.

Complex conjugation is a natural equivalence −:VC ⇔ VC in VBundR (or
VBund

′
R) between complexified vector bundles, which sends each section to

its complex conjugate.

A further example of a natural equivalence is the fiber-wise multiplication by a
real number r �= 0. (For r = 0, this only yields a natural transformation.) Further-
more, the constructions mentioned above (dual, direct sum, tensor product) and
the natural transformations (pairing, fiber-wise multiplication) can also be applied
directly to complex vector bundles in a canonical (Hermitean) way.

hIt is tempting to think of a contravariant functor that maps manifolds to their cotangent bundles
and morphisms µ to the pull-back, µ∗ω := ω ◦ dµ, which indeed reverses the directions of arrows
and changes the order of compositions. However, the pull-back is only defined on the image of µ,
so in general this does not define a morphism in VBund′R.
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It will be convenient to consider distributions and integration in a categorical
setting too:

Definition 2.8. TVec is the category of topological vector spaces with injective
continuous linear maps as morphisms. The functor C :Man

n → TVec is the constant
functor C, i.e. it assigns to each object the one dimensional space C and to each
morphism the identity morphism.

The functor of test-sections is the functor C∞
0 :VBund

′
C → TVec which maps

each complex vector bundle V to the space C∞
0 (V) of compactly supported smooth

sections of V in the test-section topology.i A morphism ν, covering a morphism µ, is
mapped to the push-forward ν∗ defined by ν∗(f) = ν ◦ f ◦µ−1 on µ(M1), extended
by 0 to all of M2.

The functor of smooth sections is the contravariant functor C∞: VBundC →
TVec which maps each complex vector bundle V to the space C∞(V) of smooth
sections of V in the usual topology. A morphism ν, covering a morphism µ, is
mapped to the pull-back ν∗ defined by ν∗(f) = ν−1 ◦ f ◦ µ.

The functor of distributions is the contravariant functor Distr:VBund
′
C →

TVec which maps each complex vector bundle V to the space (C∞
0 (V))′ of distri-

butions on V with the weak topology induced by C∞
0 (V). A morphism ν, covering

a morphism µ, is mapped to the pull-back ν∗ defined by ν∗u := u ◦ ν∗.
We will not need compactly supported distributions, but they can be defined as
the functor dual to C∞. Notice that objects which are not compactly supported,
such as smooth sections or distributions, behave contravariantly, whereas compactly
supported ones behave covariantly. Also note that the pull-back of a smooth section
can only be defined for morphisms that restrict to isomorphisms of the fibers. The
following constructions will be of importance in Sec. 4:

Integration is a natural transformation
∫

:C∞
0 ◦ |Λn| ⇒ C which assigns to each

ω ∈ C∞
0 (|ΛnM|) the integral

∫
M ω.

Canonical Injections. Let f :VBundC → VBund
′
C be the forgetful functor. For

any functor V :Man
n → VBundC there is a canonical natural transformation

κ:C∞
0 ◦ f ◦ V ⇒ C∞ ◦ V, whose components are the canonical injections

C∞
0 (VM) ⊂ C∞(VM). Similarly, there is a canonical natural transformation

ι:C∞ ◦ (V⊗ |Λn|) ⇒ Distr ◦ f ◦V∗ given by ιM(f ⊗ω) :=
∫
M〈., f〉 ω for any

smooth section f of VM and any density ω on M. Each component of ι is
injective.

Where convenient we will identify a functor V :Man
n → VBundC with the func-

tor f ◦ V, omitting the forgetful functor, as this rarely leads to confusion. Fur-
thermore, any natural transformation t:V1 ⇒ V2 between a pair of functors
Vi :Man

n → VBund
′
C, i = 1, 2, lifts to a corresponding natural transformation

iFor a precise definition of the well-known topologies on test-sections and smooth sections we refer
to [17, Chap. 17].
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T :C∞
0 ◦V1 ⇒ C∞

0 ◦V2 defined pointwise by TMf := tM ◦ f . The same statement
holds for T :C∞ ◦V1 ⇒ C∞ ◦V2, if the Vi are functors into the category VBundC.

Next we add the structure of a semi-Riemannian metric:

Definition 2.9. The category SRMan
n of semi-Riemannian manifolds is the sub-

category of Man
n whose objects M = (M, g) are C∞ manifolds M of dimen-

sion n with a semi-Riemannian metric g and whose morphisms m :M1 →M2 are
given by the isometric morphisms in Man

n, i.e. morphisms µ :M1 → M2 such that
µ∗g1 = g2|µ(M1).

Again there is a canonical forgetful functor f :SRMan
n → Man

n, which is often
left implicit, so we will write e.g. T for the functor T ◦ f . The extra structure of a
semi-Riemannian metric gives rise to extra functors and natural equivalences that
are of interest to us:

The metric identification is a natural equivalence G:T ⇔ T∗ whose component
at M = (M, g) is given by the map GM :TM → T ∗M such that v �→ g(v, ·).

The frame bundle functor F :SRMan
n → VBundR assigns to each object M the

frame bundle FM, i.e. the bundle whose fiber at a point x ∈ M consists of all
orthonormal bases of TxM in the metric g. This fiber is a subset of T⊗nM. A
morphism m is mapped to the push-forward µ∗ acting on FM ⊂ T⊗nM.

The volume form functor vol :SRMan
n → VBundR is defined as vol := |Λn| ◦ f .

When m :M1 →M2 is a morphism and dvoli :=
√| det gi| the metric induced

volume form on Mi, then vol maps dvol1 to the restriction of dvol2 to m(M1).
There is a canonical natural equivalence from Λ0 to vol, which consists of
multiplication with the metric induced volume form.

Similarly there are natural equivalences between any functor V: SRMan
n →

VBundC and V ⊗ |Λn|. Therefore we obtain a canonical natural transformation
ι: C∞ ◦ V ⇒ Distr ◦ V∗ whose components are injective.

Finally
we should mention the Clifford bundle functor Cl :SRMan

n → VBundR, which
assigns to each object M = (M, g) the Clifford bundle ClM, which is the vector
bundle whose fiber at x ∈ M is the Clifford algebra of (TxM, g) viewed as a linear
space. Ignoring the algebraic structure, this functor is naturally equivalent to Λ ◦ f .
Although we will not do so, it is possible to use this functor as a basic object for
the description of fermions (cf. [18]).

3. The Classical Dirac Field

After these mathematical preliminaries we are now ready to start constructing the
classical free Dirac field (as a locally covariant classical field). We will first describe
the geometric and algebraic constructions, before we discuss the Dirac equation and
its fundamental solutions. We close by investigating to what extent the relations
between the Dirac operator, charge conjugation and adjoint map fix the structure
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of the theory and find that the non-uniqueness can be characterised in terms of the
cohomology of the category of spin spacetimes.

3.1. Geometric aspects

In order to describe the Dirac field we need to introduce the notion of a spin
structure on a spacetime, combining the geometric and the algebraic results of
Sec. 2. This is the purpose of the current subsection.

The systems that we will consider are intended to model Dirac quantum fields
living in a (region of) spacetime which is endowed with a fixed Lorentzian metric
(a background gravitational field). Mathematically these regions are modelled as
follows:

Definition 3.1. By the term globally hyperbolic spacetime we will mean a con-
nected, Hausdorff, C∞ Lorentzian manifold M = (M, g) of dimension d = 4, which
is oriented, time-oriented and admits a Cauchy surface.

A subset O ⊂ M of a globally hyperbolic spacetime M is called causally convex
iff for all x, y ∈ O all causal curves in M from x to y lie entirely in O.

The category Spac is the subcategory of SRMan
n whose objects are all glob-

ally hyperbolic spacetimes M = (M, g) and whose morphisms are isometric embed-
dings ψ that preserve the orientation and time-orientation and such that ψ(M1) is
causally convex.

By a theorem of Geroch any globally hyperbolic spacetime is paracompact ([19,
Appendix]).

Most notations we use concerning the causal structure of spacetimes are stan-
dard, cf. [20]. The importance of causally convex sets is that for any morphism ψ

the causal structure of M1 coincides with that of ψ(M1) inside M2:

ψ(J±
M1

(x)) = J±
M2

(ψ(x)) ∩ ψ(M1), x ∈ M1.

If O ⊂ M is a connected open causally convex set, then (O, g|O) defines a globally
hyperbolic spacetime in its own right. In this case there is a canonical morphism
IM,O : O → M given by the canonical embedding ι :O → M. We will often drop
IM,O and ι from the notation and simply write O ⊂M .

Notice that there is a forgetful functor f :Spac → SRMan
n and that we can

define the functor F↑
+ :Spac → Bund of oriented, time-oriented orthonormal frames

F ↑
+M for the tangent bundle, in analogy to Sec. 2.2. This is a principal L↑

+-bundle
over M , where the special ortochronous Lorentz group L↑

+ acts from the right,
i.e., given e = (x, e0, . . . , e3) ∈ F ↑

+M , where x ∈ M and ea ∈ TxM such that
gx(ea, eb) = ηab and e0 is future pointing, the action of Λ is defined by RΛe = e′ =
(x, e′0, . . . , e′3) where e′a = ebΛb

a.

Definition 3.2. A spin structure on M is a pair (SM , π), where SM is a principal
Spin0

1,3-bundle over M , the spin frame bundle, with a right action RS , S ∈ Spin0
1,3,
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and π :SM → FM , the spin frame projection, is a base-point preserving bundle
homomorphism such that

π ◦RS = RΛ(S) ◦ π,
where S �→ Λ(S) is the universal covering map (cf. Proposition 2.6).

A globally hyperbolic spin spacetime SM = (M, g,SM , π) is an object M =
(M, g) of Spac which is endowed with the spin structure (SM , π).

The category SSpac is the subcategory of Bund whose objects are all glob-
ally hyperbolic spin spacetimes SM = (M, g,SM , π) and whose morphisms
χ :SM 1 → SM 2 cover a morphism ψ :M1 →M2 in Spac and satisfy χ ◦ (R1)S =
(R2)S ◦ χ and π2 ◦ χ = ψ∗ ◦ π1, where pi are the bundle projections, πi the spin
frame projections and ψ∗ the push-forward.

Note that a morphism acts as a diffeomorphism of the fibers, because it intertwines
the group action.

Every globally hyperbolic spacetime admits a spin structure, which need not be
unique [6, 8, 19, 21]. We will regard distinct spin structures on the same underly-
ing spacetime as distinct spin spacetimes.j Spinor and cospinor fields are sections
of vector bundles associated to the spin frame bundle. We will require that the
assignment of these vector bundles is functorial:

Definition 3.3. A locally covariant spinor bundle is a functor V: SSpac →
VBundC, written as SM �→ VSM , χ �→ ν, such that χ and ν cover the same
morphism ψ in Spac and such that each VSM is a vector bundle associated to the
spin frame bundle SM through some representation. The dual functor V∗ is called
a locally covariant cospinor bundle. Smooth sections of VSM , respectively V ∗

SM , are
called (Dirac) spinors (or spinor fields), respectively cospinors (cospinor fields).

The condition in the definition of a locally covariant spinor bundle ensures that the
vector bundle VSM and the spin frame bundle SM are both bundles over the same
spacetime M .

For definiteness we pick out the following standard choice of locally covariant
spinor and cospinor bundles:

Definition 3.4. The standard locally covariant Dirac spinor bundle D0: SSpac →
VBundC is the locally covariant spinor bundle which associates to each object SM
of SSpac the associated vector bundle D0M = SM ×Spin0

1,3
C4 of SM with the

jThere exists another approach to spinors, which considers on each spacetime the Clifford bundle.
This Clifford bundle is functorial in its dependence on the spacetime, but it does not generally
define a spin structure. Indeed, at each point one can identify the Spin group inside the fiber of
the Clifford bundle, but there may not be any projection from these Spin groups onto the frame
bundle that intertwines the actions of the structure groups, the obstruction being a topological
twist. (Conversely, every spin structure can be seen as a topologically twisted copy of the Spin
groups in the Clifford bundle.) Nevertheless, it appears to provide sufficient structure to describe
all the relevant physics in a functorial way. We refer to [18] for more information on this approach.
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representation π0, and which maps each morphism χ :SM 1 → SM 2 to the morphism
ξ :D0M1 → D0M2 given by ξ([E, z]) := [χ(E), z]. The standard locally covariant
Dirac cospinor bundle D∗

0 is the dual functor of D0.

Recall that a point in D0M consists of an equivalence class of pairs (E, z) ∈ SM ×
C

4, where the equivalence is given by

[RSE, z] = [E, π0(S)z].

The dual functor D∗
0 then assigns to each SM the dual vector bundle D∗

0M whose
points are equivalence classes of pairs (E,w∗) ∈ SM × (C4)∗, where the equivalence
is given by [RSE,w

∗] = [E,w∗π0(S−1)]. (Here we consider w∗ ∈ (C4)∗ as a row
vector, whereas z ∈ C

4 is treated as a column vector.)
For any object SM the unique connection ∇SM on TM which is compatible

with the metric, ∇SM g = 0, can be described by an l↑+-valued one-form (ΩSM )b
a on

the orthonormal frame bundle F ↑
+M (cf. [22, Chap. 2, Proposition 1.1]), where l↑+ is

the Lie-algebra of L↑
+, which can be identified with the tangent space of the fiber of

F ↑
+M at any point. For every local section e of F ↑

+M the pull-back ωb
a := e∗(Ωb

a)
consists exactly of the connection one-forms of ∇SM expressed in the orthonormal
frame ea. The one-form (ΩSM )b

a can be pulled back by the spin frame projection
π and lifted to a spin0

1,3-valued one-form ΣSM on SM :

ΣSM := (dΛ)−1π∗((ΩSM )b
a) =

1
4
p∗((ΩSM )b

a)gbg
a,

where the last equality uses Proposition 2.6. The one-form ΣSM determines a con-
nection on the spin frame bundle SM . For any associated vector bundle DM we
then find a connection, also denoted by ∇SM , determined by the connection one-
forms σ := E∗(ΣSM ) in a local section E of SM , as represented on DM (we will
give an explicit expression for σ in Eq. (5)). The connection can be viewed as a
map ∇SM :C∞

0 (D0M) → C∞
0 (T ∗M ⊗D0M), which is a component of a natural

transformationk ∇:C∞
0 ◦ D0 ⇒ C∞

0 ◦ (T∗ ⊗ D0). The Leibniz rule allows us to
extend it to mixed spinor-tensors, using, e.g., ∇a〈v, u〉 = 〈∇av, u〉 + 〈v,∇au〉.

