Advanced Quantum Mechanics - Problem Set 7

Winter Term 2023/24

Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Thursday, $\mathbf{3 0 . 1 1 . 2 0 2 3}, \mathbf{1 5 : 1 5}$. The problem set will be discussed in the tutorials on Monday 04.12.2023 and Wednesday 06.12.2023.

Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html
Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746

1. Representations of γ matrices

The γ matrices can be written as

$$
\begin{aligned}
\gamma_{i} & =\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right), \quad i=1,2,3 \\
\gamma_{0} & =\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right),
\end{aligned}
$$

where σ_{i} denotes a Pauli matrix and $\mathbb{1}_{n}$ the $n \times n$ unit matrix. Consider the metric $\eta=$ $\operatorname{diag}(1,-1,-1,-1)$.
(a) Show that the γ matrices satisfy the Clifford algebra $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \eta_{\mu \nu} \mathbb{1}_{4}, \mu, \nu \in\{0,1,2,3\}$.
(b) A different representation is the Weyl representation where

$$
\gamma_{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2} \\
\mathbb{1}_{2} & 0
\end{array}\right)
$$

Show that these still satisfy the Clifford algebra.
(c) Using only the Clifford algebra and properties of the trace show that $\operatorname{tr}\left(\gamma_{\mu}\right)=0, \operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu}\right)=4 \eta_{\mu \nu}$, and $\operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho}\right)=0$.

*2. Continuity equation for the Dirac equation

Prove the continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \boldsymbol{j}=0
$$

with

$$
\boldsymbol{j}=\Psi^{\dagger}\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right) \Psi
$$

and $\rho=\Psi^{\dagger} \Psi$ for all solutions Ψ of the Dirac equation.

Calculate the eigenvalues of the free-particle Dirac equation

$$
\left(\begin{array}{cccc}
m & 0 & p & 0 \\
0 & m & 0 & -p \\
p & 0 & -m & 0 \\
0 & -p & 0 & -m
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)=E\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)
$$

4. Commutators of Dirac matrices

Consider the Dirac matrices

$$
\begin{aligned}
& \boldsymbol{\alpha}=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \\
& \beta=\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right),
\end{aligned}
$$

where $\boldsymbol{\sigma}$ is the vector of Pauli matrices and $\mathbb{1}_{2}$ is the 2 -dimensional unit matrix. Define also

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\sigma} & 0 \\
0 & \boldsymbol{\sigma}
\end{array}\right)
$$

Show that (i) $\beta \Sigma_{i}=\Sigma_{i} \beta$, and that (ii) $\left[\alpha_{i}, \Sigma_{j}\right]=2 i \epsilon_{i j k} \alpha_{k}$.

