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1. Quantum Harmonic Oscillator 3+3+4 Punkte

The harmonic oscillator provides a valuable environment in which the path integral method can
be explored. It is one of the few examples, for which the path integral can be evaluated exactly.
Its Hamiltonian is given by

Ĥ =
p̂2

2m
+

1

2
mω2x̂2.

In this problem we will use the formula

⟨xF |e−iĤt/ℏ|xi⟩ = e
i
ℏS[xcl]

∫
r(0)=0,r(t)=0

Dr e
i
2ℏ

∫ t
0 dt′r(t′)[−m∂2

t′−mω2]r(t′),(1)

to evaluate the propagator for the quantum harmonic oscillator.

a) Find a solution to the classical equation of motion which satisfies the boundary
conditions xcl(0) = xi and xcl(t) = xF . Use this solution to evaluate the classical action
and the exponential prefactor in Eq. (1).

b) Find a Fourier representation for r(t) which satisfies the boundary conditions r(0) = 0
and r(t) = 0. Use this Fourier representation to determine the eigenvalues λA

n of the
differential operator Â in the exponent of the path integral.

c) In order to evaluate the determinant as the products of eigenvalues of Â, use the result
for a free particle. Denoting the differential operator for the free particle by B̂, the free
particle fluctuation factor is

FB =

√
m

it2πℏ
.

Use the relation

FA = FB

∞∏
n=1

(
λA
n

λB
n

)−1/2

,

together with the mathematical identity z/ sin z =
∏∞

n=1

(
1− z2/π2n2

)−1
to compute

the propagator for the quantum harmonic oscillator.
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2. Asymptotic series 2+2+1 Punkte

Consider the following integral,

I(g) =

∫ ∞

−∞

dx√
2π

exp

[
−1

2
x2 − gx4

]
, g > 0

which can be seen as a caricature of a typical path integral for an interacting many-body system
(this is clearly an oversimplified picture because I(g) is only a one-dimensional integral whilst
path integrals are infinite-dimensional). If the coupling g is sufficiently small, one can think
of expanding I(g) perturbatively in powers of g. The corresponding N-th order approximation
reads

SN (g) =

N∑
n=0

gnIn =

N∑
n=0

(−g)n

n!

∫ ∞

−∞

dx√
2π

e−
1
2
x2
x4n.

a) Calculate the exact expression for the coefficients In in the perturbative expansion and,
using the Stirling approximation

n! ≈ nne−n, n ≫ 1

show that for large n

gnIn ≈ (−16gn/e)n ≈ (−16g)nn!.

The above result shows that the perturbative series limN→∞ SN (g) is divergent for
any finite value of g, no matter how small the coupling is. In fact, this behaviour can
also be predicted qualitatively noting that I(g) is only defined for Re g ≥ 0, while it
diverges for Re g < 0. In other words, the radius of convergence of the series expansion
around g = 0 is zero.

b) Although diverging in the limit N → ∞, the perturbative expansion SN (g) can still
give an excellent approximation to the exact result I(g) if the series is truncated at a
finite N . To verify this statement, use the following inequality,∣∣∣∣∣

∞∑
n=N+1

(−a)n

n!

∣∣∣∣∣ ≤ aN+1

(N + 1)!
, a ≥ 0

in order to find an estimate for the error δN (g) in the N-th order approximation, such
that

|I(g)− SN (g)| ≤ δN (g).

c) Using the expression for In obtained in a), calculate for a given value of g the optimal
order Nopt(g) in the perturbative expansion, defined as the value of N for which δN (g)
reaches its minimum, and find the corresponding error δmin(g) = δNopt(g). In particular,
show that δmin(g) becomes exponentially small in the limit g → 0, thus justifying the
applicability of perturbation theory at small coupling. What do you get for g = 0.001,
0.01, 0.1, and 1? The perturbative expansion is an example of an asymptotic series,
i.e. a series expansion of a given function which is formally divergent, but whose finite
order truncations become asymptotically close to the exact result in the limit where the
expansion parameter vanishes.
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