3.2. Adjoints, charge conjugation and the Dirac operator

We now define the adjoint and charge conjugation maps on spinors and cospinors.
These are special cases of the Fundamental Theorem 2.2, using the complex conju-
gate and adjoint matricesl (cf. [23]).

kAlternatively we could have written the connection as a natural transformation from the 1-jet
bundle extension of D0 to T∗ ⊗ D0.
lOn a general representation space of complex dimension four, one can define many complex
conjugations and Hermitean inner products. In order to obtain the desired equalities involving
adjoint and charge conjugate spinors later on, we need these two operations to be compatible, i.e.
〈v, w〉 = 〈v, w〉. Without loss of generality we can then use the standard complex conjugation and
Hermitean inner product on C4.
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Theorem 3.5. For any irreducible complex representation π of the Dirac algebra
D there are matrices A,C ∈ GL(4,C) such that

A = A∗, π(ga)∗ = Aπ(ga)A−1, An > 0,

C̄C = I, −π(ga) = Cπ(ga)C−1
(3)

for all future pointing time-like vectors n ∈M0 ⊂ D. We have for all S ∈ Spin0
1,3:

A = −C∗ATC,

π(S)∗Aπ(S) = A, π(S−1)C−1π(S) = C−1.

Moreover, if A′, C′ ∈ M(4,C) have the properties stated above for the irreducible
complex representation π′ of D, then there is an L ∈ GL(4,C), unique up to a sign,
such that L∗A′L = A, (L̄)−1C′L = C and π = L−1π′L on D.

Proof. To prove the existence of A and C in the representation π0 we may take
A = A0 := γ0, C = C0 := γ2 and check the required properties straightforwardly.
Note for example that

γ0n
aγa =

(
n0I + niσi 0

0 n0I − niσi

)
> 0,

because det(n0I ± niσi) = n2 > 0 and Tr(n0I ± niσi) = 2n0 > 0. To prove the
existence of A and C in a general irreducible complex representation π one writes
γa = Kπ(ga)K−1 by Theorem 2.2 and verifies that A = K∗A0K and C = K̄−1C0K

will do.
Given A′, C′ satisfying Eq. (3) for π′ we can fix K ∈ GL(4,C) such that π′ =

KπK−1 on D and the desired matrix L must be L = zK for some z �= 0 by the
Fundamental Theorem 2.2. Now set Ã := K∗A′K and C̃ := (K̄)−1C′K and note
that Ã and C̃ satisfy (3) for π. Because the sets of matrices π(ga)∗ and −π(ga)
both satisfy the relations (1) we must have aA = Ã and cC = C̃ for some non-zero
complex factors a and c, again by the Fundamental Theorem. Also, |c| = 1 because
C̄C = I and a > 0 because A = A∗ and Aπ(n) > 0 for future pointing time-like
vectors. Hence, |z|2 = a and z = cz̄, which fixes z (and L) up to a sign. This proves
the last statement.

The equation A = −C∗ATC holds for A0, C0 and therefore also in general. For
a unit vector u = uaga we have u2 = ±I and hence

π(u)∗Aπ(u) = uaubπ(ga)∗Aπ(gb) = uaubAπ(gagb) = Aπ(u2) = ±A.
For S ∈ Spin1,3, we must therefore have that π(S)∗Aπ(S) = ±A, by definition of
the Spin group. For S = I, the sign is a plus, so by continuity and connectedness
we conclude that π(S)∗Aπ(S) = A for all S ∈ Spin0

1,3. For C, we use the fact that

π(u−1)C−1π(u) = −π(u)−1π(u)C−1 = −C−1

and hence π(S−1)C−1π(S) = C−1 for all S ∈ Spin1,3.
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Note that g5 ∈ Spin1,3\Spin0
1,3. Indeed, using π0 and A0 = γ0 in Theorem 3.5 we

see that γ∗5A0γ5 = −A0, so g5 ∈ Spin1,3 by definition, but not in Spin0
1,3.

In the following theorem we use the fact that for any pair of natural transforma-
tions t, t′:SSpac ⇒ VBund

′
C we can define the sum t+ t′ and the tensor product

t⊗ t′ componentwise.

Theorem 3.6. The standard locally covariant Dirac spinor and cospinor bundles
admit natural (C-antilinear) equivalences +:D0 ⇔ D∗

0,
c:D0 ⇔ D0,

c:D∗
0 ⇔ D∗

0 in
VBundR and a natural transformation γ:D0 ⇒ T∗ ⊗D0 in VBund

′
C such that all

components cover the identity morphism and the following equations hold both on
spinors and cospinors (i.e. we denote the inverses of + and c by the same symbol):

+◦+ = 1 =c ◦c, +◦c = −1 ◦c ◦+

〈 , 〉 ◦ S ◦ (+⊗+) =− ◦〈 , 〉 = 〈 , 〉 ◦ (c⊗c)

(1⊗+) ◦ γ = γ∗◦+, (1⊗c) ◦ γ = −1 ◦ γ◦c

(1 + S ⊗ 1) ◦ (1 ⊗ γ) ◦ γ = (2 ◦ g) ⊗ 1

∇ ◦ γ = γ ◦ ∇,

(4)

where S:D0 ⊗ D∗
0 ⇔ D∗

0 ⊗ D0 and S:T∗ ⊗ T∗ ⇔ T∗ ⊗ T∗ swap the factors in the
tensor product, g: Λ0 ⇒ T∗⊗T∗ maps the function 1 to the metric g and γ∗:D∗

0 ⇒
T∗ ⊗D∗

0 is the adjoint map of γ under the canonical pairing 〈 , 〉. Furthermore, for
every object SM , every time-like future pointing tangent vector n ∈ TM and every
v ∈ D0M we have 〈n⊗ v+, γ(v)〉 ≥ 0.

The natural transformation γ can also be seen as a natural transformation T ⇒
End(D0) or T ⇒ End(D∗

0). Equations (4) simply give the usual computational
rules for spinors and cospinors in a functorial setting. Thus, for every SM and
every p ∈ D0M , q ∈ D∗

0M we have:

p++ = p = pcc, pc+ = −p+c

〈p+, q+〉 = 〈q, p〉 = 〈qc, pc〉
(γµp)+ = p+γµ, (γµp)c = −γµp

c

γµγν + γνγµ = 2gµνI, ∇aγb ≡ 0,

where we have dropped the subscript SM to lighten the notation.

Proof. The canonical pairing 〈 , 〉:D∗
0 ⊗ D0 ⇒ Λ0

C on SM is given by
〈[E,w∗], [E, z]〉 = 〈w, z〉, where the right-hand side is the standard Hermitean inner
product on C4. Note that this is well-defined, because we can always get the same
E ∈ SM on the left-hand side by a suitable action of Spin0

1,3. The components of
the natural equivalences + and c on each SM are defined using the matrices A0 and
C0 of Theorem 3.5 and their properties:

[E, z]c := [E,C−1
0 z̄], [E,w∗]c := [E, w̄∗C0],

[E, z]+ := [E, z∗A0], [E,w∗]+ := [E,A−1
0 w].
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These are well-defined isomorphisms in VBundR and they give rise to natural equiv-
alences satisfying the first two lines of Eq. (4).

Now fix E ∈ SM , let ea be the orthonormal basis (e0, . . . , e3) = π(E) of Tp(E)M ,
where π :SM → FM is the spin frame projection, and let ea be the dual basis of
T ∗

p(E)M . On SM we define the component of the natural transformation γ on SM
to be

γ([E, z]) := ea ⊗ [E, γaz].

This is well-defined, because a different section E′ := RSE gives rise to the frame
e′a = ebΛba(S) and the dual frame (e′)a = Λa

b(S
−1)eb and on the other hand

π0(S−1)γaπ0(S) = γbΛb
a(S−1) by definition of Λ (Proposition 2.6). γ is indeed a

morphism in VBund
′
C and gives rise to a natural transformation. The third line of

Eq. (4) follows again from the properties of A and C (see Theorem 3.5):

γ([E, z]c) = ea ⊗ [E, γaC
−1
0 z̄] = −ea ⊗ [E,C−1

0 γaz] = −(γ([E, z]))c,

γ∗([E, z]+) = ea ⊗ [E, z∗A0γa] = ea ⊗ [E, z∗γ∗aA] = (γ([E, z]))+

and similarly on cospinors. Also,

∇bγa = σbγa − γaσb − Γc
baγc =

1
4
Γc

bd(γcγ
dγa − γaγcγ

d) − Γc
baγc

=
1
4
Γc

bd(γc{γd, γa} − {γa, γc}γd − 4δd
aγc) =

−1
2

Γc
bd(δ

d
aγc + ηacγ

d) = 0.

Finally, for every object SM , every future pointing tangent vector n ∈ TM and
every v ∈ D0M we have 〈n⊗ v+, γ(v)〉 = 〈v+, Anaγav〉 ≥ 0 again by Theorem 3.5.

In terms of the Christoffel symbols Γρ
µν , the frame ea

ρ and representing ga on
D0M using the End(D0M)-valued one-forms γ, the connection one-forms of the
spin connection can be expressed asm

σb :=
1
4
Γa

bcγaγ
c,

Γa
bc = −eρ

c(eσ
b ∂σe

a
ρ) + ea

ρe
µ
b e

ν
cΓρ

µν .

(5)

The Dirac operator is defined on spinors and cospinors by

∇/ SM := γa∇a.

This defines natural transformations ∇/ :C∞
0 ◦D0 ⇒ C∞

0 ◦D0, respectively ∇/ :C∞
0 ◦

D∗
0 ⇒ C∞

0 ◦ D∗
0. The intertwining relations of the adjoint and charge conjugation

with the Dirac operator follow from their intertwining with γ in Theorem 3.6:

Proposition 3.7. ∇/ ◦+ =+ ◦∇/ , ∇/ ◦ c = −1 ◦ c ◦ ∇/ .

mNote the sign error in [6, 7].
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Proof. Recall that + and c can be defined pointwise on test-sections. Hence, on
any object SM

(∇/ v)c = ((∂av − vσa)γa)c = (∂av − vσa)γaC

= −(∂(v̄C) − v̄Cσa)γa = −∇/ (vC) = −∇/ vc,

(∇/ u)+ = (γa(∂au+ σau))+ = (∂au
∗ + u∗σ∗

a)(γa)∗A

= (∂a(u∗A) − u∗Aσa)γa = ∇/ (u∗A) = ∇/ u+,

where the minus sign in the last line appears because the order of the two factors of
γ in the expression for σa needs to be changed. It follows that (∇/ v)+ = (∇/ v++)+ =
(∇/ v+)++ = ∇/ v+ and (∇/ u)c = (∇/ u+)+c = −(∇/ u+)c+ = (∇/ u+c)+ = −(∇/ uc+)+ =
−∇/ uc.

Remark 3.8. A change in the sign convention, η̃ := −η, has no physical conse-
quences. In fact, this simply gives rise to D 	 Cl3,1 as the Dirac algebra, but since
Cl03,1 = Cl01,3 nothing changes in the representationn of the group Spin0

1,3 = Spin0
3,1.

To accommodate this change one can set γ̃a := iγa in Eq. (1), which yields the same
Dirac algebra and other constructions (although we do get signs for all covectors
when raising or lowering indices with η̃). This also implies that one should drop
the factor i in front of the Dirac operator in the Dirac equation (6) below, which
ensures that PcP = PPc will still be a wave operator. We can also keep the same
matrices A,C, which now must satisfy the relations:

−γ̃∗a = Aγ̃aA
−1, ¯̃γa = Cγ̃aC

−1.

The spinor and cospinor bundle and the adjoint and charge conjugation maps then
remain the same and all the relations between these operations and the Dirac
operator remain valid.

3.3. The Dirac equation and its fundamental solutions

The Dirac equation on spinor and cospinor fields, respectively, on a spin spacetime
SM is

(−i∇/ +m)u = 0, (i∇/ +m)v = 0, (6)

where the constant m ≥ 0 is to be interpreted as the mass of the field. These equa-
tions can be derived as the Euler–Lagrange equations from the action SD :=

∫ LD

nNotice that a complex irreducible representation of Cl1,3 extends to an irreducible representa-
tion of M(4, C) and therefore also gives a complex irreducible representation of Cl3,1 and vice
versa. The standard Clifford algebra isomorphism Cl3,1 � M(4, R) appears if and only if the
representation of Cl1,3 is a Majorana representation, i.e. if γ̄a = −γa. In that case we also find
(see, e.g., [12, p. 332])

Pin3,1 � {S ∈ M(4, R) | det S = 1, ∀ v ∈ M0SvS−1 ∈ M0} 
= Pin1,3.
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with the Lagrangian densityo

LD := 〈u+, (−i∇/ +m)u〉dvolg (7)

by varying with respect to u and u+, viewed as independent fields. The canonical
momentum of the field u on a Cauchy surface C with future pointing normal vector
field n is defined as

π(x) :=
1√−det g(x)

δSD

δ(nµ∇µψ(x))
= −iψ+(x)n/(x). (8)

We will write P := −i∇/ + m for the operator on spinors and Pc := i∇/ + m

for the operator on cospinors. These are components of natural transformations
P :C∞

0 ◦ D0 ⇒ C∞
0 ◦ D0, P :C∞ ◦ D0 ⇒ C∞ ◦ D0 and Pc:C∞

0 ◦ D∗
0 ⇒ C∞

0 ◦ D∗
0,

Pc:C∞ ◦ D∗
0 ⇒ C∞ ◦ D∗

0, which we denote by the same symbol. We then have by
Proposition 3.7:

P ◦ c = c ◦ P, Pc ◦ c = c ◦ Pc,

Pc◦+ =+ ◦P, P◦+ =+ ◦Pc,
(9)

i.e. if a spinor field u is a solution to the Dirac equation, then so are u+ and uc.
(The adjoint and charge conjugation of u are defined pointwise.)

