Statistical Mechanics of Deep Learning - Problem set 9

Winter Term 2023/24

Hand in: Friday, 15.12 at 10:00 am, you can upload your solutions to the course webpage on Moodle platform.

18. On-line learning of the perceptron rule

In this problem set, we aim to derive the dynamical equations of the order parameters ρ and Q of the perceptron rule,

$$
\begin{align*}
\frac{d \rho}{d \alpha} & =\langle F u\rangle \tag{1}\\
\frac{d Q}{d \alpha} & =\langle F(F+2 t)\rangle
\end{align*}
$$

with F here denoting the learning amplitude function of the perceptron algorithm given by

$$
F=\eta \theta(-t u) \operatorname{sgn}(u)
$$

The averages in eqs.(1) and (2) are over the correlated gaussian random variables u and t / \sqrt{Q} with zero mean and the second moments

$$
\left\langle u^{2}\right\rangle=1,\left\langle\frac{t^{2}}{Q}\right\rangle=1,\langle u t / \sqrt{Q}\rangle=\rho / \sqrt{Q}=R
$$

(a) Show that

$$
\begin{aligned}
\langle\theta(-t u)\rangle & =\frac{1}{\pi} \arccos \left(\frac{\rho}{\sqrt{Q}}\right) \\
\langle t \theta(-t u) \operatorname{sgn}(u)\rangle & =\frac{\rho-\sqrt{Q}}{\sqrt{2 \pi}} \\
\langle\theta(-t u)| u\rangle & =\frac{\sqrt{Q}-\rho}{\sqrt{2 \pi Q}}
\end{aligned}
$$

(b) Use the results obtained in (a) to derive the order parameters equations

$$
\begin{aligned}
\frac{d \rho}{d \alpha} & =\frac{\eta}{\sqrt{2 \pi}}\left(1-\frac{\rho}{\sqrt{Q}}\right) \\
\frac{d Q}{d \alpha} & =\frac{\eta^{2}}{\pi} \arccos \left(\frac{\rho}{\sqrt{Q}}\right)+\sqrt{\frac{2}{\pi}} \eta(\rho-\sqrt{Q})
\end{aligned}
$$

