Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
M. Thamm

Advanced Quantum Mechanics - Problem Set 6

Winter Term 2023/24
Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Thursday, 23.11.2023, 15:15. The problem set will be discussed in the tutorials on Monday 27.11.2023 and Wednesday 29.11.2023.

Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html
Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746

1. Momentum-space wave functions

Let $\phi(\boldsymbol{p})$ be the momentum-space wave function for a state $|\alpha\rangle$, such that $\phi(\boldsymbol{p})=\langle\boldsymbol{p} \mid \alpha\rangle$. Let also $\hat{\Theta}$ denote the time-reversal operator. Is the momentum-space wave function for the time-reversed state $\hat{\Theta}|\alpha\rangle$ given by $\phi(\boldsymbol{p}), \phi(-\boldsymbol{p}), \phi^{*}(\boldsymbol{p})$, or $\phi^{*}(-\boldsymbol{p})$? Justify your answer.

2. Graphene

The Hamiltonian for graphene near the \boldsymbol{K}^{\prime} point is given by

$$
H=\hbar v_{F}\left(\begin{array}{cc}
0 & q_{x}+i q_{y} \\
q_{x}-i q_{y} & 0
\end{array}\right)
$$

where v_{F} is the Fermi velocity.
(a) Calculate the normalized eigenstates of this Hamiltonian.
(b) We now consider next-nearest neighbors. The Hamiltonian is then modified by

$$
H_{\mathrm{nnn}}=-\frac{t^{\prime}}{2} \sum_{\langle\langle i, j\rangle\rangle}(|i, A\rangle\langle j, A|+|i, B\rangle\langle j, B|+\text { h.c }),
$$

where A and B denote different sub-lattices and the sum is over next-nearest neighbors. Write down the next-nearest neighbor lattice vectors.
(c) Show that the next-nearest neighbors give rise to an extra contribution to the spectrum of $-t^{\prime} f(\boldsymbol{q})$ with

$$
f(\boldsymbol{q})=2 \cos \left(\sqrt{3} q_{y} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} q_{y} a\right) \cos \left(\frac{3}{2} q_{x} a\right) .
$$

*3. Relativistic Landau Levels

The low-energy Hamiltonian for electrons in graphene is given by

$$
H=v_{F}\left(\begin{array}{cc}
-\boldsymbol{\sigma}^{*} \cdot \boldsymbol{p} & 0 \\
0 & \boldsymbol{\sigma} \cdot \boldsymbol{p}
\end{array}\right)
$$

where v_{F} is the Fermi velocity, \boldsymbol{p} the momentum and $\boldsymbol{\sigma}$ the vector of Pauli matrices. The eigenstates can be written as four-dimensional state vectors with contributions from the \boldsymbol{K} and \boldsymbol{K}^{\prime} points. That is, we write

$$
\chi=\left(\begin{array}{c}
\chi_{A}^{\prime} \\
\chi_{B}^{\prime} \\
\chi_{A} \\
\chi_{B}
\end{array}\right)
$$

(a) Show that the eigenvalue equations decouple into

$$
\begin{aligned}
& E^{2} \chi_{A}=v_{F}^{2}\left(p_{x}-i p_{y}\right)\left(p_{x}+i p_{y}\right) \chi_{A}, \\
& E^{2} \chi_{B}=v_{F}^{2}\left(p_{x}+i p_{y}\right)\left(p_{x}-i p_{y}\right) \chi_{B},
\end{aligned}
$$

and similar for the primed parts of the eigenstates.
(b) Suppose now a magnetic field is switched on. Using the Landau gauge $\boldsymbol{A}=(-B y, 0)$, perform the minimal substitution $\boldsymbol{p} \rightarrow \boldsymbol{p}-\frac{e}{c} \boldsymbol{A}$ in the eigenvalue equations in part (a) and deduce the form of the eigenfunctions.
(c) What does the energy spectrum look like?