For a distribution v on D0M we define the transpose P ∗ by 〈P ∗v, u〉 := 〈v, Pu〉
and similarly for Pc. In this way the transposes give rise to natural transformations
P ∗:Distr ◦ D0 ⇒ Distr ◦ D0 and P ∗

c :Distr ◦ D∗
0 ⇒ Distr ◦ D∗

0.

Lemma 3.9. Let ι:C∞ ◦ D∗
0 ⇒ Distr ◦ D0 and ι:C∞ ◦ D0 ⇒ Distr ◦ D∗

0 be the
canonical natural transformations (see the end of Sec. 2.2). Then P ∗ ◦ ι = ι ◦ Pc

and P ∗
c ◦ ι = ι ◦ P .

Proof. This follows from the fact that for each object SM
∫

M 〈u,∇/ v〉dvolg =
− ∫M 〈∇/ u, v〉dvolg if at least one of u ∈ C∞(D0M) and v ∈ C∞(D∗

0M) is com-
pactly supported. This in turn follows from 〈∇/ v, u〉 + 〈v,∇/ u〉 = ∇a〈v, γau〉 and
Gauss’ law.

One can find unique advanced and retarded fundamental solutions for the Dirac
equation, both for spinors and cospinors [6, 24]:

Theorem 3.10. There are unique natural transformations S±:C∞
0 ◦D0 ⇒ C∞◦D0

and S±
c :C∞

0 ◦ D∗
0 ⇒ C∞ ◦ D∗

0 such that S± ◦ P = P ◦ S± = κ, S±
c ◦ Pc =

Pc ◦ S±
c = κ and such that for each u ∈ C∞

0 (D0M), v ∈ C∞
0 (D∗

0M) we have

oThe Lagrangian is a natural transformation between the functor J1D0, which assigns to each
spin spacetime SM the first-order jet bundle J1D0M of the spinor bundle D0M , to the functor
|Λn| of densities. A component of this natural transformation covers the identity morphism of SM

and is only a moprhism in Bund, not in VBund′R, because it is not linear.
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supp(S±u) ⊂ J±(supp(u)), supp(S±
c u) ⊂ J±(supp(u)). Moreover,

S± ◦ c = c ◦ S±, S±
c ◦ c = c ◦ S±

c ,

S±
c ◦+ =+ ◦S±, S±◦+ =+ ◦S±

c ,∫
◦〈 , 〉 ◦ (1 ⊗ S±) =

∫
◦〈 , 〉 ◦ (S∓

c ⊗ 1).

Proof. The components of S± and S±
c are the advanced (−) and retarded (+)

fundamental solutions for P and Pc, which are given by S± := (i∇/ + m)E± and
S±

c := (−i∇/ +m)E± respectively, where E± are the unique advanced and retarded
fundamental solutions for the normally hyperbolic operator (i∇/ +m)(−i∇/ +m) =
(−i∇/ +m)(i∇/ +m) = ∇/ 2 +m2. We refer to [6, Theorem 2.1] for a detailed proof of
the existence and uniqueness of these operators (see also [16] for the existence and
uniqueness of E±).

The naturality of S± and S±
c follows from their uniqueness and the naturality of

P and Pc. In detail: for every morphism χ :SM 1 → SM 2 and every f ∈ C∞
0 (D0M1)

the unique smooth solution to Pu = χ∗f on M2 with supp(u) ⊂ J±(supp(χ∗f))
pulls back to a solution v := χ∗u of Pv = f on M1 with supp(v) ⊂ J±(supp(f)).
By uniqueness we must then have u = S±χ∗f and χ∗u = S±f , i.e. χ∗ ◦ S± ◦ χ∗ =
S±. The same holds for cospinors. The commutation of S± and S±

c with charge
conjugation and adjoints follows from Eq. (9).

For arbitrary u ∈ C∞
0 (D0M) and v ∈ C∞

0 (D∗
0M) we can find a φ ∈ C∞

0 (M)
which is identically one on the compact set supp(S±u)∩ supp(S∓

c v). We then com-
pute: ∫

M

〈v, S±u〉 =
∫

M

〈PcS
∓
c v, φS

±u〉 =
∫

M

〈S∓
c v, PφS

±u〉

=
∫

M

〈S∓
c v, φPS

±u〉 =
∫

M

〈S∓
c v, u〉,

which proves the last claim.

We define the advanced-minus-retarded fundamental solutions S := S− − S+ and
Sc := S−

c − S+
c , which are natural transformations S:C∞

0 ◦ D0 ⇒ C∞ ◦ D0 and
Sc:C∞

0 ◦ D∗
0 ⇒ C∞ ◦ D∗

0 respectively.

3.4. The non-uniqueness of the functorial Dirac structure

We have seen that the (standard) structure of Dirac spinors and cospinors, adjoints,
charge conjugation and the Dirac operator is entirely determined by the functor D0

and the natural equivalences +, c and γ. We formalise this with a definition:

Definition 3.11. By a Dirac structureD := (D,+ ,c , γ) we mean a locally covariant
spinor bundle D with a dual bundle D∗, natural equivalences +:D ⇔ D∗, c:D ⇔ D,
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and c:D∗ ⇔ D∗ in VBundR and a natural transformation γ:D ⇒ T∗ ⊗ D in
VBund

′
C, all of whose components cover the identity morphism and satisfying the

relations (4) and 〈γSM (v+, v), n〉 ≥ 0 for every time-like future pointing vector
n ∈ TM .

We call D0 := (D0,
+ ,c , γ) of Theorem 3.6 the standard Dirac structure.

The category DStruc has all Dirac structures as objects and its morphisms
t :D1 → D2 are all natural transformations t:D1 ⇒ D2 whose components are
injective morphisms covering the identity morphism and intertwining the adjoints,
charge conjugation and γ as follows:

+2 ◦ t = t◦+1 , c2 ◦ t = t◦c1 , γ2 ◦ (t⊗ t) = γ1.

For each Dirac structure, one can perform the constructions of Sec. 3.3. Because
the Dirac algebra D has a unique irreducible complex representation one might
expect that the category DStruc admits a corresponding unique initial object,
perhaps up to isomorphism. This is an object from which there exists a morphism
into any other object. However, as we will explain in this section there is a certain
cohomological obstruction of the category SSpac involved. We will first consider
the standard Dirac structure, which would be a good candidate for an initial object,
and prove the following weaker property:

Proposition 3.12. Any morphism t from a Dirac structure D to the standard
Dirac structure D0 is an isomorphism.

Proof. Let t :D → D0 be a morphism. By the injectivity of the components of
t:D ⇒ D0 we see that the complex dimension of the fiber of DM is at most four.
On the other hand, the vector bundles DM are modules for the Dirac algebra
represented by γ. Because this algebra is simple, and because Eqs. (4) exclude the
trivial representation, we find that DM must have complex dimension at least four.
Therefore, t:D ⇒ D0 must be a natural equivalence and it follows that t :D → D0

is an isomorphism.

Corollary 3.13. If we construct a Dirac structure Dπ analogous to D0, but using
a different representation π and matrices A,C, then Dπ is isomorphic to D0.

Proof. Because we use the same representation on all spacetimes we can construct
a natural equivalence t:Dπ ⇔ D0 whose components are of the form tSM ([E, z]) :=
[E,Lz] for some L ∈ GL(4,C) which is independent of SM (cf. Theorem 3.5).

Corollary 3.14. If D := (D0,
+1 ,c1 , γ′) is any Dirac structure with the standard

locally covariant Dirac spinor bundle D0, then D is isomorphic to the standard
Dirac structure D0.

Proof. At each point x in each object SM we can view γ′a as matrices that
represent the Dirac algebra in a representation π. Using the Fundamental The-
orem 2.2, we write γ′a = LγaL

−1 for some L(x) ∈ GL(4,C). As γ′a is well-defined
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on D0 we must have π0(S)γ′aπ0(S−1) = γ′bΛ
b
a(S) for all S ∈ Spin0

1,3. This also
holds for the matrices γ, so we conclude from the Fundamental Theorem that
π0(S)L(x) = c(x)L(x)π0(S), where c ≡ 1 by taking S = I. We can now define a
natural equivalence t:D0 ⇔ D0 by [E, z] �→ [E,L(p(E))z] such that γ′ ◦ t = t◦γ. If
we also define +2 := t ◦+1 ◦t−1 and c2 := t ◦c1 ◦t−1, then D ⇔ (D0,

+2 ,c2 , γ) ⇔ D0,
where the last equivalence follows from the previous corollary.

In fact, the proof of Corollary 3.13 shows that for any SM the quadruple
(DM,+ ,c , γ) is unique up to an isomorphism tSM , if DM has four-dimensional
complex fibers. The isomorphism tSM itself, however, is only unique up to a sign.
In other words, on each spin spacetime we find a discrete Z2-symmetry that pre-
serves all physical relations.p

Consider two Dirac structures D and D′ whose locally covariant spinor bundles
D and D′ have four-dimensional complex fibers. Comparing the action of these
functors on morphisms of SSpac one finds a diagram that commutes up to a sign.
The existence of an initial object in the category DStruc then boils down to the
question whether one can choose signs for all spin spacetimes SM in such a way
that all the diagrams commute. The answer is not at all obvious, but can be neatly
formulated in terms of the first Stiefel–Whitney class of the category SSpac. To
explain this we will briefly recall the definition of cohomology groups for categories
(cf. [26]).

If C is any category, we can first build a simplicial set from it called the nerve
of the category (cf. [27]). A 0-simplex is simply an object of C, a 1-simplex is a
morphism between two objects, a 2-simplex is a commutative triangle, etc. We will
write Σn for the set of all n-simplices. For n ≥ 1 every n-simplex has n + 1 faces,
which are described by maps ∂j :Σn → Σn−1, 0 ≤ j ≤ n, which remove the jth
vertex from the diagram.

To find the cohomology of C with values in an Abelian groupq G, we define
an n-cochain with values in G to be a map v :Σn → G. We denote the set
of n-cochains with values in G by Cn(G) and we define the coboundary map
d :Cn(G) → Cn+1(G) by

dv(s) :=
n+1∑
j=0

(−1)jv(∂js), s ∈ Σn+1,

where we have written the group operation of G additively. One checks that d2 =
0 and defines v to be closed iff dv = 0 and exact iff v = dt for some (n − 1)-
cochain t. The sets of closed and exact n-cochains are denoted by Bn(G) and
Zn(G), respectively. They inherit an Abelian group structure from G and because

pThis may be compared to [25], who use complex spinor structures and then find a local (gauge)
symmetry instead of our more restricted global symmetries.
q [26] also considers the non-Abelian case, which is much more involved.
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Zn(G) ⊂ Bn(G) is necessarily normal one can define the jth cohomology group as
the quotient Hn(G) := Bn(G)/Zn(G).

Now let us return to the study of Dirac structures. Suppose that D and D′

both have four-dimensional complex fibers. Without loss of generality, we may
assume that both Dirac structures coincide on each spin spacetime, but the action
of their locally covariant spinor bundles on a morphism χ agrees only up to a sign
v(χ) ∈ {±1}. We can view v : χ �→ v(χ) as a 1-cochain on the category SSpac

with values in Z2 = {0, 1}, where 0 corresponds to +1 and 1 to −1). Notice that
for a composition of morphisms χ = χ1 ◦ χ2 we find v(χ) = v(χ1) + v(χ2) in Z2,
because the Dirac structures are both functorial. In cohomological terms this means
precisely that dv = 0.

If there is a natural equivalence t:D ⇔ D′, then the components tSM are auto-
morphisms of the Dirac structure at each SM , i.e. tSM = ±1, that compensate for
all the minus signs in v. If we view t as a 0-cochain with values in Z2, this means
exactly that v = dt. So we have proved:

Theorem 3.15. The number of inequivalent Dirac structures whose locally covari-
ant spinor bundles have four-dimensional complex fibers equals the number of first
Stiefel–Whitney classes of the category SSpac, i.e. the number of elements in
H1(Z2).

Remark 3.16. For scalar and vector fields the problem above can be avoided in
a natural way. Taking L↑

+ in the defining (four-vector) representation, the vector
bundle associated to F ↑

+M is just the tangent bundle TM . A morphism in Spac

determines a unique morphism on the tangent bundle, so no topological obstruc-
tions occur. Similarly for the scalar field, where one uses the trivial one-dimensional
representation of L↑

+, whose associated vector bundle is Λ0(M) = M × R. Again a
morphism in Man

n automatically determines a unique morphism on these associ-
ated vector bundles, now by the requirement that the volume element is preserved.

In general one is dealing with representations of Spin0
1,3 and associates to each

morphism in SSpac an intertwining operator between such representations. For
the associated vector bundles of SM , the physical requirements that we imposed on
the bundle morphisms, concerning the adjoint and charge conjugation maps and γ,
reduce the intertwiners exactly to a choice of lifting L↑

+ to its double cover. In this
way it leads to the same first Stiefel–Whitney class that characterizes the number
of spin structures on a manifold. For the general case it is expected that one needs
a non-Abelian cohomology theory to quantify the obstruction for finding initial
objects.

4. The Locally Covariant Quantum Dirac Field

After our discussion of the classical Dirac field in Sec. 3 we now turn to the quantum
Dirac field, its construction, its Hadamard states and its relative Cauchy evolution.
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4.1. Quantization of the free Dirac field

First, we will quantize the free Dirac field in a generally covariant way and establish
some of its properties. For this purpose we also present the main ideas of locally
covariant quantum field theory as introduced in [2] (see also [5]).

