# Pertsovas model of learning inflection

Eva Zimmermann Workshop of the Forschergruppe 'Grammatik und Verarbeitung verbaler Argumente' (University of Leipzig) Leucorea Wittenberg, 31.08.-01.09.2009 Claim Restrictions about patterns of homonymy in inflectional paradigms reflect something about the way, people learn languages.

Typology

The distribution of different patterns of form-identity is restricted in the languages of the world.

Formal theory

Other generatively equivalent ways to describe syncretisms are inferior to descriptions that use blocking (systematic – accidental syncretism).

⇒ Implementation of a formal learner that is biased to learn no/'simpler' form identity patterns.

Learning Inflection

Form identity

Three types of form-identity Distribution of form-identity patterns

Learning algorithm

Three learners Analytical bias Her learning algorithm in more detail

**Learning Inflection** 

#### Assumptions

- morphemes (stems, affixes) stored in the lexicon: form-meaning pairs
- economy: underspecified markers, ø-morphemes, blocking rules

### inference

Cross-situational Observing what properties remain unchanged across different situations in which the same form is used.

> (1)Invariant Features of affix  $\times$  (I( $\times$ )) is the feature set obtained by intersecting all environments in the block of x. Whereas a block for affix x is the set of affix cells in which it occurs

Form Identity As a big challenge for cross-situational inference: overgeneralizations.

(2) Weak German verbal inflection

|     |    | Prs                   | Pst         |
|-----|----|-----------------------|-------------|
| Sg. | 1. | spiel- <mark>e</mark> | spiel-t-e   |
|     | 2. | spiel-st              | spiel-t-est |
|     | 3. | spiel-t               | spiel-t-e   |
| PI  | 1. | spiel-en              | spiel-t-en  |
|     | 2. | spiel-t               | spiel-t-et  |
|     | 3. | spiel-en              | spiel-t-en  |

Invariant feature for -e: SG

but 'there are many other singular contexts, in which the morpheme -e does not occur'.

Three types of form-identity

Homonymy

The semantic distribution of a morph cannot be described with a single set of necessary and sufficient features.

(3) homonym 'are' in English

|   | $_{\mathrm{SG}}$ | PL  |
|---|------------------|-----|
| 1 | am               | are |
| 2 | are              | are |
| 3 | is               | are |

(4) No homonym 'are' in English'

| $_{ m SG}$ | PL  |
|------------|-----|
| am         | are |
| is         | are |
| is         | are |
|            | is  |

## 1. Natural class syncretism

 $\boldsymbol{A}$  (semantic) contrast is neutralized in some sub-paradigms of the grammar.



# 2. Elsewehere homonymy

Cases that can be described with defaults.



An underspecified morpheme is blocked in certain contexts by explicit rules specified for certain slots:

(5) Blocking rule: (m, n) morpheme m blocks morpheme n

## 3. Overlapping distribution:

Morph x and morph y are in an overlapping distribution if:

- the invariant features of x and y are consistent with each other, and
- x occurs in the domain of the invariant features of y and vice versa.



#### Example: German

| -Group | +Group |                 |
|--------|--------|-----------------|
| -e/-ø  | -en    | +Part, +Speaker |
| -st    | -t     | +Part, -Speaker |
| -t     | -en    | -Part, -Speaker |

invariant feature for -en: [+group] invariant features for -t: [-speaker]

- ⇒ consistent with each other
- $\Rightarrow$  -en occurs in [-speaker] context and -t in [+group] context

Distribution of form-identity patterns: Typological reality vs. chance frequencies

# Computing chance frequencies

| features<br>n | paradigm<br>cells | paradigms<br>without<br>homonymy | paradigms<br>with<br>elsewhere h. | paradigms<br>with<br>overlapping h. |
|---------------|-------------------|----------------------------------|-----------------------------------|-------------------------------------|
| 1             | 2                 | 100%                             | 0%                                | 0%                                  |
| 2             | 4                 | 53%                              | 6                                 | 41%                                 |
| 3             | 8                 | 3%                               | 64%                               | 33%                                 |

 $\Rightarrow$  if affixes were distributed in a completely random way, paradigms without homonymy would be quite rare.

Form identity patterns in the languages of the world

Paradigms for subject agreement in 30 languages, i.e. 93 paradigms:

|                               | number of paradigms |
|-------------------------------|---------------------|
| no form identity              | 7                   |
| only natural class syncretism | 41                  |
| only elsewhere homonymy       | 19                  |
| only overlapping homonymy     | 5                   |
| mixed patterns                | 21                  |

- $\Rightarrow$  no homonymy in 52 % of the paradigms
- $\Rightarrow$  10% overlapping patterns (no paradigm involved more than one)

## Still an underestimation

From the 197 languages in the WALS:

- languages without form-identity were excluded (80)
- languages without verbal agreement for the subject were excluded (57)

 $\Rightarrow$  70 % of the languages were excluded and therefore 85 % of agreement paradigms contain no homonymy at all.

