Advanced Quantum Mechanics - Problem Set 4

Winter Term 2023/24

Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Thursday, 09.11.2023, 15:15. The problem set will be discussed in the tutorials on Monday 13.11.2023 and Wednesday 15.11.2023.

Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html
Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746

*1. SSH model

Figure 1: The SSH model. The red and blue circles symbolise different types of sites. The thin lines denote couplings with strength $t(1-\delta)$ whilst the thick lines are couplings with strength $t(1+\delta)$. The dashed square denotes a unit cell.

In this problem we consider the Su-Schrieffer-Heeger (SSH) model which describes spinless fermions hopping on a one-dimensional lattice with staggered hopping amplitudes (see the figure). The model contains two sub-lattices, A and B and has the following Hamiltonian

$$
H=\sum_{n} t(1+\delta)|n, A\rangle\langle n, B|+t(1-\delta)|n+1, A\rangle\langle n, B|+\text { h.c.. }
$$

Here h.c. stands for hermitian conjugate and $|n, A\rangle$ describes a state of site n, in sublattice A. t and δ are taken to be real parameters.
(a) By Fourier transforming, $|n\rangle=\frac{1}{\sqrt{N}} \sum_{k} e^{-i n k}|k\rangle$, show that the Hamiltonian can be written as $H(k)=\boldsymbol{d}(k) \cdot \boldsymbol{\sigma}$, where $\boldsymbol{\sigma}$ is the vector of Pauli matrices, and $d_{x}(k)=t(1+\delta)+t(1-$ $\delta) \cos (k), d_{y}(k)=t(1-\delta) \sin (k)$, and $d_{z}(k)=0$.
Hint: Write the wave function as a vector with two components describing the amplitudes on the A and B sublattices, respectively.
(b) Calculate the energy eigenvalues of the system.
(c) Plot your result from (b) for $\delta>0$ and $\delta<0$. What happens when $\delta=0$?

2. Nearly free electron model

Often it is sufficient to treat the periodic potential on a lattice as a small perturbation. For such problems it is useful to expand the periodic potential in a plane wave expansion which only contains waves with the periodicity of the reciprocal lattice, such that

$$
U(\boldsymbol{x})=\sum_{\boldsymbol{G}} U_{\boldsymbol{G}} e^{i \boldsymbol{G} \cdot \boldsymbol{x}},
$$

where \boldsymbol{G} is a reciprocal lattice vector which satisfies $e^{i \boldsymbol{G} \cdot \boldsymbol{R}}=1$, with \boldsymbol{R} denoting a point on the lattice. We moreover expand the wave functions in terms of a set of plane waves which satisfy the periodic boundary conditions of the problem

$$
\psi(\boldsymbol{x})=\sum_{\boldsymbol{k}} c_{\boldsymbol{k}} e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

(a) Using the expansions above, show that the Schrödinger equation

$$
\left[\frac{-\hbar^{2} \nabla^{2}}{2 m}+U(\boldsymbol{x})\right] \psi(\boldsymbol{x})=E \psi(\boldsymbol{x}),
$$

can be written as

$$
\left(\frac{\hbar^{2} k^{2}}{2 m}-E\right) c_{\boldsymbol{k}}+\sum_{\boldsymbol{G}} U_{\boldsymbol{G}} c_{\boldsymbol{k}-\boldsymbol{G}}=0
$$

(b) Perform the shift $\boldsymbol{q}=\boldsymbol{k}+\boldsymbol{K}$, where \boldsymbol{K} is a reciprocal lattice vector which ensures that we can always find a \boldsymbol{q} which lies in the first Brillouin zone ${ }^{1}$, and show that the Schrödinger equation now gives

$$
\left(\frac{\hbar^{2}}{2 m}(\boldsymbol{q}-\boldsymbol{K})^{2}-E\right) c_{\boldsymbol{q}-\boldsymbol{K}}+\sum_{\boldsymbol{G}} U_{\boldsymbol{G}-\boldsymbol{K}} c_{\boldsymbol{q}-\boldsymbol{G}}=0
$$

(c) Consider for concreteness a one-dimensional chain, but in the simple case where only the leading Fourier component contributes to the potential

$$
U(x)=2 U_{0} \cos \frac{2 \pi x}{a} .
$$

Explain how your result in (b) can be used to calculate the energy of the system.
(d) Suppose now that U_{0} is very small. Near $q=\pi / a$ the Schrödinger equation reduces to

$$
\left(\begin{array}{cc}
\frac{\hbar^{2}}{2 m}\left(q-\frac{2 \pi}{a}\right)^{2}-E & U_{0} \\
U_{0} & \frac{\hbar^{2} q^{2}}{2 m}-E
\end{array}\right)\binom{c_{1}}{c_{0}}=0
$$

Calculate and plot the energy eigenvalues. What happens at $q=\pi / a$?

[^0]
[^0]: ${ }^{1}$ As an example of a Brillouin zone consider the simple cubic lattice with sides of length a. The lattice vectors can be written as $\boldsymbol{R}_{1}=a \hat{\boldsymbol{x}}, \boldsymbol{R}_{2}=a \hat{\boldsymbol{y}}$, and $\boldsymbol{R}_{3}=a \hat{\boldsymbol{z}}$. In reciprocal space the basis vectors become $\boldsymbol{b}_{\boldsymbol{1}}=\frac{2 \pi}{a} \hat{\boldsymbol{x}}$, $\boldsymbol{b}_{\mathbf{2}}=\frac{2 \pi}{a} \hat{\boldsymbol{y}}$, and $\boldsymbol{b}_{\mathbf{3}}=\frac{2 \pi}{a} \hat{\boldsymbol{z}}$. In this case the first Brillouin zone is the region $-\pi / a \leq k_{i}<\pi / a$ (where $i=x, y, z$). The reziprocal lattice vectors can be written as $\boldsymbol{K}=\sum_{i} n_{i} \boldsymbol{b}_{i}$ (where $n_{i} \in \mathbb{Z}$). Therefore, for arbitrary \boldsymbol{k} it is possible to find $\boldsymbol{q}=\boldsymbol{k}+\boldsymbol{K}$ so that \boldsymbol{q} lies in the first Brilloin zone.