In the following, any quantum physical system will be described by a topological
∗-algebra A with a unit I, whose self-adjoint elements are the observables of the
system. An injective and continuous ∗-homomorphism expresses the notion of a
subsystem, whereas a state is desccribed by a normalized and positive continuous
linear functional ω, i.e. ω(A∗A) ≥ 0 for all A ∈ A and ω(I) = 1. The state space
of A is the set of all states and is denoted by A∗+

1 . Every state gives rise to a
GNS-representation πω (see [28, Theorem 8.6.2.]), which is characterized uniquely,
up to unitary equivalence, by the GNS-quadruple (πω ,Hω,Ωω,Dω). Here Hω is
the Hilbert space on which πω(A) acts as (possibly unbounded) operators with
the dense, invariant domain Dω := πω(A)Ωω . The vector Ωω is cyclic and satisfies
ω(A) = 〈Ωω, πω(A)Ωω〉 for all A ∈ A.

The collection of all systems forms a category TAlg:

Definition 4.1. The category TAlg has as its objects all unital topological ∗-
algebras A and as its morphisms all continuous and injective ∗-homomorphisms α
such that α(I) = I.

A locally covariant quantum field theory is a (covariant) functor A: SSpac →
TAlg, written as SM �→ ASM , χ �→ αχ.

A locally covariant quantum field theory A is called causal if and only if any
pair of morphisms ψi :SM i → SM , i = 1, 2, such that ψ1(M1) ⊂ (ψ2(M2))⊥ in M
yields [αΨ1(ASM 1), αΨ2(ASM 2)] = {0} in ASM .

A locally covariant quantum field theory A satisfies the time-slice axiom iff for
all morphisms ψ :SM 1 → SM 2 such that ψ(M1) contains a Cauchy surface for M2

we have αΨ(ASM 1) = ASM 2 .

Notice that the condition ψ1(M1) ⊂ (ψ2(M2))⊥ is symmetric in i = 1, 2. The
causality condition formulates how the quantum physical system interplays with
the classical gravitational background field, whereas the time-slice axiom expresses
the existence of a causal dynamical law.

We now fix a choice of Dirac structure D := (D,+ ,c , γ), in order to turn
the free Dirac field into a locally covariant field theory. Because we want to
impose the canonical anti-commutation relations it will also be convenient to
quantize spinor and cospinor fields simultaneously by introducing the following
terminology:

Definition 4.2. The locally covariant double spinor bundle is the covariant functor
D ⊕D∗. We define the following natural equivalences and natural transformations
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on this bundle, indicated by their components at SM :

(p⊕ q)c := pc ⊕ qc, (p⊕ q)+ := q+ ⊕ p+,

γµ(p⊕ q) := (γµp) ⊕ (γµq), 〈p⊕ q, p′ ⊕ q′〉 := 〈p+, p′〉 + 〈q′, q+〉,
τ(p ⊕ q) := p⊕ (−q).

A double spinor (field) is an element of C∞(DM ⊕D∗M). A double test-spinor
(field) is an element of C∞

0 (DM ⊕ D∗M). The adjoint, charge conjugation and
other operations are defined pointwise. We also define the operator P := P ⊕Pc, its
advanced (−) and retarded (+) fundamental solutions S±(u⊕v) := (S±u)⊕ (S±

c v)
and S := S− − S+.

The exterior tensor product V1 � V1 of two vector bundles Vi with fiber Vi over
manifolds Mi, i = 1, 2, is the vector bundle over M1 ×M2 whose fiber is V1 ⊗ V2

and whose local trivializations are determined by (O1 × O2) × (V1 ⊗ V2), where
Oi × Vi are local trivializations of Vi.

The Dirac Borchers–Uhlmann algebra F0
SM on a spin spacetime SM is the topo-

logical ∗-algebra

F0
SM :=

∞⊕
n=0

C∞
0 ((DM ⊕D∗M)�n),

where the direct sum is algebraic (i.e. only finitely many non-zero summands are
allowed) and

(1) the product is given by continuous linear extension of f1 · f2 := f1 � f2,
(2) the ∗-operation is given by continuous antilinear extension of

(f1 � · · · � fn)∗ := f+
n � · · · � f+

1 ,

(3) as a topological vector space F0
SM is the strict inductive limit F0

SM =⋃∞
N=0

⊕N
n=0 C

∞
0 ((DM ⊕ D∗M)�n|K×n

N
), where KN is an exhausting and

increasing sequence of compact subsets of M and the test-section space of the
restricted vector bundle (DM⊕D∗M)�n|K×n

N
is given the test-section topology.

The topology of F0
SM is such that a state is given by a sequence of n-point distri-

butional sections ωn of (DM ⊕D∗M)�n. A morphism χ :SM 1 → SM 2 in SSpac

determines a unique morphism αχ :F0
SM 1

→ F0
SM2

that is given by the algebraic and
continuous extension of the morphism DM1 ⊕D∗M1 → DM2 ⊕D∗M2 that is sup-
plied by the functor D. Together with this map on morphisms the map SM �→ F0

SM

becomes a locally covariant quantum field theory F0 :SSpac → TAlg. Our next
task will be to divide out the ideals that generate the dynamics and the canonical
anti-commutation relations.

We define the natural transformation ( , ): (C∞
0 ◦(D⊕D∗))⊗R(C∞

0 ◦(D⊕D∗)) ⇒
C whose components are the sesquilinear forms:

(f1, f2) := i

∫
M

〈f1, τSf2〉.



May 11, 2010 10:6 WSPC/S0129-055X 148-RMP
J070-S0129055X10003990

The Locally Covariant Dirac Field 405

Note that this is indeed a natural transformation, because it can be written as a
composition of natural transformations including

∫
, 〈 , 〉, + and κ.

Lemma 4.3. On each object SM the sesquilinear form ( , ) is Hermitean, (f1, f2) =
(f c

1 , f
c
2) = (f2, f1), and there holds (f+

1 , f
+
2 ) = (f2, f1). For any spacelike Cauchy

surface C ⊂M with future pointing unit normal vector field na we have

(u1 ⊕ v1, u2 ⊕ v2) =
∫

C

〈(Su1)+, n/(Su2)〉 + 〈Scv2, n/(Scv1)+〉. (10)

Proof. The symmetry properties follow straightforwardly from the computational
rules of Theorems 3.6 and 3.10. For the last statement we also need a partial inte-
gration (see, e.g., [20, Eq. (B.2.26)] for Gauss’ law) and we use the Dirac equation:

(u1 ⊕ v1, u2 ⊕ v2)

= i

∫
J+(C)

〈PcS
−
c u

+
1 , Su2〉 + 〈PcS

−
c v2, Sv

+
1 〉

+ i

∫
J−(C)

〈PcS
+
c u

+
1 , Su2〉 + 〈PcS

+
c v2, Sv

+
1 〉

= −
∫

J+(C)

∇a〈S−
c u

+
1 , γ

aSu2〉 + ∇a〈S−
c v2, γ

aSv+
1 〉

−
∫

J−(C)

∇a〈S+
c u

+
1 , γ

aSu2〉 + ∇a〈S+
c v2, γ

aSv+
1 〉

=
∫

C

na〈S−
c u

+
1 , γ

aSu2〉 + na〈S−
c v2, γ

aSv+
1 〉

−
∫

C

na〈S+
c u

+
1 , γ

aSu2〉 + na〈S+
c v2, γ

aSv+
1 〉

=
∫

C

〈(Su1)+, n/(Su2)〉 + 〈Scv2, n/(Scv1)+〉.

From Eq. (10) we notice that ( , ) is positive semi-definite and hence defines a
(degenerate) inner product. We proceed by dividing F0

SM by the closed ideal JSM

of F0
SM generated by all elements of the form Pf or f+

1 · f2 + f2 · f+
1 − (f1, f2)I.

Theorem 4.4. The ideal JSM is a ∗-ideal and for any morphism χ :SM 1 → SM 2

we have αχ(JSM 1) ⊂ JSM 2 . We can define the locally covariant quantum field the-
ory F :SSpac → TAlg which assings to every spin spacetime SM the C∗-algebra
FSM := F0

SM/JSM .

Proof. The elements that generate JSM are invariant under adjoints and under
a morphism they are mapped to elements of the same form. This proves the first
statement. It follows that the quotients F0

SM /JSM are topological ∗-algebras and
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that a morphism αχ :F0
SM 1

→ F0
SM 1

descends to the quotients as a well-defined
morphism. That each algebra F0

SM/JSM has a C∗-norm follows from the fact that
they are the inductive limits of finite-dimensional Clifford algebras ([29]). The mor-
phisms on the quotients are necessarily continuous in the norm and therefore extend
to morphisms on the C∗-algebras FSM .

Definition 4.5. A locally covariant quantum field in the locally covariant vector
bundle V for the locally covariant quantum field theory A is a natural transforma-
tion Φ:C∞

0 ◦ V∗ ⇒ f ◦ A, where we let f :TAlg → TVec be the forgetful functor.
We define the locally covariant quantum fields B:D ⊗ D∗ ⇒ F, ψ:D∗ ⇒ F

and ψ+:D ⇒ F by BSM (f) := 0 ⊕ f ⊕ 0 ⊕ · · · + JSM , ψSM (v) := BSM (0 ⊕ v) and
ψ+

SM (u) := BSM (u⊕ 0).

That the latter really are locally covariant quantum fields is a consequence of

Proposition 4.6. The operator-valued maps BSM , ψSM , ψ+
SM are C∗-algebra-

valued distributions and :

(1) P ◦ ψ = 0 and Pc ◦ ψ+ = 0,
(2) ψ+

SM (u) = ψSM (u+)∗,
(3) {ψ+

SM (u), ψSM (v)} = (v+ ⊕ 0, u ⊕ 0)I = −i ∫M 〈v, Su〉I and the other anti-
commutators vanish.

Proof. The first item is PBSM (f) = BSM (P ∗f) = BSM (Pf) = 0, where P ∗ is
the formal adjoint of P . The last two items follow from the definitions of ψSM and
ψ+

SM and the properties of BSM after a straight-forward computation.
It remains to show that ψSM , ψ+

SM are C∗-algebra-valued distributions, because
the result for BSM then follows. The C∗-subalgebra of FSM generated by
I, ψSM (v), ψ(v)∗SM is a Clifford algebra which is isomorphic to M(2,C) and an
explicit isomorphism is given by ψSM (v) �→ (0 √

c
0 0

)
, where c = (0 ⊕ v, 0 ⊕ v) =

−i ∫M 〈v, Sv+〉 > 0. It follows that ‖ψSM (v)‖ =
√
c is the operator norm of the

corresponding matrix, i.e.r

‖ψSM (v)‖2 = −i
∫

M

〈v, Sv+〉dvolg.

In the test-spinor topology we then have continuous maps v �→ v ⊕ v+ �→
−i ∫M 〈v, Sv+〉, from which it follows that v �→ ψSM (v) is norm continuous, i.e.
it is a C∗-algebra-valued distribution. The proof for ψ+

SM is analogous.

Note that the last two conditions of Proposition 4.6 can also be formulated in
terms of natural transformations, because the algebraic operations in FSM can be
expressed as such. The theory F is the quantized free Dirac field and ψ (ψ+) is

rThe factor 2 in [7, Remark 2, p. 340] seems to be erroneous.



May 11, 2010 10:6 WSPC/S0129-055X 148-RMP
J070-S0129055X10003990

The Locally Covariant Dirac Field 407

the locally covariant Dirac (co)spinor field. Alternatively we could have used the
algebras F0

SM /JSM themselves instead of completing them to C∗-algebras.
To see that the anti-commutator is the canonical one (cf. [24]) we apply [6,

Proposition 2.4(c)] which says that S|C×C = −iδn/ for a Cauchy surface C with
future pointing normal vector field n. Comparing with Eq. (8) and using n/2 = I we
then find

{−iψ+
SM (n/(x)), ψSM (y)} = −

∫
M

〈y, Sn/x〉I = iδ(y, x)I

as expected.
So far our construction depends on the choice of a Dirac structure, although nat-

urally equivalent Dirac structures yield naturally equivalent theories and quantum
fields. The following theorem restricts attention to the observable algebra, dividing
out the freedom of choice completely and yielding a unique theory, but for many
purposes it is not convenient to use it directly because it lacks locally covariant
Dirac (co)spinor fields.

Theorem 4.7. Let B :SSpac → TAlg be the locally covariant quantum field theory
that assigns to each spin spacetime SM the C∗-subalgebra of FSM generated by all
even polynomials in elements B(f), with the induced action on morphisms. For all
Dirac structures with four-dimensional complex fibers the resulting theories B are
isomorphic.

Proof. The algebras BSM generated by the even polynomials are C∗-algebras.
Morphisms respect evenness and so restrict to morphisms on B, making B a well-
defined locally covariant quantum field theory. Now consider two Dirac structures D
and D0 with associated functors F,B and F0,B0. If both Dirac structures have four-
dimensional complex fibers, then we infer from the comment below Corollary 3.13
that there are ∗-isomorphisms αSM :FSM → (F0)SM such that for any morphism
χ :SM 1 → SM 2 we have αSM2 ◦ αχ = εχ · (α0)χ ◦ αSM 1 , where εχ = ±1 depends
only on χ. It follows from the evenness that the αSM descend to ∗-isomorphisms
αSM :BSM → (B0)SM that intertwine with the morphisms. Hence, B and B0 are
naturally equivalent.

Proposition 4.8. The locally covariant quantum field theory B :SSpac → TAlg

of Theorem 4.7 is causal and satisfies the time-slice axiom.

Proof. Causality follows from the anti-commutation relations,

[BSM (f1)BSM (f2), BSM (f3)]

= BSM (f1){BSM (f2), BSM (f3)} − {BSM (f1), BSM (f3)}BSM (f2)

= (f2, f3)BSM (f1) − (f1, f3)BSM (f2),

together with the support properties of S. For the time-slice axiom, we let
χ :SM → SM ′ be a morphism in SSpac, covering a morphism ψ :M →M ′ in Spac,
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such thatN := ψ(M) ⊂M ′ contains a Cauchy surface C ⊂M ′. Then we can choose
Cauchy surfaces C± ⊂ N such that C± ⊂ I±(C) and a smooth partition of unity
φ+, φ− with supp φ± ⊂ J±(C∓). Let f ∈ C∞

0 (DM ⊕D∗M) and write

f = P (S+f − φ+Sf) + f̃ , (11)

where f̃ := P (φ+Sf) = −P (φ−Sf) is supported in J+(C−) ∩ J−(C+) ⊂
N and φ+Sf − S+f has compact support. Hence, BSM2(f) = BSM 2(f̃) =
αχ(BSM 1(χ

∗(f̃))). Because the algebra FM ′ is generated by such elements this
shows that αχ is a ∗-isomorphism.

