Statistical Mechanics of Deep Learning - Problem set 12

Winter Term 2023/24

Hand in: Friday, 19.01 at 10:00 am, you can upload your solutions to the course webpage on Moodle platform.

24. Functional Derivative

A functional $F[\varphi]$ maps the function $\varphi(x)$ to the real numbers. The functional derivative of a functional with respect to a function is defined as

$$
\frac{\delta F[\varphi]}{\delta \varphi(z)}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(F[\varphi(x)+\epsilon \delta(x-z)]-F[\varphi(x)])
$$

This definition is in analogy the the definition of a partial derivative

$$
\frac{\partial F(\vec{x})}{\partial x_{j}}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(F\left(\vec{x}+\epsilon \vec{e}_{j}\right)-F(\vec{x})\right)
$$

When making the transition from partial to functional derivatives, the discrete index j turns into the continuous index x, and the unit vector in j-direction turns into the Dirac delta-function $\delta(x-z)$.
The derivative of a functional is a function and depends on the position z. Using this definition, compute the functional derivatives of the following functionals:
(a) $F[\varphi]=\varphi\left(x_{0}\right)$ with a fixed x_{0}.
(b) $F[\varphi]=\left(\varphi\left(x_{0}\right)\right)^{2}$ with a fixed x_{0}.
(c) Assume that the function $f(x)$ can be expanded in a power series, and show that under this assumption for $F[\varphi]=f\left(\varphi\left(x_{0}\right)\right)$

$$
\frac{\delta F[\varphi]}{\delta \varphi(z)}=f^{\prime}\left(\varphi\left(x_{0}\right)\right) \delta\left(z-x_{0}\right)
$$

(d) $F[\varphi]=\int_{a}^{b} A(x) \varphi(x) d x$
(e) $F[\varphi]=\int d^{3} x A(x)(\varphi(x))^{2}$
(f) $F[\varphi]=\int d^{3} x A(x)(\varphi(x))^{n}$
(g) $F[\varphi]=\int d^{3} x A(x) f(\varphi(x))$
(h) $F[\varphi]=\int d^{n} x[\nabla \varphi(x) \cdot \nabla \varphi(x)]$
(i) $F[\varphi]=\int d^{n} x g(\nabla \varphi(x))$
(j) $F[\varphi]=\int d^{n} x f\left(\varphi(x), \nabla \varphi(x), \triangle \varphi(x), \nabla^{3} \varphi(x), \ldots\right)$
(k) $S[q]=\int d t \mathcal{L}(q(t), \dot{q}(t))$

