Prof. Dr. B. Rosenow

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 5

Winter Term 2023/24

Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Thursday, 16.11.2023, 15:15. The problem set will be discussed in the tutorials on Monday 20.11.2023 and Wednesday 22.11.2023.

1. Eigenspinors

4+1 Points
Consider a spin $1 / 2$ system in the presence of an external magnetic field $\boldsymbol{B}=B \hat{\boldsymbol{n}}$, where $\hat{\boldsymbol{n}}$ is a unit vector pointing in an arbitrary direction. The Hamiltonian of this system is given by

$$
\hat{H}=-\frac{e}{m c} \hat{\boldsymbol{S}} \cdot \boldsymbol{B}
$$

where $e<0$ is the electron charge, m the electron mass, c the speed of light, and $\hat{\boldsymbol{S}}$ the vector of spin $1 / 2$ operators.
(a) Calculate the eigenvalues and normalized eigenspinors of the Hamiltonian.
(b) Why does the direction of the eigenspinors only depend on $\hat{\boldsymbol{n}}$?

2. Time- and spin-reversal

(a) Denote the wave function of a spinless particle corresponding to a plane wave in three dimensions by $\psi(\boldsymbol{x}, t)$. Show that $\psi^{*}(\boldsymbol{x},-t)$ is the wave function for the plane wave if the momentum direction is reversed.
(b) Let $\chi(\hat{\boldsymbol{n}})$ be the eigenspinor you calculated in the previous problem, with eigenvalue +1 . Using the explicit form of $\chi(\hat{\boldsymbol{n}})$ in terms of the polar and azimuthal angles which define $\hat{\boldsymbol{n}}$, verify that the eigenspinor with spin direction reversed is given by $-i \sigma_{y} \chi^{*}(\hat{\boldsymbol{n}})$.

*3. Time reversal of a lattice Hamiltonian

In this problem we will consider the effects of time reversal on a lattice Hamiltonian.
(a) First consider the lattice translation operator $\hat{T}_{a}=e^{-i \hat{p} a}$. How do the eigenvalues of the translation operator transform under time reversal?
(b) Now consider the Hamiltonian

$$
H(\boldsymbol{k})=\sin \left(k_{x}\right) \sigma_{x}+\sin \left(k_{y}\right) \sigma_{y}+M \sigma_{z},
$$

where k_{x} and k_{y} are components of the momentum appearing in the eigenvalues of the translation operator and M is a constant. How does this Hamiltonian transform in the case where σ are (i) spin matrices and (ii) some "orbital" matrices (such as in the problem on the SSH model)?
(c) Generalize your result to a Hamiltonian of the form $H(\boldsymbol{k})=\boldsymbol{d}(\boldsymbol{k}) \cdot \boldsymbol{\sigma}$.