Remark 4.9. A Majorana spinor is a spinor u such that u = uc. In this case the
adjoint is anti-Majorana: u+c = −uc+ = −u+. We call a double spinor f = u ⊕ v

Majorana iff u and v+ are Majorana, which means that f c = τf . Such spinors
are sections of a subbundle of the Dirac spinor bundle, which can be described
by a Majorana representation. Notice that every spinor is a unique complex linear
combination of Majorana spinors.

To quantize Majorana spinors we note that 〈hc, f〉 = 〈h+, f c+〉. This leads us
to define the charge conjugation on the quantized fieldss by ψc(v) := ψ+(vc+)
and ψ+c(u) := ψ(uc+), or equivalently Bc(f) := B(f c+) = B(f c)∗. We impose
the Majorana condition Bc(f) = B(τf) by dividing out the ideal generated by
all elements of the form B(f − τf c+). More precisely, if H is the Hilbert space
obtained from C∞

0 (DM ⊕D∗M) by dividing out the ideal of double spinors f for
which (f, f) = 0, then there is an orthogonal decomposition H = H+ ⊕H−, where
the elements in H± satisfy τf c+ = ±f . Indeed, every double spinor can be written
as f = f+ + if−, where f± := 1

2 (f ± τf c+) are in H± and the orthogonality follows
from Lemma 4.3. For the C∗-algebraic quantization we then have F = F+ ⊗ F−,
where F− is the C∗-algebra of quantized Majorana spinors and F+ the C∗-algebra
of quantized anti-Majorana spinors (see [30, Sec. 5.2]). The generators ψ(v) and
ψ+(u) of F− satisfy the additional relation ψc = ψ and ψ+c = −ψ+.

4.2. Hadamard states

After Radzikowski’s result [31] that a for a scalar field state is of Hadamard form if
and only if its wave front set has a certain form, several people set out to extend this
result to the Dirac field, or more general quantum fields [32–34]. All three papers
have provided an original contribution in their method of proof, but upon careful
analysis they all have minor gaps. We feel that it is justified to comment on this
here and to provide the necessary results to fill any remaining gaps.

The most general results are the most recent ones, due to Sahlmann and
Verch [34], who set out to prove the equivalence of the Hadamard form of a state,
defined in terms of the Hadamard parametrix, with a wave front set condition anal-
ogous to the scalar field case. One of the techniques used is the scaling limit, but

sOur definition differs slightly from that of [13].
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the proof of their Proposition 2.8, which relates the wave front set of a distribution
to that of its scaling limit, is in our opinion insufficient (see footnote w). In the
Appendix, we prove a similar statement as Proposition A.2, thereby filling any gap
in [34] and establishing the desired equivalence on a firm ground. For the Dirac
field, Hollands has proved that this wave front set condition implies a specific form
of the polarization set ([35, Theorem 4.1]).

The scaling limit result can also be used to find the wave front sets of the
advanced and retarded fundamental solutions E± of normally hpyerbolic operators
on a globally hyperbolic spacetime, a result that we prove as Theorem A.5. Our
proof is largely analogous to the work of Radzikowski and the outcome is in direct
analogy to the results of Duistermaat and Hörmander [36] for the scalar case. To
find the wave front sets of the fundamental solutions S± for the Dirac equation we
use (and correct) an idea of [35].

Finally, we comment on the results by Kratzert [32], which use a spacetime defor-
mation argument to compute the wave front set and polarization set of Hadamard
states. This result has a gap, already identified in [34], concerning the case of points
(x, ξ; y, ξ′) where either ξ = 0 or ξ′ = 0, which prevents the propagation of the sin-
gularity from the original to the deformed spacetime. This gap can be avoided using
either a propagation of Hadamard form result as in [34], or using the commutation or
anti-commutation relations and the explicit form of WF (E), respectively WF (S).
The latter argument, which appears to be implicit in Radzikowski’s paper [31],
works as follows: when (x, ξ; y, 0) ∈ WF (ω2) then also (y, 0;x, ξ) ∈ WF (ω2) by
the (anti-)commutation relations and the fact that WF (E) (or WF (S)) has no
points with either entry equal to 0. Using the calculus of Hilbert-space-valued
distributions, Theorem A.4, we then find that both (x, ξ;x,−ξ) ∈ WF (ω2) and
(x,−ξ;x, ξ) ∈ WF (ω2). Because ξ �= 0 (by definition the wave front set does not
contain the zero covector) these points can both be propagated into a deformed
spacetime, where WF (ω) is known to satisfy the required microlocal condition.
This, however, leads to a contradiction, because WF (ω2) ∩ −WF (ω2) = ∅ and
hence ξ = 0. Therefore, WF (ω2) cannot contain points with one of the covectors
equal to 0.

After these historical notes we feel free to define the notion of Hadamard states
directly in terms of a wave front set condition, rather than using the Hadamard
parametrix. If ω is a state on FSM then we may consider the GNS-representation
(Hω, πω ,Ωω) associated to ω and the Hω-valued distribution on DM ⊕ D∗M
defined by:

vω(f) := πω(BSM (f))Ωω.

Definition 4.10. A state ω on FSM is called Hadamard if and only if

WF (vω) = N+ := {(x, ξ) ∈ T ∗M | ξ2 = 0, ξµ is future pointing or 0}.
A state ω on BSM is called Hadamard if and only if it can be extended to a
Hadamard state on FSM . The set of all Hadamard states on BSM will be denoted
by SSM .
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Note that every state on BSM can be extended to FSM , by the Hahn–Banach
Theorem and Proposition 4.6. The Hadamard condition is independent of the choice
of extension, because it depends solely on the two-point distribution as the following
proposition shows (cf. [34], we give a short proof using the more advanced microlocal
techniques developed in the Appendix).

Proposition 4.11. For a state ω on FSM the following conditions are equivalent :

(1) ω is Hadamard,
(2) WF (vω) ⊂ N+,

(3) the two-point distribution ω2(f1, f2) := ω(BSM (f1)BSM (f2)) has

WF (ω2) = C := {(x,−ξ; y, ξ′) ∈ T ∗M×2\Z | (x, ξ) ∼ (y, ξ′), (x, ξ) ∈ N+},
where (x, ξ) ∼ (y, ξ′) if and only if there is an affinely parameterized light-like
geodesic from x to y to which ξ, ξ′ are cotangent,

(4) there is a two-point distribution w such that ω2(f1, f2) = iw(Pf1, f2) and
WF (w) = C.

Proof. First, note that ω2 is a bidistribution on DM ⊕ D∗M , because BSM is
an FSM -valued distribution and multiplication in FSM and ω are continuous. By
Theorem A.4 the third statement implies the first, which trivially implies the sec-
ond. To show that the second statement implies the third, we use the argument
of [37, Proposition 6.1]. By Theorem A.4 we see that WF (ω2) ⊂ N− ×N+, where
N− := −N+. Defining ω̃2(f1, f2) := ω2(f2, f1) we find WF (ω̃2)∩WF (ω2) = ∅. Now,
(ω2 + ω̃2)(f1, f2) = i

∫
M 〈f1, τSf2〉, so WF (ω2) ∪ WF (ω̃2) = WF (S) = WF (E) by

Proposition A.7 and hence WF (ω2) = WF (E) ∩N− ×N+ = C by Corollary A.6.
Now, assume that ω2(f1, f2) = iw(Pf1, f2), where WF (w) = C. Then

WF (ω2) = WF ((P ∗ ⊗ I)w) ⊂ WF (w) = C. It follows that WF (vω) ⊂ N+. For
the converse we suppose that ω is Hadamard and we choose a smooth real-valued
function φ+ on M such that φ+ ≡ 0 to the past of some Cauchy surface C− and
such that φ− := 1 − φ+ ≡ 0 to the future of another Cauchy surface C+. We then
define w(f1, f2) := −iω2(φ+S−f1 + φ−S+f1, f2). Note that w is a bidistribution
which is well-defined, because φ+S−f1 and φ−S+f1 are compactly supported. By
construction iw(Pf1, f2) = ω2(f1, f2). We now estimate the wave front set of w as
follows. The wave front sets of S± are determined in Proposition A.7. Then we may
apply [38, Theorems 8.2.9 and 8.2.13] (in combination with Eq. (17)) to estimate
the wave front sets of the tensor products φ±(x)S∓(x, y)δ(x′, y′) and the composi-
tions in iw(x, x′) =

∑
±
∫
ω2(y, y′)(φ±(x)S∓(x, y)δ(x′, y′)) respectively and, using

WF (ω2) = C, we find:

WF (iw) ⊂ ∪±WF (S∓ ⊗ δ) ◦ WF (ω2) ⊂ WF (ω2) = WF ((P ∗ ⊗ I)w) ⊂ WF (w),

i.e. WF (w) = WF (ω2) = C.
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The second characterization in Proposition 4.11 is especially useful, because
it shows we do not need to compute the entire wave front set, as long as we
can estimate it. Employing similar techniques as above one can use the anti-
commutation relations and the wave front set of ω2 to estimate the wave front
sets of all higher n-point distributions [39], showing that a Hadamard state neces-
sarily satisfies the microlocal spectrum condition (µSC) of [40] and it follows that
the set of such states is closed under operations from the algebra. We formulate
this and other properties of Hadamard states in the following

Proposition 4.12. The set SSM of all Hadamard states on BSM satisfies :

(1) α∗
χ(SSM 1) ⊂ SSM 2 for every morphism χ :SM 1 → SM 2,

(2) SSM is closed under operations from BSM ,

(3) α∗
χ(SSM 1) = SSM 2 for every morphism χ :SM 1 → SM 2 such that ψ(M1) con-

tains a Cauchy surface of M2.

Proof. The first property follows from Theorem 4.11 and the fact that wave front
sets are local and geometric objects (cf. [38, Chap. 8]). The second property relies
on the anti-commutation relations, which implies that the truncated n-point distri-
butions are totally anti-symmetric (cf. [1, 39]). The final property follows from the
second characterisation in Theorem 4.11, Eq. (17) in the Appendix, the equation of
motion and the Propagation of Singularities Theorem for the wave front set, which
in this case follows from the propagation of the polarization set [41].

One can also prove that the state spaces are locally physically equivalent [5] and
that all quasi-free Hadamard states are locally quasi-equivalent [42]. Whether the
latter remains true for all Hadamard states appears to be unknown.

We conclude this section with the remark that the functor S :SSpac → TVec

defined by SM �→ SSM and χ �→ α∗
χ (restricted to the relevant state space) is a

locally covariant state space for the theory B [2].

4.3. The relative Cauchy evolution of the Dirac field and the

stress-energy-momentum-tensor

Now that we have a locally covariant free Dirac field at our disposal, we will inves-
tigate the idea of relative Cauchy evolution for this field and prove that it yields
commutators with the stress-energy-momentum tensor. This result is completely
analogous to the result for the free scalar field of [2].

Suppose that we have two objects M0 = (M, g0,SM 0, p0) and Mg =
(M, g,SM g, pg) in SSpac, where M is the same in both cases and such that out-
side a compact set K ⊂ M we have g = g0, SM g = SM 0 and pg = p0. Now
let N± ⊂ M0 be causally convex open regions, each containing a Cauchy surface
for M0, such that K lies to the future of N− (i.e. K ⊂ J+(N−)\N− in M0 and
hence also in Mg) and to the past of N+. We view N± as objects in SSpac and
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consider the canonical morphisms ι±0 :N± →M0 and ι±g :N± → Mg. By the time-
slice axiom, Proposition 4.8, these give rise to ∗-isomorphisms β±

0 :BN± → BM0 and
β±

g :BN± → BMg . We then define

βg := β+
0 ◦ (β+

g )−1 ◦ β−
g ◦ (β−

0 )−1.

The ∗-isomorphism βg :BM0 → BM0 measures the change in an operator A ∈ BN−

as it evolves to N+ in the metric g instead of g0.t βg can be extended to a ∗-
isomorphism of the algebra FM0 , where we fix the signs for the isomorphisms
between the spinor bundles involved by identifying the double spinor bundles over
N± ⊂ M0 and N± ⊂ Mg. It represents the relative Cauchy evolution of the free
Dirac field.

We will want to compute the variation of the ∗-isomorphism βg as well as that
of the action for the free Dirac field with respect to the metric g. For this purpose,
we will suppose that the compact set K ⊂ M has a contractible neighborhood
O which does not intersect either N±. Let ε �→ gε be a smooth curve from [0, 1]
into the space of Lorentzian metrics on M starting at g0 and such that gε = g0
outside K for every ε. The spin bundle SM ε must be trivial over the contractible
region O. If we assume it to be diffeomorphic to SM 0 outside K we can simply take
SM ε = SM 0 as a manifold and, choosing a fixed representation and matrices A,C,
we obtain DMε = DM .

The deformation of the spin structure is contained entirely in the spin frame pro-
jection πε :SM 0 → FM ε. Let E be a section of SM 0 over O and set (eε)a := πε(E).
We require that eε varies smoothly with ε and that (eε)a = (e0)a outsideK. To show
that projections πε with these properties exist we can apply the Gram–Schmidt
orthonormalisation procedure to (e0)a for all ε simultaneously. The assignment
E �→ eε determines πε completely, using the intertwining properties. The family of
frames eε determines principal fiber bundle isomorphisms FM ε → FM 0 between
the frame bundles by

λε : {(eε)a} �→ {(e0)a}
on K and extending it by the identity on the rest of M. By definition fε intertwines
the action of L↑

+ on the orthonormal frame bundles.

