Prof. Dr. B. Rosenow
M. Thamm

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 14

Winter Term 2023/24
Due Date: Problems on this exercise sheet are not mandatory. Instead, points scored here are counted on top of points already reached for completing mandatory exercises. Hand in solutions to problems marked with * before Wednesday, 31.01.2024, 15:15. We can only correct solutions for students that are missing points for admittance to the exam.

Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html
Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746

*1. Unit cell in the presence of a magnetic field

Recall that the operator $\hat{T}_{\boldsymbol{a}}=e^{\frac{i}{\hbar} a \cdot \hat{p}}$ is the generator of translations. For a Hamiltonian with lattice translation symmetry, these operators commute with the Hamiltonian. In a magnetic field this is no longer the case since the vector potential is not translationally invariant. In this problem we will consider a two-dimensional electron gas in the presence of a magnetic field in the z-direction $\boldsymbol{B}=(0,0, B)$. The Hamiltonian can be written as

$$
\hat{H}=\frac{(\hat{\boldsymbol{p}}-e \boldsymbol{A}(\boldsymbol{r}))^{2}}{2 m}+V(\boldsymbol{r}),
$$

where $V(\boldsymbol{r})$ is the periodic lattice potential, i.e. $V(\boldsymbol{r}+\boldsymbol{a})=V(\boldsymbol{r})$ for lattice vectors \boldsymbol{a}. For this problem we use the symmetric gauge $\boldsymbol{A}(\boldsymbol{r})=\frac{1}{2}(-B y, B x, 0)$.
(a) Show that the translation operator

$$
\hat{\mathcal{T}}_{a}=\exp \left\{\frac{i}{\hbar} \boldsymbol{a} \cdot[\hat{\boldsymbol{p}}+e \boldsymbol{A}(\boldsymbol{r})]\right\}
$$

commutes with the Hamiltonian. This translation operator is called a magnetic translation operator.
(b) Show that

$$
\hat{\mathcal{T}}_{\boldsymbol{a}} \hat{\mathcal{T}}_{\boldsymbol{b}}=\exp \left[\frac{i}{l_{0}^{2}}(\boldsymbol{a} \times \boldsymbol{b}) \cdot \hat{\boldsymbol{e}}_{z}\right] \hat{\mathcal{T}}_{\boldsymbol{b}} \hat{\mathcal{T}}_{\boldsymbol{a}} .
$$

Here $l_{0}=\sqrt{\frac{\hbar}{e B}}$ is the magnetic length and $\hat{\boldsymbol{e}}_{z}$ is a unit vector perpendicular to the plane.
(c) We now want to determine the enlarged unit cell such that the magnetic translation operators commute with each other. Let therefore $n \boldsymbol{a}$ and $m \boldsymbol{b}$ span an enlarged unit cell in the plane. In this case the magnetic translation operators have to commute with each other. Show that this is only possible if the flux $\Phi=\boldsymbol{B} \cdot(\boldsymbol{a} \times \boldsymbol{b})$ satisfies

$$
\frac{\Phi}{\Phi_{0}}=\frac{l}{m n}
$$

with l an integer and $\Phi_{0}=h / e$.

In this problem we will consider the Dirac Hamiltonian

$$
\hat{H}_{D}=c \boldsymbol{\alpha} \cdot \hat{\boldsymbol{p}}+\beta m c^{2}
$$

where m is the mass of the particle, c is the speed of light, and $\boldsymbol{\alpha}$ and β are matrices given by

$$
\begin{aligned}
\boldsymbol{\alpha} & =\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \\
\beta & =\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right),
\end{aligned}
$$

with $\boldsymbol{\sigma}$ denoting the vector of Pauli matrices and I_{2} denoting the 2×2 unit matrix. The Pauli matrices are

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Show that the velocity operator is given by $\hat{\boldsymbol{v}}=c \boldsymbol{\alpha}$.

Hint: You may use the Heisenberg equation of motion which states that an operator \hat{A} which does not explicitly depend on time satisfies $-i \hbar \dot{\hat{A}}=[\hat{H}, \hat{A}]$.
(b) Consider now a Dirac particle at rest in a volume V. A general eigenspinor can then be written as

$$
\psi=\frac{1}{\sqrt{2 V}}\left[\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) e^{-i m c^{2} t / \hbar}+\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) e^{i m c^{2} t / \hbar}\right] .
$$

Give a physical interpretation of the two terms in the spinor.
(c) Derive an expression for $\left\langle\hat{v}_{z}\right\rangle=\langle\psi| \hat{v}_{z}|\psi\rangle$ using the spinor defined in the previous part of the problem. Comment on your result.

