Abstract

Recasens, M., Grimm, S., Capilla, A., Nowak, R., & Escera, C. (2014). Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cerebral Cortex, 24(1), 143-153.

Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex

Auditory deviance detection occurs around 150 ms after the onset of a deviant sound. Recent studies in animals and humans have described change-related processes occurring during the first 50 ms after sound onset. However, it still remains an open question whether these early and late processes of deviance detection are organized hierarchically in the human auditory cortex. We applied a beamforming source reconstruction approach in order to estimate brain sources associated with 2 temporally distinct markers of deviance detection. Results showed that rare frequency changes elicit an enhancement of the Nbm component of the middle latency response (MLR) peaking at 43 ms, in addition to the magnetic mismatch negativity (MMNm) peaking at 115 ms. Sources of MMNm, located in the right superior temporal gyrus, were lateral and posterior to the deviance-related MLR activity being generated in the right primary auditory cortex. Source reconstruction analyses revealed that detection of changes in the acoustic environment is a process accomplished in 2 different time ranges, by spatially separated auditory regions. Paralleling animal studies, our findings suggest that primary and secondary areas are involved in successive stages of deviance detection and support the existence of a hierarchical network devoted to auditory change detection.



Contact

Cognitive and Biological Psychology

University of Leipzig
Faculty of Life Sciences
Institute of Psychology
Neumarkt 9-19
D-04109 Leipzig

Secretariat

Dagmar Schrödl
Phone: +49 341 97-39570
Email: dagmar dot schroedl at uni-leipzig dot de

Dorit Thieme
Phone: +49 341 97-39540
Email: d dot thieme at uni-leipzig dot de

Fax: +49 341 97-39271