Remark 4.13. There may be many deformations of the spin structure, i.e. many
families of projections πε which satisfy our requirements. However, the variation
of terms like 〈v, Pεu〉 will not depend on this choice. Indeed, if π′

ε is a different
deformation of the spin structure, then e′ε := π′

ε(E) = RΛεeε = πε(RSεE) for some
smooth curve Sε in Spin0

1,3. However, using the invariance of 〈, 〉 under the action of
the gauge group Spin0

1,3, the variation will be equal in both cases. (Also δu = 0 for

tIn [2], it seems the authors have the scattering of a state in mind as it passes through the
perturbed metric, which leads them to consider the ∗-isomorphisms βg−1 rather than βg. When
we take the variation with respect to g this gives rise to a sign.
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every spinor u, because DεM = DM.) In this sense, the variation will only depend
on the variation of the metric.

4.3.1. The stress-energy-momentum tensor

The classical stress-energy-momentum tensor for the Dirac field is defined as a
variation of the action S =

∫
M LD, with the Lagrangian density (7), with respect

to gµν(x):

Tµν(x) :=
2√−det g(x)

δS

δgµν(x)
, (12)

where ψ is a free classical Dirac spinor, ψ+ its adjoint. An explicit computation
yieldsu

Tµν =
i

2
(〈ψ+, γ(µ∇ν)ψ〉 − 〈∇(µψ

+, γν)ψ〉).

Here the brackets around indices denote symmetrization as an idempotent operation
and in the following indices between | · · · | are to be excluded from the symmetriza-
tion.

Following [7] we quantize the stress-energy-momentum tensor via a point-split
procedure, i.e. we want to find a bi-distribution of scalar test-functions which
reduces to Tµν on the diagonal and which can be quantized in a straight-forward
way. For this purpose we use a local spin frame EA and recall that the components
γ A

a B of γa are constant. We define:

T s
ab(x, y) :=

i

2
(〈ψ+, EA〉(x)γ A

(a |B|〈EB , eµ
b)∇µψ〉(y)

−〈eµ
(a∇|µψ+, EA|〉(x)γ A

b) B〈EB, ψ〉(y)),

reduces to Tab := eµ
ae

ν
bTµν in the limit y → x. Performing a partial integration,∫ ∇µ(eµ

a〈v, u〉) = 0, we can write T s
ab as a bidistribution of scalar test-functions

h1, h2,

T s
ab(h1, h2) =

i

2
(−ψ+(EAh1)γ A

(a |Bψ(∇µ|(EBeµ
b)h2))

+ψ+(∇µ(eµ
(aE|A|h1))γ A

b) Bψ(EBh2)). (13)

Equation (13) can be promoted to the quantized case by replacing ψ and ψ+ by the
components ψSM and ψ+

SM of the corresponding locally covariant quantum field.
The expression (13) can be viewed as a formal expression for the same distribution
with quantized field operators.

uFor explicit computations, we refer to [43, Sec. 4], which uses a Lagrangian that differs from ours
by a total derivative. Varying with respect to gµν would yield the opposite sign.
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Proposition 4.14. For all f ∈ C∞
0 (DM ⊕D∗M) and h ∈ C∞

0 (M) we have:∫
M

[T s
ab(x, x), BSM (f)]h(x)dvolg(x)

=
1
2
{(∇(aBSM )(γb)(Sτf)h) − BSM (γ(b∇a)(Sτf)h)},

where ∇a := eµ
a∇µ.

Proof. For f = u⊕ v we use Proposition 4.6 to obtain:

{BSM (f), ψ+
SM (EAh)} = −i

∫
M

〈v, SEAh〉I = i

∫
M

〈Scv,EA〉hI,

{BSM (f), ψSM (∇µE
Beµ

b h)} = −i
∫

M

〈∇µE
Beµ

b h, Su〉I = i

∫
M

〈EB , eµ
b∇µSu〉hI,

{BSM (f), ψ+
SM (∇µe

µ
aEAh)} = −i

∫
M

〈v, S∇µe
µ
aEAh〉I = −i

∫
M

〈eµ
a∇µScv,EA〉hI,

{BSM (f), ψ(EBh)} = −i〈EB, Su〉hI.

With Eq. (13), the commutation relations and [AB,C] = A{B,C} − {A,C}B this
implies

[T s
ab(x, y), BSM (f)] =

1
2
{ψ+

SM (EA(x))γ A
(a |B|〈EB ,∇b)Su〉(y)

+ 〈Scv,EA〉(x)γ A
(a |B|(∇b)ψSM )(EB(y))

− (∇(aψ
+
SM )(E|A|(x))γ A

b) B〈EB, Su〉(y)

−〈∇(aScv,E|A|〉(x)γ A
b) BψSM (EB(y))}.

In this expression, we are multiplying distributions with smooth functions, so we
may take the coincidence limit yielding:

[T s
ab(x, x), BSM (f)] =

1
2
{ψ+

SM (γ(a∇b)(Su)(x)) + ∇(bψSM (Scvγa)(x))

−∇(aψ
+
SM (γb)Su(x)) − ψSM (∇(a(Scv)γb)(x))}

=
−1
2

{∇(aBSM (γb)Sτf(x)) −BSM (γ(b∇a)(Sτf)(x))},

from which the result follows.
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This result can be written for spinors and cospinors separately as:∫
M

[T s
ab(x, x), ψSM (v)]h(x)dvolg(x)

=
1
2
{∇(aψSM ((Scv)γb)h) − ψSM (∇(a(Scv)γb)h)},∫

M

[T s
ab(x, x), ψ

+
SM (u)]h(x)dvolg(x)

=
−1
2

{∇(aψ
+
SM (γb)Suh) − ψ+

SM (γ(a∇b)(Su)h)}.

4.3.2. Relative Cauchy evolution

To compute the relative Cauchy evolution explicitly, we first note that the isomor-
phism βg can be characterized in terms of its action on the generators BM0(f) of
FM0 as follows:

Proposition 4.15. For f ∈ C∞
0 (DN+ ⊕ D∗N+), we have βgB0(f) = B0(Tgf),

where

Tgf = Pgφ+SgP0φ−S0f.

Here the subscripts on B,P and S indicate whether they are the objects defined on
M0 or Mg and the smooth functions φ± are such that φ± ≡ 1 to the past of some
Cauchy surface in N± and φ± ≡ 0 to the future of some other Cauchy surface
in N±.

Proof. Note that β−
g ◦ (β−

0 )−1B0(f̃) = Bg(f̃) for any f̃ ∈ C∞
0 (DN− ⊕ D∗N−).

Similarly, for f ′ ∈ C∞
0 (DN+ ⊕D∗N+) we have β+

0 ◦ (β+
g )−1Bg(f ′) = B0(f ′). The

functions φ±, 1 − φ± have been chosen appropriately in order to apply Eq. (11)
in Proposition 4.8. We then have B0(f̃) = B0(f), where f̃ := −P0φ−S0f . Notice
that f̃ indeed has a compact support in N−. Similarly, Bg(f̃) = Bg(f ′), where
f ′ := −Pgφ+Sgf̃ has support in N+. Hence, for f ′ = Tgf : βgB0(f) = βgB0(f̃) =
β+

0 ◦ (β+
g )−1Bg(f̃) = β+

0 ◦ (β+
g )−1Bg(f ′) = B0(f ′).

On each spin spacetime Mε = (M, gε,SM 0, πε) we can now quantize the Dirac
field and obtain relative Cauchy evolutions βε := βgε on FN+ as before.

Proposition 4.16. Writing δ := ∂ε|ε=0 we have for all f ∈ C∞
0 (DN+ ⊕D∗N+):

δ(βεB0(f)) = B0(τ(δ∇/ ε)S0f).

Proof. Using the fact that B0 is a C∗-algebra-valued distribution and Proposi-
tion 4.15 we find:

δ(βεB0(f)) = δ(B0(Pεφ+SεP0φ−S0f))

= B0(δ(Pεφ+Sε)P0φ−S0f)

= B0(δ(Pε)φ+S0P0φ−S0f) +B0(P0φ+δ(Sε)P0φ−S0f).
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Now, because P0φ−S0f ∈ C∞
0 (DN− ⊕D∗N−) we see that δ(Sε)P0φ−S0f vanishes

on J−(N−) and that φ+δ(Sε)P0φ−S0f has compact support. Because B0 solves
the Dirac equation we conclude that the second term vanishes. The first term can
be rewritten using Eq. (11), which yields S0f = −S0P0(φ−S0f) and hence:

δ(βεB0(f)) = −B0(δ(Pε)φ+S0f) = −B0(δ(Pε)S0f).

For the last equality, we used the fact that δ(Pε) is supported in K, where φ+ ≡ 1.
Recall that P = (−i∇/ +m) ⊕ (i∇/ +m) to get the final result.

To compute the variation of the Dirac operator we may work in a local frame
on O, where it is supported. Because the Dirac adjoint map is independent of ε we
only need to compute this variation either for spinors or for cospinors:

Lemma 4.17. For v ∈ C∞
0 (D∗M) we have δ(∇/ )v = (δ(∇/ )v+)+.

Proof. Because the adjoint operation is continuous we have:

δ(∇/ )v = ∂ε∇/ εv|ε=0 = ∂ε(∇/ εv
+)+|ε=0 = (∂ε∇/ εv

+|ε=0)+ = (δ(∇/ )v+)+.

It is interesting to note that only the variation of the Dirac operator is of
importance for the variation of the relative Cauchy evolution, just like for the
stress-energy-momentum tensor (cf. [43]). It will also turn out that the variation
only depends on the variation of the metric and not on the other freedom in the
variation of the orthonormal frame, even though we are now acting on it with
the C∗-algebra-valued field (cf. Remark 4.13). This will follow from the proof of
the following theorem, for which we refer to Appendix B.

Theorem 4.18. For a double test-spinor f ∈ C∞
0 (DM0 ⊕D∗M0) and x ∈ K:

δ

δgαβ(x)
(βgB0(f)) = −B0

(
δ

δgαβ(x)
PgS0f

)
=

−i
2
ea

αe
b
β[T s

ab(x, x), B0(f)]. (14)

This result compares well with the scalar field case, [2, Theorem 4.3].v As particular
cases we obtain for ψ and ψ+:

δ

δgαβ(x)
(βgψ(v)) =

−i
2
ea

αe
b
β[T s

ab(x, x), ψ(v)],

δ

δgαβ(x)
(βgψ

+(u)) =
−i
2
ea

αe
b
β[T s

ab(x, x), ψ
+(u)].

vThe sign explained in footnote t cancels the sign due to the variation with respect to gαβ instead
of gαβ .



May 11, 2010 10:6 WSPC/S0129-055X 148-RMP
J070-S0129055X10003990

The Locally Covariant Dirac Field 417

It follows that the same result also holds for products and sums of smeared field
operators.

5. Conclusions

A rigorous formulation of quantum field theories in curved spacetime, going beyond
the well-known scalar field, is a prerequisite for constructing more realistic cosmo-
logical models as well as for improving our understanding of quantum field theory
in Minkowski spacetime. The main purpose of this paper was to present the free
Dirac field in a four-dimensional globally hyperbolic spacetime as a locally covari-
ant quantum field theory in the sense of [2] and to compute the relative Cauchy
evolution of this field, obtaining commutators with the stress-energy-momentum
tensor in analogy with the free real scalar field. We achieved this in a represen-
tation independent way and in a functorial, and therefore manifestly covariant,
framework.

We established some basic properties of the locally covariant free Dirac field
and remarked on the quantization of Majorana spinors. We also provided a detailed
discussion of Hadamard states, closing any gaps in the existing proofs of the equiv-
alence of the definitions in terms of the series expansion of their two-point distri-
bution and a microlocal condition, respectively.

Furthermore, we argued that the observable part of the theory is uniqueley
determined by the relations between adjoints, charge conjugation and the Dirac
operator, although the geometric constructions themselves may not be unique due
to the cohomological properties of the category of spin spacetime. On a mathemat-
ical level we have consistently replaced a single spin spacetime SM by the category
SSpac of such spacetimes, and the differential geometry on SM by the correspond-
ing functorial descriptions. On a physical level, however, we should not conclude
from this that SSpac is now the physical arena in which our system lives, instead
of a collection of systems. (See [1, Chap. 1] for more detailed philosophical remarks
on the interpretation of the locally covariant approach.)
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Appendix A. Results in Microlocal Analysis

In this appendix, we will list some results concerning the microlocal analysis of
distributions. For a detailed treatment of scalar distributions we refer to [38],
whereas Hilbert and Banach-space-valued distributions are treated in [1, 37]. More
details concerning distributional sections of vector bundles can be found in, e.g.,
[1, 16, 34, 41].

Before we discuss distributional sections of vector bundles, we first consider the
scaling limit of a distribution in an open set of R

n:

Definition A.1. Let O be a convex open region O ⊂ Rn containing 0. For all
λ > 0 we define the scaling map δλ :O → O by δλ(x) := λx.

Let u be a distribution on a convex open region O ⊂ Rn containing 0. The
scaling degree d of u at 0 is defined as d := inf{β ∈ [−∞,∞) | limλ→0 λ

βδ∗λu = 0},
where (δ∗λu)(f) := λ−nu(f ◦ δ−1

λ ).
If u0 := limλ→0 λ

dδ∗λu exists we call it the scaling limit of u at 0.

Note that the scaling limit may fail to exist (e.g., u(x) = log|x|) or it may vanish
(e.g., if 0 �∈ supp(u)). On a manifold, we will only consider scaling limits in a certain
choice of local coordinates. How this limit depends on this choice of coordinates will
not be relevant for us.

We now prove the following resultw:

Proposition A.2. Let u be a distribution on a convex open region O ⊂ Rn con-
taining 0 with scaling limit u0 at 0. Then

{0} × π2(WF (u0)) ⊂ WF (u),

where π2 denotes the projection on the second coordinate.