*3. Casimir Effect

As shown in Problem Set 10 Exercise 2, the Hamiltonian of the quantized radiation field confined to a box with volume $V=L_{1} L_{2} L_{3}$ and with periodic boundary conditions, is given by

$$
H=\sum_{\boldsymbol{k}} \sum_{\lambda= \pm} \hbar \omega_{\boldsymbol{k}}\left(a_{\boldsymbol{k}, \lambda}^{\dagger} a_{\boldsymbol{k}, \lambda}+\frac{1}{2}\right), \quad \omega_{\boldsymbol{k}}=c|\boldsymbol{k}|, \quad k_{i}=\frac{\pi}{L_{i}} n_{i}, \quad n_{i} \in \mathbb{N} .
$$

In particular we found that the ground state, in which no modes are excited, has a divergent energy. Whilst this divergent vacuum zero-point energy is not observable, the dependence on the boundaries does lead to observable phenomena.
To investigate this, we consider in the following two conducting plates with surface areas $A=L_{1} L_{2}$ separated by a distance L_{3}. In the plane of the plates we will still be using periodic boundary conditions and con-
 sider the limit $L_{1}, L_{2} \rightarrow \infty$. Since the electric field \boldsymbol{E} on the plates vanishes, only modes with $|\boldsymbol{E}| \propto \sin \left(k_{3} x_{3}\right)$ are possible. Here $k_{3}=n_{3} \pi / L_{3}$ with $n_{3}=1,2, \ldots$. To get a finite vacuum energy we will moreover introduce an exponential cutoff $e^{-\epsilon \omega_{k}}$ with $\epsilon>0$, and take the limit of $\epsilon \rightarrow 0$ at the end of the calculation. The energy density per unit plate area between the plates is given by

$$
\begin{aligned}
\sigma_{E}\left(L_{3}\right) & =\lim _{L_{1}, L_{2} \rightarrow \infty} \frac{1}{L_{1} L_{2}} \sum_{\boldsymbol{k}} \hbar \omega_{\boldsymbol{k}} e^{-\epsilon \omega_{\boldsymbol{k}}} \\
& =\hbar c \sum_{n_{3}=1}^{\infty} \int \frac{d^{2} k}{(2 \pi)^{2}} \sqrt{k_{1}^{2}+k_{2}^{2}+\left(\frac{\pi n_{3}}{L_{3}}\right)^{2}} e^{-\epsilon c \sqrt{k_{1}^{2}+k_{2}^{2}+\left(\frac{\pi n_{3}}{L_{3}}\right)^{2}}}
\end{aligned}
$$

(a) Using polar coordinates and a suitable subsitution show that $\sigma_{E}\left(L_{3}\right)$ can be written as

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}} \frac{\partial^{2}}{\partial \epsilon^{2}} \sum_{n=1}^{\infty} \int_{n \pi c / L_{3}}^{\infty} d \omega e^{-\epsilon \omega} .
$$

(b) Calculate the integral over ω and perform the sum to show that

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}} \frac{\partial^{2}}{\partial \epsilon^{2}}\left(\frac{1}{\epsilon} \frac{1}{e^{\epsilon \pi c / L_{3}}-1}\right) .
$$

Show further that

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}}\left(\frac{6}{\epsilon^{4}} \frac{L_{3}}{\pi c}-\frac{1}{\epsilon^{3}}-\frac{1}{360}\left(\frac{\pi c}{L_{3}}\right)^{3}+\mathcal{O}\left(\epsilon^{2}\right)\right) .
$$

(c) The energy density calculated in the previous part diverges as the distance between the plates increases $\left(L_{3} \rightarrow \infty\right)$. This will be our reference point. We therefore consider two plates separated by a fixed distance a, together with two external plates which are places a further distance $(L-a) / 2$ away. The relevant energy density is then given by

$$
\sigma_{E}(a, L)=\sigma_{E}(a)+2 \sigma_{E}\left(\frac{L-a}{2}\right) .
$$

Find an expression for $\sigma_{E}(a, L)$ using your result in (b).

(d) Since the energy density varies with the distance between plates, the plates experience a pressure which is given by

$$
p_{\text {vac }}=-\lim _{L \rightarrow \infty} \frac{\partial}{\partial a} \sigma_{E}(a, L) .
$$

How large is this pressure for $A=1 \mathrm{~cm}^{2}$ and $a=1 \mu \mathrm{~m}$?

