Statistical Mechanics of Deep Learning - Problem set 10

Hand in: Friday, 05.01 at 10:00 am, you can upload your solutions to the course webpage on Moodle platform.

20. On-line learning of soft committee machines 4+3 Points

Consider the order parameter dynamical equations of a soft committee machines, https://arxiv.org/abs/2104.14546

(1)
$$\frac{dR}{d\alpha} = \frac{2\eta}{\pi} \frac{1}{1+Q} \frac{1}{K} \left\{ \frac{1+Q-MR^2}{\sqrt{2(1+Q)-R^2}} - \frac{MR}{\sqrt{1+2Q}} \right\}$$

(2)
$$\frac{dQ}{d\alpha} = \frac{4\eta}{\pi} \frac{1}{1+Q} \frac{1}{K} \left\{ \frac{MR}{\sqrt{2(1+Q)-R^2}} - \frac{MQ}{\sqrt{1+2Q}} \right\}$$

with M = K, the number of hidden units of the teacher network M is equal to the student network K in the realizable case. The generalization error is given by

$$\varepsilon_g = \frac{K}{\pi} \left[\frac{\pi}{6} + \arcsin\left(\frac{Q}{1+Q}\right) + (K-1) \arcsin\left(\frac{C}{1+Q}\right) - 2 \arcsin\left(\frac{R}{\sqrt{2(1+Q)}}\right) \right]$$
(3)
$$-2(K-1) \arcsin\left(\frac{S}{\sqrt{2(1+Q)}}\right) \right]$$

(a) Show that equations (1) and (2) have the following fixed points, which correspond to the symmetric phase solutions discussed in the lecture

$$R_{pl} = \frac{1}{\sqrt{K(2K-1)}}, \ Q_{pl} = \frac{1}{2K-1}$$

(b) Use the results obtained in (a) to compute the generalization error at the platue

$$\varepsilon_{pl} = \frac{K}{\pi} \left[\frac{\pi}{6} - K \arcsin\left(\frac{1}{2K}\right) \right]$$

Hint : note that on the platue, we have $R_{pl} = S_{pl}$ and $Q_{pl} = C_{pl}$

21. Statistical mechanics of soft committee machines 3+6+3 Points

Applying replica methode on a soft committee machine in the limit $K \to \infty$ with $K \ll N$, yields the free energy (see https://arxiv.org/abs/cond-mat/9812197) in the variables $\hat{p} = Kp$, $\hat{C} = (K-1)C$, and $\hat{S} = KS$

(4)
$$\boldsymbol{f} = \frac{2F}{NK} = \alpha \left[\frac{\beta(v - 2w + 1/3)}{1 + \beta(u - v)} + \ln[1 + \beta(u - v)] \right] + \frac{\delta - \Delta^2}{\delta - 1}$$
$$-\ln(1 - \delta) - \frac{\delta + \hat{p} - (\Delta + \hat{S})^2}{\tilde{C}}$$

with $u = 1/3 + \hat{C}/\pi$, $v = [2 \arcsin(\delta/2) + \hat{p}]/\pi$, $w = [2 \arcsin(\Delta/2) + \hat{S}]/\pi$ and $\tilde{C} = K(1 + \hat{C} - \delta - \hat{p})$, while the parameters $\delta = q - p$ and $\Delta = R - S$ measure the degree of specialization in the network.

The generalization error is computed by averaging a quadratic cost function over all examples, $\varepsilon_g = \frac{1}{2} \langle (\sigma - \tau)^2 \rangle_{\xi}$, in terms of the order parameters R^a_{ij}, Q^{aa}_{ij} , the student-teacher and studentstudent overlaps respectively, the generalization error is given by

(5)
$$\varepsilon_g = \frac{1}{6} + \frac{1}{K\pi} \sum_{i,j=1}^K \left[\arcsin\left(\frac{Q_{ij}^{aa}}{2}\right) - 2\arcsin\left(\frac{R_{ij}^a}{2}\right) \right]$$

with the replica symmetric order parameters (a, b are replica indices while i, j are the hidden units indices)

$$Q_{ij}^{aa} = \begin{cases} 1 & , \text{If } i = j \\ C & , \text{If } i \neq j \end{cases}, \ R_{ij}^{a} = \begin{cases} R & , \text{If } i = j \\ S & , \text{If } i \neq j \end{cases}, \ Q_{ij}^{ab} = \begin{cases} q & , \text{If } i = j \\ p & , \text{If } i \neq j \end{cases} \text{ for } a \neq b$$

The saddle point equations of the free energy yields two different types of solutions : an unspecialized committee symmetric solution with $\Delta = \delta = 0$, $\hat{C} = 0$ and specialized solution with $\Delta, \delta > 0$, $\hat{C} = 0$. We aim in this problem to compute the generalization error in the symmetric phase by calculating the order parametres R^a_{ij} and Q^{aa}_{ij} which minimize the free energy in the symmetric phase.

- (a) Start by rewriting all variables \hat{C} in the free energy in terms of \tilde{C} (taking the limit $K \to \infty$), then linearize to first order in δ and Δ .
- (b) Now compute the saddle point equations with respect to the variables \hat{S} , \hat{p} , \tilde{C} , δ , Δ

$$\frac{\partial \boldsymbol{f}}{\partial \hat{S}} = \frac{\partial \boldsymbol{f}}{\partial \hat{p}} = \frac{\partial \boldsymbol{f}}{\partial \tilde{C}} = 0,$$

and show that $\hat{S} = \hat{p} = 1$ in the symmetric phase with $\delta = 0$ and $\Delta = 0$.

(c) Use the results obtained in (b) and the fact that $\hat{C} = 0$ in the symmetric phase to compute the symmetric platue value

$$\varepsilon_{pl} = \frac{1}{3} - \frac{1}{\pi}$$