Statistical Mechanics of Deep Learning - Problem set 5

Winter Term 2023/24

Hand in: Friday, 17.11 at 09:00 am, you can upload your solutions to the course webpage on Moodle platform.

10. The Gardner Analysis

(a) Determine the asymptotic behaviour of the quantities describing Gibbs learning for large training set size α . To this end, start from

$$\frac{R}{\sqrt{1-R}} = \frac{\alpha}{\pi} \int \mathbf{D}t \; \frac{\exp(-Rt^2/2)}{H(-\sqrt{R}t)}$$

and show that

$$1 - R \sim \left[\frac{\alpha}{\pi} \int Dt \; \frac{\exp(-t^2/2)}{H(-t)}\right]^{-2} \sim \frac{1.926}{\alpha^2}$$

Hint : You may use numerical methods to compute the final result.

(b) Use the result you obtain from part (a) to show that

$$\varepsilon \sim \frac{\sqrt{2}}{\int \boldsymbol{D}t \; [\exp(-t^2/2)]/H(t)} \frac{1}{\alpha} \sim \frac{0.625}{\alpha},$$

as follows from

$$\varepsilon = \frac{1}{\pi} \arccos(R)$$

(c) Show also that the quenched entropy for large α is

$$S \sim \frac{1}{2} \ln(1-R) \sim -\ln(\alpha).$$

11. Distribution of a product of Random Numbers 4+2 Points

Generate numerically M random numbers x, each being the product of N independent random numbers equally distributed between 1 and 2 with M between 10^3 and 10^6 and N between 5 and 50.

- (a) Approximate the distribution of x by a histogram and compare the evolution with N of the most probable value x_{mp} of x with its average $\langle \langle x \rangle \rangle$ and the typical x value defined as $x_{typ} := \exp(\langle \langle \ln x \rangle \rangle)$
- (b) Can you give an argument, why asymptotically (for $N \to \infty$), the most probable value and x_{typ} should coinside?

3+3+2 Points