Proof. Suppose that (0, ξ0) �∈ WF (u) with ξ0 �= 0. We will prove that (x, ξ0) �∈
WF (u0) for all x. By assumption, we can choose χ ∈ C∞

0 (O) and an open conic
neighborhood Γ ⊂ Rn of ξ0 such that χ ≡ 1 on a neighborhood of 0 and supp(χ)×
Γ∩WF (u) = ∅. We set v := χu and vλ := λdδ∗λv, where d is the scaling degree of u
at 0. Notice that WF (v) ∩ T ∗

0O = WF (u) ∩ T ∗
0O and u0 := limλ→0 v

λ, so without

wA similar result was also claimed as [34, Proposition 2.8], but we find their proof unconvincing.
In particular, when localizing the scaling limit u0 with a test-function χ0 and estimating (cf. [34,
Eq. (2.11)])

χ̂0u0(ξ) = lim
λ→0

λd−nu
“
χ0

“ .

λ

”
e−i ξ

λ
·.

”

the test-function χ0(
.
λ
) becomes singular in the limit λ → 0. The quoted reference pays insufficient

attention to this issue in the last sentence of their proof, because their last estimate does not involve
any χ0.
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loss of generality, we may prove the result with v replacing u and we can view the
vλ as compactly supported distributions on all of Rn.

Notice that for λ > 0 we have δ∗λu
0 = λ−du0, i.e. u0 is a homogeneous distri-

bution and therefore it is tempered ([38, Theorem 7.1.18]). We now prove that vλ

converges to u0 in the sense of tempered distributions on Rn. For this we first write
v =

∑
|α|≤r(−1)|α|∂αvα, where r is the order of v and the vα are compactly sup-

ported distributions of order 0 (see [38, Sec. 2.1]). Note that
∑

|α|<d−n(−1)|α|∂αvα

converges to 0 in S, because for every |α| < d− n and φ ∈ S(Rn) we have

|((−1)|α|∂αvα)λ(φ)| = λd−n|vα(∂α(φ ◦ δ−1
λ ))| ≤ λd−n−|α|C sup|∂αφ|

which converges to 0 as λ → 0. We then set w :=
∑

d−n≤|α|≤r(−1)|α|∂αvα, so
that limλ→0 w

λ = u0 as distributions. By the Uniform Boundedness Principle this
implies

|wλ(φ)| ≤ C
∑
|α|≤r

sup|∂αφ|, supp(φ) ⊂ B1, (15)

for some C, r > 0, where B1 is the (Euclidean) unit ball and 0 < λ ≤ 1. In fact, for
λ ≥ 1 we also have

|wλ(φ)| = λd−n|w(φ ◦ δ−1
λ )| ≤ C

∑
d−n≤|α|≤r

λd−n−|α| sup|∂αφ|

≤ C
∑

d−n≤|α|≤r

sup|∂αφ|,

so the estimate (15) holds for all λ > 0.
Now, let φ ∈ S(Rn) be a function of rapid decrease and choose a partition of

unity on Rn as follows. We let χ0 ∈ C∞
0 (Rn) be positive such that χ ≡ 1 on B1 and

χ(x) = 0 when ‖x‖ ≥ 2. We then set χm(x) := χ0(2−mx) − χ0(21−mx) and note
that:

supp(χm≥1) ⊂ {x | 2m−1 ≤ ‖x‖ ≤ 2m+1},
∞∑

m=0

χm = 1,

where the sum is finite near every point. We define φm := χmφ and µm := 2−m−1

and rescale φm in order to apply the estimate (15):

|wλ(φm)| = µd−n
m

∣∣∣∣wλ/µm

(
φm

(
.

µm

))∣∣∣∣
≤ C

∑
|α|≤r

µd−n−|α|
m sup

∣∣∣∣(∂αφm)
(

.

µm

)∣∣∣∣
≤ C1

∑
|α|≤r

∑
|β|≤r+n−d

sup
Rn

|xβ∂αφm|, m ≥ 0, (16)
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where the last line uses µd−n−|α|
m ≤ (4‖x‖)|α|+n−d for m ≥ 1, which follows from

d − n ≤ |α| and the support properties of χm. (For m = 0 we simply estimate
µ

d−n−|α|
0 by a constant to arrive at the last line of (16).) We now note that

maxα supx|∂αχm| ≤ c for some c independent of m, as the derivatives only bring out
extra factors of 2−m ≤ 1. Moreover, form ≥ 0 we notice that χm+1+χm+χm−1 ≡ 1
on supp(χm), where we define χ−1 := 0. Therefore (16) leads to

|wλ(φm)| ≤ C2

∑
|α|≤r

∑
|β|≤r+n−d

sup
Rn

|xβ∂αφ|(χm+1 + χm + χm−1)

and summing over m ≥ 0 then gives:

|wλ(φ)| ≤ 3C2

∑
|α|≤r

∑
|β|≤r+n−d

sup
Rn

|xβ∂αφ|.

This shows that wλ(φ) can be estimated by a seminorm on S(Rn) uniformly in λ.
It then follows that wλ → u0 and hence vλ → u0 as tempered distributions. Indeed,
for any φ ∈ S(Rn) and ε > 0 we can choose φ′ ∈ C∞

0 (Rn) and λ0 > 0 such that
|wλ(φ− φ′)| < ε

2 for all λ > 0 and |wλ(φ′)| < ε
2 for all λ < λ0.

Fourier transformation is a continuous operation on tempered distributions, so
we can compute:

|û0(ξ)| = lim
λ→0

λd−n

∣∣∣∣v̂( ξλ
)∣∣∣∣ ≤ CN lim

λ→0
λd−n

∥∥∥∥ ξλ
∥∥∥∥−N

= CN‖ξ‖−N lim
λ→0

λN+d−n

for all ξ in Γ, allN ∈ N and suitable CN > 0. ForN > n−d the limit yields û0(ξ) = 0
near ξ0. We then apply [38, Theorem 8.1.8], which says that for a homogeneous
distribution we have for all x �= 0 that (x, ξ0) ∈ WF (u0) if and only if (ξ0,−x) ∈
WF (û0) and also (0, ξ0) ∈ WF (u0) if and only if ξ0 ∈ supp(û0).

For a distribution u with values in a Banach space B one can define the wave
front set by using estimates of the norm ‖u(χeiξ·)‖, which replace the corresponding
estimates of the absolute value |u(χeiξ·)| for scalar distributions [37]. Alternatively,
one can use the following equivalent characterization ( [1, Theorem A.1.4]):

WF (u) =
⋃

l∈B′
WF (l ◦ u)\Z. (17)

A similar idea works for a distributional section u of a vector bundle V = O × R
m

over a contractible region O of R
n. Indeed, using a basis ei for R

m with dual basis
ei we can identify u with a distribution ũ on O with values in B⊗ (Rm)′, where the
correspondence is given by

ũ(h) :=
m∑

i=1

u(hei) ⊗ ei, u

(
m∑

i=1

f iei

)
=

m∑
i=1

〈ũ(f i), ei〉,
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where 〈 , 〉 denotes the canonical pairing of Rm with the second factor of B⊗ (Rm)′.
We set by definition WF (u) := WF (ũ).

Equation (17) allows a straightforward generalization of many results for
scalar distributions on open sets of R

n to Banach-space-valued distributional sec-
tions of a vector bundle over regions over Rn. Moreover, by showing how these
results transform under changes of coordinates they can be formulated for vec-
tor bundles on a manifold. We list a number of these results in the following
Theorem (cf. [1, 38]):

Theorem A.3. If u, v are distributional sections of a complex vector bundle V over
the spacetime M with values in the Banach space B, then:

(1) sing supp(u) is the projection of WF (u) on the first variable,
(2) u ∈ C∞(V ,B) if and only if WF (u) = ∅,
(3) WF (u+ v) ⊂ WF (u) + WF (v),
(4) if P is a linear partial differential operator on V with smooth coefficients

and (matrix-valued) principal symbol x p(x; ξ), then WF (Pu) ⊂ WF (u) ⊂
WF (Pu) ∪ ΩP , where ΩP := {(x; ξ) ∈ T ∗M | ξ �= 0, det p(x; ξ) = 0},

(5) if x ∈ M, φ :U → Rn is a local trivialization on a convex neighborhood U with
φ(x) = 0 and (φ−1)∗u has a scaling limit u0 at 0, then φ∗({0}×π2(WF (u0))) ⊂
WF (u) ∩ T ∗

xM .

In the last item, the scaling limit depends not just on the choice of coordinates, but
also on the choice of a frame ei of V over U and we let the scaling maps δλ act on
sections of V componentwise: (

∑
i f

iei) ◦ δ−1
λ =

∑
i(f

i ◦ δ−1
λ )ei.

In the particular case where B is a Hilbert space, we also have (see [1, 37]):

Theorem A.4. Let H be a Hilbert space and Vi, i = 1, 2, two finite-dimensional
(complex ) vector bundles over smooth ni dimensional spacetimes Mi with complex
conjugations Ji, i.e. the Ji are antilinear, base-point preserving bundle isomor-
phisms Ji :Vi → Vi such that J2

i = −id. Let ui, i = 1, 2. be two H-valued distri-
butional sections of Vi and let wij be the distributional sections of the vector bundle
Xi � Xj over Mi ×Mj determined by wij(f1 � f2) := 〈ui(Jif1), uj(f2)〉. Then

(x, ξ) ∈ WF (u1) ⇔ (x,−ξ;x, ξ) ∈ WF (w11)

and

WF (wij) ⊂ −(WF (ui) ∪ Z) × (WF (uj) ∪ Z),

where Z denotes the zero-section.

Finally, we establish some results on the wave front sets of advanced and
retarded fundamental solutions E± (for their existence and uniqueness we refer
to [16]) and S±, S±

c . These results are analogous to [36, Theorem 6.5.3], but now

xSee [16] for the definition of the principal symbol.
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for operators in a vector bundle. Note that for distributional sections of vector
bundles there is a Propagation of Singularities Theorem, which follows from the
propagation of the polarization set [41].

Theorem A.5. Let E± be the advanced (−) and retarded (+) fundamental solu-
tions for a normally hyperbolic operator P acting on the sections of a vector bundle
DM over a globally hyperbolic spacetime M = (M, g) of dimension n ≥ 2. Then

WF (E±) = {(x, ξ; y, η) ∈ T ∗M×2\Z |x ∈ J±(y), x �= y, (x,−ξ) ∼ (y, η)}
∪ {(x,−ξ;x, ξ) ∈ T ∗M×2\Z | (x, ξ) ∈ T ∗M\}

=: A± ∪B (18)

where Z is the zero-section and (x, ξ) ∼ (y, η) if and only if there is a light-like
geodesic γ from x to y to which ξ and η are cotangent such that they are each
others parallel transport along γ.

Proof. The first part of this proof follows closely the proof of [31].
We start by reducing the problem to a local one as follows. The principal symbol

of P is p(x, ξ) = gµν(x)ξµξνI, where I is the identity operator on DM , so by the
Propagation of Singularities Theorem, the singularities of E± propagate along light-
like geodesics by parallel transport. By definition the points in set A± are invariant
under the same parallel transport. Now consider a point p := (x, ξ; y, η) with x �= y.
If ξ = η = 0 then P is not contained in any set on either side of the equality, so
we may assume ξ �= 0 (the case η �= 0 is analogous). Let S be a spacelike Cauchy
surface through y and propagate (x, ξ) along the light-like geodesic γ towards S.
If γ ends at S in x′ �= y then P is not contained in A± or B, nor is it contained
in WF (E±), because E(x′, y) = 0 when x′ and y are spacelike, so it cannot have
any singularities there. If γ ends at y, on the other hand, we can find a point
p′ := (x′, ξ′; y, η), where x′ on γ is in any given causally convex neighborhood of y
and ξ′ is the parallel transport of ξ along γ to x′. Then p′ ∈ WF (E±) if and only
if p ∈ WF (E±) and p′ ∈ A± if and only if p ∈ A±. Hence, it suffices to prove the
claim locally.

On a sufficiently small causally convex domain O ⊂ M we can find for every
k ∈ N a Ck-section W k of DM �D∗M on O×2 such that ( [16, Proposition 2.5.1]):

E±(x, y) =
k+1∑
j=0

Vj(x, y)f∗(1 ⊗R±(2 + 2j, ·))(x, y) +W k(x, y). (19)

Here, the Hadamard coefficients Vj are uniquely defined smooth sections of DM �
D∗M on O×2, R±(α, y) are the retarded (+) and advanced (−) Riesz distributions
(or rather distribution densities) on Minkowski spacetime and they are pulled back
by the smooth diffeomorphism f :O×2 → TO defined by (x, y) �→ (x, exp−1

x (y)).
This means we use Riemannian normal coordinates for y centered on x, which is
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well-defined because O is causally convex. The Riesz distributions have many useful
properties, of which we will only use for all j ≥ 0:

WF (R±(2j + 2, ·)) = {(x, ξ) ∈ T ∗M0\Z | x = 0 or x2 = 0, x ∈ J±(0), ξ ‖ x}
R±(2 + 2j, λx) = λ2+2j−nR±(2 + 2j, x), λ > 0.

(20)

(These can be proved using [16, Proposition 1.2.4 items 4 and 5], �j+1R±(2+2j, ·) =
δ and the wave front sets of the distinguished parametrices as determined in [36].)
Hence, for all j ∈ N:

WF (f∗(1 ⊗R±(2 + 2j, ·))) = f∗(WF (1 ⊗R±(2 + 2j, ·)))
= f∗(Z|O × WF (R±(2 + 2j, ·)))
= {(x, ξ; y, η) | (ξ, η) = dfT (0, η′) for some

(exp−1
x (y), η′) ∈ WF (R±(2 + 2j, ·))},

= (A± ∪B) ∩ T ∗O×2, (21)

where dfT is the transpose of the derivative df at (x, y). The last equality uses
the wave front set of the Riesz distributions in Eq. (20) and the properties of
Riemannian normal coordinates (cf. [31]). It follows that WF (E±|O×2) ⊂ (A± ∪
B)∩T ∗O×2, because for each order of differentiation N we can choose a sufficiently
high order k in Eq. (19) to make the required estimate in the definition of the wave
front set.