# Chance frequency vs. tyopological distribution

- natural class syncretisms (and total irrelevance of features) are more common than homonymy
- homonymy patterns that can be described as defaults are more common than overlapping homonymy patterns

#### **Learning Inflection:**

a generalizing, bottom-up learner with a bias for paradigms without homonymy and a strong tendency to avoid overlapping patterns

#### (idealised) Assumptions

- the learner analyses the semantic information of a given context correctly
- affixes have fixed positions: the learner learns sublexica for different slots
- meaning of inflectional morphemes can exhaustively be described by a combination of some universally given features
  - (6) e.g. features for verbal agreement

#### Pertsovas learners...

Three learners that operate within increasingly larger hypotheses spaces:

- 1. no homonymy (1:1 form-meaning mapping or natural class syncretism)
  - 2. + elsewhere homonymy
    - 3. + overlapping homonymy

...are one.

One algorithm for learning form-meaning mappings in inflection with two 'check-points' where the algorithm detects instances of homonymy.

**Input**: pairs (m, e), i.e. text  $t_j$  for language  $L_j$  **Output**: updated lexicon (set of sub-lexicons for specific slots)

#### The algorithm:

- adds a lexical entry or
- modifies the meaning of an already existing entry (features are removed) or
- adds blocking rules.

### Cross-situational learner

#### Hypothesizing (s, e)

- 1.) a new lexical entry or
- 2.) an already existing lexical entry with actualized meaning (intersection of meanings)

#### → Is there an elsewhere homonymy?

#### Elsewhere learner



#### → Is there an overlapping homonymy?

## General homonymy learner



#### Complexity

All patterns of form-identity are possible, but some pattern require more time and resurces to learn.

Complexity is measured as a function of:

- number of runs through the algorithm
- size of the resulting grammar: number of lexical items and blocking rules

## Quantifying Complexity

learning form identity pattern:



# The learner is biased to learn certain patterns

→ this explains typological asymmetries.

analytical bias: cognitive predisposition making learners more receptive to some patterns (most researchers take this to be UG, but may also emerge from cognitive bases that are not specifically linguistic).

vs. **channel bias** in phonology: some systematic phonetically errors in transmission between speaker and hearer.

### Cross-situational learner

Hypothesize 'new' morpheme (m, e):

For all (m, e) in  $t_j$ 1. if  $\exists (m, f) \in Lex$ , then replace (m, f) with  $(m, f \cap e)$  in Lex

2. else add (m, e) to Lex.



### homonymy

Elsewhere An underspecified morpheme is blocked in certain contexts by explicit rules specified for certain slots:

> (7) Blocking rule: (m, n) morpheme m blocks morpheme n

If two morphemes (m, e) and (m', e') are in the lexicon and e is consistent with e', then:

- one blocks the other (subset principle: the more specific one blocks the other)
- or a third morpheme blocks both competitors

# Detecting elsewhere homonymy

Hypothesized morpheme (m, e)

Check the lexicon for competitors, i.e. for morphemes whose meaning is consistent with the meaning of (m, e)

If there are competitors:

- Check whether one morpheme is more specific (=it blocks the other)
- Search through your memory whether another morpheme was ever observed in the environment that is consistent with the meaning of (m, e) and its competitor (=this will block both)
- Else: the competition remains unresolved (overgeneralization is predicted until disambiguating data is uncovered)

Detecting elsewehere homomymy

lexicon: (A) 
$$[+F]$$

(B) 
$$[-F, +G]$$

competitors? (B) 
$$[-F, +G]$$

(B) 
$$[-F, +G]$$

### Overlapping homonymy

Homonymous markers are assumed as last resort. (phonologically identical morphs are paired with different integers)

# Detecting overlapping homonymy

If (m, e) has competitor (s, f): check whether morphemes with form m as well as form s occur in the contexts that are consistent with the meanings e and f.

i.e.: Set P= set of morphemes that are consistent with the meanings of the currently hypothesized morpheme and all its competitors

If P contains morphemes with form of the currently hypothesized morpheme and all its competitors  ${\sf I}$ 

#### +F -F +G A B -G B A

Detecting overlapping homonymy

lexicon: (A) 
$$[+F, +G]$$

(B) [ø]

intersecting meanings (A) [ø]

competitors? (B) [ø] blocking relation? BR: ?

set P (A) [ø] and (B) [ø]

⇒ includes forms of both competitors!

new hypothesis: (A, 2) [-F, -G]

competitors? (B)  $[\emptyset]$ 

blocking relation? BR: (A 1, B) blocking relation? BR: (A 2, B)

llocking relation? BR: (A 2, B)

output: (A, 1) [+F, +G]

(A, 2) [-F, -G] BR: (A 1, B)

BR: (A 1, B)

BR: (A 2, B)

(B, 1) [ø]

#### Discussion

- memory stack: learner memorizes everything and searches through all ever heard utterances (to detect blocking relation and overlapping pattern)
- the learner can analyse every context correctly: no errors and no way to go back
- learning bias explains typological reality (diachronic changes?)

#### **Bibliography**

Moreton, Elliott (2008). Analytic bias and phonological typology. *Phonology* 25(1):83–127.

Siskind, Jeff (1996). A computational study of cross-situational techniques for learning word-to-meaning mappings. *Cognition* 61(1):39-91, 1996.

Pertsova, Katya (2007). *Learning Form-Meaning Mappings*, PhD thesis, University of California, Los Angeles.

Wilson, Colin (2006). Learning Phonology With Substantive Bias: An Experimental and Computational Study of Velar Palatalization. *Cognitive Science*, 30:945-982.