
Institut for Theoretical Physics Prof. Dr. B. Rosenow
University Leipzig A. Afanah , M. Staats

Statistical Mechanics of Deep Learning - Problem set 13

Winter Term 2023/24

Hand in: Friday, 26.01 at 10:00 am, you can upload your solutions to the course webpage on
Moodle platform.

26. Gaussian Process Regression 9 Points

In the lecture, we have established the equivalence between noisy gradient descent training
with L2-regularization of an infinitely wide neural network and a Gaussian process. Since noisy
gradient descent is challenging to simulate numerically, in this problem we replace it by adding
a noise term to the training data, i.e. the training data outputs yi are replaced by yi + ζi,
with ⟨ζi⟩ = 0 and ⟨ζiζj⟩ = δijσ

2. The purpose of this problem is to numerically demonstrate
the equivalence between training a wide neural network and predicting the test data with a
Gaussian process.

(a) We consider a two-layer neural network defined by

fw(x) =

N∑
i=1

w
(2)
i g

 d∑
j=1

w
(1)
ij xj

 ,

with ReLu transfer function g(z) = θ(z) z and input x ∈ Rd. The corresponding Gaussian
process is defined by the kernel

K(x,x′) = ⟨fw(x)fw(x′)⟩w

where the average is performed over the set of weights {w(2)
i , w

(1)
ij } with variances σ2

1 = 1/d

and σ2
2 = 1/N . Numerically, the average can be performed by initializingM = 400 different

networks using Pytorch, and then computing

K(x,x′) =
1

M

M∑
i=1

fwi(x)fwj (x
′) .

Perform the average for N = 2000 hidden units, and for 200 pairs of vectors x,x′ ∈ Sd for
d = 10. Compare the numerically averaged kernel with the analytic result

Kanalytic(x,x
′) = σ2

1σ
2
2N

1

2π
(sin θ + (π − θ) cos θ) where cos θ = (x,x′)

by plotting the set of 200 pairs of data points {K(x,x′), arccos(x,x′)} together with the
theoretical prediction Kanalytic(θ).

(b) Draw p = 40 training data points xi ∈ Sd and generate labels yi via the target function
h(x) =

√
d · |x · T| with a fixed T ∈ Sd which has randomly chosen components and is

then normalized to unity. Add noise with variance σ2 to the labels. Now K(xi,xj) ≡ Kij

defines a p × p matrix. Compute Kij for N = 100 and M = 100. The Gaussian kernel
predictor based on this training data is then given by:

1

g∗(xtest) =

p∑
n,m=1

K(xtest,xn)
(
K + σ2I

)−1

n,m
yn .

Here, I denotes the identity matrix, σ2 = 0.1 is the variance of the noise added to the
labels yi, and (K + σ2I)−1

n,m must be understood as inverting the matrix (K + σ2I) and
evaluating the inverse for indices n,m. A good check for a correct implementation is that
for σ = 0 you must find g∗(xi) = yi.
Next, draw 40 test vectors xi,test ∈ Sd, and compute the mean squared error (loss) as an
average

1

40

40∑
i=1

[g∗(xi,test)− h(xi,test)]
2

over the test vectors.

(c) Build a neural network as described in (a) for N=100 and train it on the data set prepared
in (b). Use standard gradient descent with mean squared error as loss function, and L2-
regularization with strength λ = σ2/σ2

1. What is the loss of the network on the test data
set prepared in (b)? Remember to add label noise to the training labels but not to the test
labels!

Hint: Make sure that M > p for all experiments. Otherwise rank(K) < p and K will not be
invertible.

2