We can prove the opposite inclusion, if we can show that the wave front set
of the finite sum in (19) also contains (A± ∪ B) ∩ T ∗O×2, which we will do using
scaling limits (cf. [34]). First, we may employ the Riemannian normal coordinates
f :O×2 → TO as above. Next, we may assume that O is also a contractible coor-
dinate neighbourhood, so we can consider local coordinates φ :O → Rn on O and
the associated coordinate map dφ on TO. Moreover, we can choose φ in such a way
that φ(x0) = 0 for an arbitrarily given x0 ∈ O. The composition dφ◦ f then defines
coordinates on O×2 such that (x0, x0) �→ 0 ∈ R2n. Using a frame EA for DM |O
and the dual frame EB we can express the terms in the sum of Eq. (19) in the
local coordinates dφ ◦ f as V A

jB(x, y)R±(2 + 2j, y). From Eq. (20), we then find the
scaling behavior

δ∗λ(V A
jB(x, y)R±(2 + 2j, y)) = λ2+2j−n(V A

jB(λx, λy)R±(2 + 2j, y))

for all λ > 0. In the scaling limit only the lowest order term survives:

lim
λ→0

λn−2(δλ ◦ f−1 ◦ dφ−1)∗E(x, y) = V A
0B(0, 0)R(2, y)EB(x)EA(y)

= R(2, y)EA(x)EA(y),
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where we wrote R(2, y) := R−(2, y)−R+(2, y) and we used the explicit expression
V A

0 B(x, x) = δA
B ( [16, Lemmas 2.2.2 and 1.3.17]).

Now, the last item of Theorem A.3 (which follows from Proposition A.2) implies
that WF (E) ⊃ (dφ ◦ f)∗({(0, 0)} × π2(WF (1 ⊗ R(2, ·)))), because EA(x)EA(y) is
smooth and not identically vanishing. From Eq. (20) and the support properties of
R±(2, ·) we easily compute π2(WF (1 ⊗ R(2, ·))) = {(0, ξ) | ξ2 = 0}. Pulling this
back to O×2 and using the properties of Riemannian normal coordinates yields

WF (E) ⊃ {(x0,−ξ;x0, ξ) | ξ2 = 0}.
Because E is a bi-solution to the wave equation we can apply the Propagation
of Singularities Theorem to find that WF (E) ⊃ A+ ∪ A− on O×2 and from the
support properties of E+ and E− we then conclude that WF (E±) ⊃ A±. Finally,
WF (E±) ⊃ WF (PE±) = WF (δ) = B. This completes the proof.

Corollary A.6. In the notation of Theorem A.5, WF (E) = A+ ∪A−\Z.

Proof. By Theorem A.5 and the support properties of E±, we have WF (E) =
A+∪A− away from the diagonal. The inclusion ⊃ then follows from the closedness of
the wave front set. For the opposite inclusion we consider a point on the diagonal and
use the Propagation of Singularities Theorem to find an approximating sequence of
points off the diagonal.

Proposition A.7. For the fundamental solutions of the Dirac equation we have,
in the notation of Theorem A.5: WF (S±) = WF (S±

c ) = A± ∪ B and WF (S) =
WF (Sc) = A+ ∪A−\Z.

In other words, WF (S±) = WF (S±
c ) = WF (E±) and WF (S) = WF (Sc) =

WF (E).

Proof. Because S± = (i∇/ + m)E± and S±
c = (−i∇/ + m)E± (see [6]) we

immediately find WF (S±) ⊂ WF (E±) and WF (S±
c ) ⊂ WF (E±). Similarly

WF (S) ⊂ WF (E) and WF (Sc) ⊂ WF (E). Now suppose that WF (S) =
WF (Sc) = WF (E) = A+ ∪A−, which we will prove below. By the support
properties of the fundamental solutions we then find that away from the diagonal
WF (S±) = WF (S±

c ) = A±, whereas on the diagonal WF (E±) = B ⊃ WF (S±) ⊃
WF (PS±) = WF (δ) = B and similarly for cospinors.

To complete the proof we need to show that WF (S) ⊃ WF (E) and WF (Sc) ⊃
WF (E), for which we adapt (and correct) an idea of [33]. We prove the case of
S, because the other case follows by taking adjoints (cf. Theorem 3.10). Further
note that it is sufficient to prove the claim on the diagonal, because the Propa-
gation of Singularities Theorem applies both to E and to S. Now suppose that
(x,−ξ;x, ξ) ∈ WF (E)\WF (S). We will derive a contradiction as follows. For every
time-like, future pointing normalized vector n0 ∈ TxM we can find a smooth space-
like Cauchy surface C through x such that n0 is normal to C. We let n denote
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the future pointing normal vector field on C and ι :C →M the canonical injec-
tion. By [6, Proposition 2.4(c)] we can restrict S to C×2 to find S|C×2 = −iδn/
and in particular (x,−dιTx (ξ);x, dιTx (ξ)) ∈ WF (S|C×2). By (a component version
of) [38, Theorem 8.2.4], on the other hand:

WF (S|C×2) ⊂ (ι× ι)∗(WF (S)) = {(x, dιTx (ξ); y, dιTy (ξ′)) | (x, ξ; y, ξ′) ∈ WF (S)}.

Therefore, there must be a point (x,−η;x, η) ∈ WF (S) such that (x,−dιTx (η);
x, dιTx (η)) = (x,−dιTx (ξ);x, dιTx (ξ)) Notice, however, that the transpose of dι is
nothing else than restricting the dual vector ξ to the tangent space of C. Because
WF (S) ⊂ WF (E), there are only two possibilities: η = ξ or η = ξ−2(ξana

0)n0. The
first contradicts our assumption, so we have η = ξ− 2(ξana

0)n0. Now (x,−η;x, η) ∈
WF (S) must hold for every normalised, time-like, future pointing vector n0 ∈ TxM .
Choosing a sequence of vectors n0 such that η → ξ and using the closedness of the
wave front set we find again (x,−ξ;x, ξ) ∈ WF (S). Hence, WF (E) = WF (S).

Appendix B. Proof of Theorem 4.18

The computations involved in the proof of Theorem 4.18 are somewhat similar to the
computation of the stress-energy-momentum tensor. We will work in components
and in local coordinates on O, using Greek indices to indicate the coordinate frame
and coordinate derivatives. To ease the notation we will drop the subscript ε on the
local frame eµ

a .
As γa is independent of ε we may use Eqs. (5) to vary

∇/ v =
(
∂av − 1

4
Γc

abvγcγ
b

)
γa = eα

a

(
∂αv +

1
4
eβ

b {∂αe
c
β − ec

γΓγ
αβ}vγcγ

b

)
γa, (22)

which yields:

δ∇/ v = δeα
ae

d
α∇dvγ

a − 1
4
δeβ

b e
d
βΓc

advγcγ
bγa +

1
4
∂aδe

c
βe

β
b vγcγ

bγa

− 1
4
δec

γe
α
ae

β
b Γγ

αβvγcγ
bγa − 1

4
δΓγ

αβe
α
ae

β
b e

c
γvγcγ

bγa. (23)

We can perform an integration by parts as follows:

1
4
∂aδe

c
βe

β
b vγcγ

bγa

=
−i
4
Pc(δec

βe
β
b vγcγ

b) +
i

4
δec

βe
β
bPc(vγcγ

b)

− 1
4
δec

β∂ae
β
b vγcγ

bγa − 1
4
δed

βe
β
b Γc

advγcγ
bγa +

1
4
δec

βe
β
dΓd

abvγcγ
bγa



May 11, 2010 10:6 WSPC/S0129-055X 148-RMP
J070-S0129055X10003990

426 K. Sanders

=
−i
4
Pc(δec

βe
β
b vγcγ

b) +
i

4
δec

βe
β
b (Pcv)γcγ

b − 1
4
δec

βe
β
b∇av[γcγ

b, γa]

− 1
4
δec

β∂ae
β
b vγcγ

bγa +
1
4
δeβ

b e
d
βΓc

advγcγ
bγa +

1
4
δec

βe
β
dΓd

abvγcγ
bγa.

(24)

Because [γcγ
b, γa] = γc{γb, γa} − {γc, γ

a}γb = 2ηabγc − 2δa
c γ

b and ec
β = gµβη

cdeµ
d

we can write:

−1
4
δec

βe
β
b∇av[γcγ

b, γa] = −1
2
δ(gµβη

cdeµ
d )eβ

b η
ab∇avγc +

1
2
δec

βe
β
b∇cvγ

b

= −1
2
δgµβη

cdeµ
de

β
b η

ab∇avγc − δeµ
de

a
µ∇avγ

d

=
1
2
δgαβea

αe
b
β∇avγb − δeα

ae
d
α∇dvγ

a. (25)

When substituting Eqs. (24) and (25) into (23), we can recombine the terms

−1
4
δec

β∂ae
β
b vγcγ

bγa − 1
4
δec

γe
α
ae

β
b Γγ

αβvγcγ
bγa =

−1
4
δec

γe
γ
dΓd

abvγcγ
bγa

to obtain

δ∇/ v =
−i
4
Pc(δec

βe
β
b vγcγ

b) +
i

4
δec

βe
β
b (Pcv)γcγ

b +
1
2
δgαβea

αe
b
β∇avγb

− 1
4
δΓγ

αβe
α
ae

β
b e

c
γvγcγ

bγa. (26)

Note that the variations of the frame δeα
a cancel out, except in the terms with Pc.

These are harmless when we compute B0(δ∇/ S0f), because both B0 and v solve
the Dirac equation. Therefore, the final answer will not depend on variations of the
frame, as desired.

In the last term of Eq. (26), we can use the symmetry of the Christoffel symbol:

−1
4
δΓγ

(αβ)e
α
ae

β
b e

c
γvγcγ

bγa = −1
4
δΓγ

αβe
α
ae

β
b e

c
γvγcη

ab = −1
4
δΓγ

αβg
αβec

γvγc

= −1
4
δgγµgµνΓν

αβg
αβec

γvγc − 1
4
∂αδgβµe

µ
ag

αβvγa

+
1
8
∂µδgαβe

µ
ag

αβvγa. (27)

We handle the last term using an integration by parts as before:

1
8
∂aδgαβg

αβvγa =
−i
8
Pc(δgαβg

αβv) +
i

8
δgαβg

αβPcv − 1
8
δgαβ∂ag

αβvγa

=
−i
8
Pc(δgαβg

αβv) +
i

8
δgαβg

αβPcv − 1
8
δgαβ∂agαβvγ

a, (28)
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where we used δgαβ∂ag
αβ = −δgαβgαµgβν∂ag

µν = δgαβ∂agαβ . The penultimate
term in (27) is:

− 1
4
∂αδgβµe

µ
ag

αβvγa =
1
4
∂b(δgαβgαµgβν)eµ

ae
b
ρg

ρνvγa

=
1
4
∂b(δgαβea

αe
b
β)vγa − 1

4
δgαβgαµgβν∂b(eµ

ae
b
ρg

νρ)vγa

=
1
4
∇b(δgαβea

αe
b
β)vγa − 1

4
δgαβ(Γa

bce
c
αe

b
β + Γb

bce
a
αe

c
β)vγa

− 1
4
δgαβgαµgβν∂b(eµ

ae
b
ρg

νρ)vγa. (29)

The first term on the right-hand side of Eq. (29) is

1
4
∇b(δgαβea

αe
b
β)vγa =

1
4
∇b(δgαβea

αe
b
βvγa) − 1

4
δgαβea

αe
b
β∇bvγa. (30)

The other terms can be simplified with some computation:

−1
4
δgαβ(Γa

bce
c
αe

b
β + Γb

bce
a
αe

c
β + gαµgβνη

ac∂b(eµ
c e

b
ρg

ρν))vγa

= −1
4
δgαβ(−∂βe

a
α + ea

γΓγ
βα − ea

α∂ce
c
β + ea

αΓµ
µβ

+ ea
αgβν∂ρg

ρν + ea
α∂be

b
β + gαµη

ac∂βe
µ
c )vγa

= −1
4
δgαβ(−ηaceµ

c ∂βgαµ + ea
γΓγ

βα + ea
αΓµ

µβ − ea
αg

ρν∂ρgβν)vγa

= −1
8
δgαβ(−2ea

γg
γµ∂βgαµ + ea

γg
γµ(2∂βgαµ − ∂µgαβ)

+ ea
αg

µγ∂βgµγ − 2ea
αg

ρν∂ρgβν)vγa

=
1
8
δgαβ(ea

γg
γµ∂µgαβ + 2ea

αgβµg
ρνΓµ

ρν)vγa. (31)

Substituting Eqs. (27)–(31) into (26) yields:

δ∇/ v =
−i
4
Pc(δec

βe
β
b vγcγ

b) +
i

4
δec

βe
β
b (Pcv)γcγ

b − i

8
Pc(δgαβg

αβv) +
i

8
δgαβg

αβPcv

+
1
4
δgαβea

αe
b
β∇avγb +

1
4
∇b(δgαβea

αe
b
βvγa). (32)
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Using Lemma 4.17, we find for a spinor u ∈ C∞(DM):

δ∇/ u =
i

4
P (δec

βe
β
b γ

bγcu) − i

4
δec

βe
β
b γ

bγc(Pu) +
i

8
P (δgαβg

αβu) − i

8
δgαβg

αβPu

+
1
4
δgαβea

αe
b
βγb∇au+

1
4
∇b(δgαβea

αe
b
βγau). (33)

Using Proposition 4.16 and Eqs. (32) and (33) we notice that the terms with
Pc and P cancel out in the following equality, because B0 and S0f both satisfy the
Dirac equation:

δ(βεB0(f)) = −B0(δPεS0f)

=
i

4
B0(δgαβea

αe
b
βγb∇aS0τf) +

i

4
B0(∇b(δgαβea

αe
b
βγaS0τf))

=
i

4
δgαβea

αe
b
β(B0(γ(b∇a)S0τf) −∇(bB0(γa)S0τf)). (34)

We now compare with Proposition 4.14 to get the final result.
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