Prof. Dr. B. Rosenow

Universität Leipzig

M. Thamm

Advanced Quantum Mechanics - Problem Set 11

Winter Term 2023/24
Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Thursday, 11.01.2024, 15:15. The problem set will be discussed in the tutorials on Monday 15.01.2024 and Wednesday 17.01.2024.

Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746
Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html

*1. Quantisation of the Radiation Field

In the absence of charges, and in the Coulomb gauge $\nabla \cdot \boldsymbol{A}=0$, the electromagnetic field is described by the Lagrangian

$$
L(t)=\frac{1}{2} \int_{\Omega} d^{3} x\left[\epsilon_{0}\left(\partial_{t} \boldsymbol{A}\right)^{2}+\frac{1}{\mu_{0}} \boldsymbol{A} \cdot \nabla^{2} \boldsymbol{A}\right] .
$$

Here ϵ_{0} denotes the vacuum dielectric constant, μ_{0} is the vacuum permeability, and Ω is a cuboid with extensions L_{x}, L_{y}, and L_{z}. Note that the speed of light is $c=1 / \sqrt{\epsilon_{0} \mu_{0}}$.
(a) Write down the Lagrange equation for \boldsymbol{A}.
(b) Find eigenfunctions $\boldsymbol{A}_{\boldsymbol{k}}$ and eigenvalues $\omega_{\boldsymbol{k}}^{2}$ of the equation

$$
-\nabla^{2} \boldsymbol{A}(\boldsymbol{x})=\frac{\omega_{\boldsymbol{k}}^{2}}{c^{2}} \boldsymbol{A}(\boldsymbol{x})
$$

by using periodic boundary conditions. It may be useful to introduce, for each \boldsymbol{k}, a set of orthonormal vectors $\left\{\hat{\boldsymbol{\xi}}_{\boldsymbol{k}, 1}, \hat{\boldsymbol{\xi}}_{\boldsymbol{k}, 2}\right\}$ which are both perpendicular to \boldsymbol{k}. The time-dependent solution then has a series expansion

$$
\boldsymbol{A}(\boldsymbol{x}, t)=\frac{1}{\sqrt{\Omega}} \sum_{\boldsymbol{k}, j} \alpha_{\boldsymbol{k}, j}(t) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \hat{\boldsymbol{\xi}}_{\boldsymbol{k}, j}
$$

Insert this series expansion in the Lagrangian, and find the momenta

$$
\pi_{k, i}=\frac{\partial L}{\partial \dot{\alpha}_{k, i}},
$$

canonically conjugate to the coordinates $\alpha_{\boldsymbol{k}, i}$. Use the Legendre transform $H=\sum_{\boldsymbol{k}, i} \pi_{\boldsymbol{k}, i} \dot{\alpha}_{\boldsymbol{k}, i}-$ $L\left(\pi_{k, i}, \alpha_{k, i}\right)$ to obtain the Hamiltonian.

Hint: The first equation can be obtained from the Euler-Lagrange equation in (a) by using that $\boldsymbol{A}(\boldsymbol{x}, t)=\mathrm{e}^{-i \omega_{k} t} \boldsymbol{A}(\boldsymbol{x})$. Here, assume that $\boldsymbol{A}(\boldsymbol{x})$ is real. Using this it can be shown that $\alpha_{-\boldsymbol{k}, j}=\alpha_{\boldsymbol{k}, j}^{\dagger}$.
(c) The classical Hamiltonian $H\left(\left\{\pi_{\boldsymbol{k}, i}, \alpha_{\boldsymbol{k}, i}\right\}\right)$ can be quantised by imposing canonical commutation relations

$$
\left[\alpha_{\boldsymbol{k}, i}, \alpha_{\boldsymbol{q}, j}\right]=0, \quad\left[\pi_{\boldsymbol{k}, i}, \pi_{\boldsymbol{q}, j}\right]=0, \quad\left[\alpha_{\boldsymbol{k}, i}, \pi_{\boldsymbol{q}, j}\right]=i \hbar \delta_{\boldsymbol{k}, \boldsymbol{q}} \delta_{i, j},
$$

on the coordinates $\alpha_{k, i}$ and their canonically conjugate momenta $\pi_{k, j}$. In analogy to the one-dimensional harmonic oscillator, we define photon creation and annihilation operators

$$
a_{\boldsymbol{k}, j}^{\dagger}=\sqrt{\frac{\epsilon_{0} \omega_{\boldsymbol{k}}}{2 \hbar}}\left(\alpha_{-\boldsymbol{k}, j}-\frac{i}{\epsilon_{0} \omega_{\boldsymbol{k}}} \pi_{\boldsymbol{k}, j}\right), \quad a_{\boldsymbol{k}, j}=\sqrt{\frac{\epsilon_{0} \omega_{\boldsymbol{k}}}{2 \hbar}}\left(\alpha_{\boldsymbol{k}, j}+\frac{i}{\epsilon_{0} \omega_{\boldsymbol{k}}} \pi_{-\boldsymbol{k}, j}\right) .
$$

Show that $a_{\boldsymbol{k}, j}$ and $a_{\boldsymbol{k}, j}^{\dagger}$ obey the commutation relations of harmonic oscillator ladder operators, and express the Hamiltonian in terms of $a_{\boldsymbol{k}, j}$ and $a_{\boldsymbol{k}, j}^{\dagger}$.

2. Coulomb and Exchange Integrals for Helium

The energy of excited states in helium can be shown to be, to leading order in perturbation theory, given by

$$
E_{n l, \pm}=-\frac{Z^{2}}{2}\left(1+\frac{1}{n}\right)+J_{n l} \pm K_{n l}
$$

where the Coulomb- and exchange integrals for helium are given by

$$
J_{n l}=\frac{e^{2}}{4 \pi \epsilon_{0}}\left\langle u_{100}\left(\mathbf{r}_{1}\right) u_{n l m}\left(\mathbf{r}_{2}\right)\right| \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{\mathbf{2}}\right|}\left|u_{100}\left(\mathbf{r}_{1}\right) u_{n l m}\left(\mathbf{r}_{\mathbf{2}}\right)\right\rangle,
$$

and

$$
K_{n l}=\frac{e^{2}}{4 \pi \epsilon_{0}}\left\langle u_{100}\left(\mathbf{r}_{1}\right) u_{n l m}\left(\mathbf{r}_{\mathbf{2}}\right)\right| \frac{1}{\left|\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{\mathbf{2}}\right|}\left|u_{n l m}\left(\mathbf{r}_{\mathbf{1}}\right) u_{100}\left(\mathbf{r}_{\mathbf{2}}\right)\right\rangle,
$$

respectively. Here $u_{n l m}$ is the hydrogen wave-function with $Z=2$.
(a) Calculate the Coulomb and exchange integrals for $n=2, l=0,1$.

Hint: Express $1 /\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ as a sum over spherical harmonics and use orthogonality of these to perform the angular integrals.
(b) Make a sketch of the energy levels $E_{n l, \pm}$ of the terms ${ }^{1} \mathrm{~S},{ }^{3} \mathrm{~S},{ }^{1} \mathrm{P}$, and ${ }^{3} \mathrm{P}$.

Hint: Recall that the superscript denotes the spin and is given by $2 S+1$ whilst the letter denotes the total orbital angular momentum $L=L_{1}+L_{2}(L=0$ for $S, L=1$ for $P)$.

