Institut für Theoretische Physik

Prof. Dr. B. Rosenow
M. Thamm

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 9

Winter Term 2023/24

Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Friday, 14.12.2023, 15:15. The problem set will be discussed in the tutorials on Monday 18.12.2023 and Wednesday 03.01.2024.

Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746
Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html

*1. Addition of angular momenta

Consider two angular momenta $\hat{\boldsymbol{L}}_{1}$ and $\hat{\boldsymbol{L}}_{2}$ with $l_{1}=l_{2}=1$. In this problem we will calculate the eigenvalues and eigenfunctions of $\hat{\boldsymbol{L}}^{2}$. The eigenfunctions are linear combinations of the 9 functions

$$
Y_{1 m}\left(\theta_{1}, \varphi_{1}\right) Y_{1 m^{\prime}}\left(\theta_{2}, \varphi_{2}\right)=u_{m} v_{m^{\prime}}, \quad \text { with } m, m^{\prime}=1,0,-1
$$

(a) Construct the 9×9 matrix representation of the operator $\hat{\boldsymbol{L}}^{2}$ in the $u_{m} v_{m^{\prime}}$ basis.
(b) Calculate the eigenvalues of $\hat{\boldsymbol{L}}^{2}$ by diagonalizing the matrix.
(c) Calculate the corresponding eigenfunctions.

Hint: It is possible to make the matrix block-diagonal, as shown in the figure, by making suitable row- and column-operations.

Figure 1: The matrix can be transformed into a block diagonal form.

2. Spin-orbit coupling

Consider a particle with orbital angular momentum $\hat{\boldsymbol{L}}$ and spin angular momentum $\hat{\boldsymbol{S}}$. The total angular momentum is $\hat{\boldsymbol{J}}=\hat{\boldsymbol{L}}+\hat{\boldsymbol{S}}$.
(a) Calculate the expectation value of $\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$ assuming that the particle is in a state $|l, s ; j, m\rangle$.
(b) An electron is moving in an electrostatic potential $\phi(r)$ with $r=|\boldsymbol{r}|$. Show that the electric field experienced by the particle is given by

$$
\boldsymbol{E}=-\boldsymbol{r} \frac{1}{r} \frac{d \phi}{d r} .
$$

(c) In the rest frame of the particle, the particle experiences a magnetic field $\boldsymbol{B}=-\boldsymbol{v} \times \boldsymbol{E} / c^{2}$. Calculate the energy $\frac{e}{m} \hat{\boldsymbol{S}} \cdot \boldsymbol{B}$, where e and m are the electron charge and mass respectively.

Remark: The result found in (c) is off by a factor of two compared to the exact result, which can be obtained using the Dirac equation. The reason is that the simple argument given above assumes a straight-line motion of the particle whereas the potential given above leads to a curved particle trajectory.

3. Addition of three angular momenta

Consider three angular momenta with $l_{1}=l_{2}=l_{3}=1$.
First, consider adding two angular momenta $l_{1}=l_{2}=1$ with m_{1}, m_{2} to a total angular momentum l with m. As shown in problem 1

$$
\begin{aligned}
& |l=1, m=1\rangle=\frac{1}{\sqrt{2}}\left(-\left|m_{1}=1 ; m_{2}=0\right\rangle+\left|m_{1}=0 ; m_{2}=1\right\rangle\right) \\
& |l=1, m=-1\rangle=\frac{1}{\sqrt{2}}\left(-\left|m_{1}=0 ; m_{2}=-1\right\rangle+\left|m_{1}=-1 ; m_{2}=0\right\rangle\right) \\
& |l=1, m=0\rangle=\frac{1}{\sqrt{2}}\left(-\left|m_{1}=1 ; m_{2}=-1\right\rangle+\left|m_{1}=-1 ; m_{2}=1\right\rangle\right) \\
& |l=0, m=0\rangle=\frac{1}{\sqrt{3}}\left(\left|m_{1}=1 ; m_{2}=-1\right\rangle-\left|m_{1}=0 ; m_{2}=0\right\rangle+\left|m_{1}=-1 ; m_{2}=1\right\rangle\right)
\end{aligned}
$$

where $\left|m_{1} ; m_{2}\right\rangle \equiv\left|l_{1}=1, m_{1} ; l_{2}=1, m_{2}\right\rangle$.
(a) Add the three angular momenta to get a state with total angular momentum $l=0$.

Hint: First add L_{1} and L_{2} and then add the resulting angular momentum with L_{3}. Use the same basis as in problem 1, but don't keep all 27 basis functions. Instead keep only the ones that can result to $l=0$.
(b) Show that this state can be written as a 3×3 determinant and that it therefore is antisymmetric.
Hint: You can write $\left|m_{1} ; m_{2} ; m_{3}\right\rangle=\left|m_{1}\right\rangle \otimes\left|m_{2}\right\rangle \otimes\left|m_{3}\right\rangle=\left|m_{1}\right\rangle\left|m_{2}\right\rangle\left|m_{3}\right\rangle$.

