Remote sensing of clouds and snow properties in the Arctic

A. Ehrlich, T. Carlsen, E. Bierwirth, M. Wendisch
Leipzig Institute for Meteorology (LIM), University Leipzig, Germany

1. Introduction

Retrieval of cloud and snow properties

- Spectral solar radiation contains information on clouds and snow
- Spectral absorption of snow ice and cloud water not independent
- Assumptions on either clouds or snow properties needed
 - Spectral radiance component (with symbols)
 - Snow Grain Size, f(ad)
 - Cloud Albedo
 - Opt. Thickness, Effective Radius, f(ph)

- Frequent low level clouds over Arctic sea ice or Antarctic ice shield
- Large areas are currently not well covered

2. Limitation of Cloud Retrieval

- Low contrast between snow and clouds (visible wavelengths)
 - Spectral retrieval using near infrared wavelengths
 - Sensitivity study based on simulations:
 - Grain size assumed in retrieved: 200 µm / 50 µm
 - Grain size in reality: 50 µm / 200 µm
 - Differences especially for thin clouds
 - Up to 40 % for opt. thickness
 - Up to 50 % for effective radius

3. Separating the Spectral Signature of Clouds and Snow

Simulations of radiative reflectivity

- Cloud altitude 300 - 500 m, Åeff = 63 - 80
- Reflectivity ratios:
 - P1 = R(1040nm)/R(500nm)
 - P2 = R(1655nm)/R(1040nm)
 - P3 = R(1000nm)/R(1655nm)

4. Reflectivity-Ratio Retrieval Algorithm

- Forward simulations Åeff = 63 - 80
- Absorbing and scattering properties of dust, soot, black carbon
- Algorithms are applicable to different cloud types
- Separation of pixels by wavelengths
- Simulated spectral reflectivity grid for relatively thick clouds

5. Application

VERDI 2012 campaign

- INVVK/NVTV, Canada/April/May 2012
- Polar 5 aircraft at AWI
- Remote sensing
- In-situ cloud, aerosol and trace gases
- SMART-Albedo factor
- Spectral radiance:
 - 300 - 2100 nm
- Horizontally stabilized

Case study: 17 May 2012

- Homogeneous stratus (liquid)
- Flight track crossing ice edge
- Continuous retrieval results
- Large grain size likely due to sea ice and melting

6. Outlook

- Uncertainty analysis
- Improved wavelength selection
- Validation by in situ observations
- Comparison with satellite observations
- Snow retrieval in cloud free areas/days
- Cloud retrieval over ice free areas
- Application to more cases (RACEPAC 2014)