Prof. Dr. B. Rosenow

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 1

Winter Term 2023/24

Due Date: Hand in solutions to problems marked with * as a single pdf file using Moodle before the lecture on Thursday, 19.10.2023, 15:15. The problem set will be discussed in the tutorials on Monday 23.10.2023 and Wednesday 25.10.2023.

Website: https://home.uni-leipzig.de/stp/Quantum_Mechanics_2_WS2324.html
Moodle: https://moodle2.uni-leipzig.de/course/view.php?id=45746
Please note that starting with this problem set, solutions have to be handed in using Moodle. Please upload your solutions to the task(s) marked with * as a single pdf file.

*1. Two-level system II

$$
2+1+1+1 \text { Points }
$$

Consider the Hamiltonian \hat{H} of a quantum mechanical system with two eigenstates $|1\rangle$ and $|2\rangle$:

$$
\begin{aligned}
\hat{H}|1\rangle & =E_{1}|1\rangle \\
\hat{H}|2\rangle & =E_{2}|2\rangle
\end{aligned}
$$

Assume that $\{|1\rangle,|2\rangle\}$ is an orthonormal basis of a two-dimensional Hilbert space, such that an arbitrary operator from the Hilbert space can be written as

$$
|\psi\rangle=\alpha|1\rangle+\beta|2\rangle, \quad \alpha, \beta \in \mathbb{C} .
$$

(a) Compute the norm $\langle\psi \mid \psi\rangle$. Express \hat{H} in spectral representation and compute the expectation value of \hat{H} in state $|\psi\rangle$.
Hint: The spectral representation of an operator \hat{A} with orthonormal eigenvectors $\left\{\left|e_{n}\right\rangle\right\}$ and eigenvalues $\left\{\lambda_{n}\right\}$ is defined as

$$
\hat{A}=\sum_{n} \lambda_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|
$$

(b) Define the operators $\hat{R}=|2\rangle\langle 1|$ and $\hat{L}=|1\rangle\langle 2|$. Compute the action of these operators on the basis states and on $|\psi\rangle$.
(c) Compute $\hat{R} \hat{R}$ and $\hat{L} \hat{L}$. What are the properties of the operators $\hat{R} \hat{L}$ and $\hat{L} \hat{R}$?
(d) Express the Hamiltonian \hat{H} in terms of the operators \hat{R}, \hat{L} and the eigenvalues E_{1}, E_{2}.

Because operators do not commute in general, it is helpful to define the commutator $[\hat{A}, \hat{B}]=$ $\hat{A} \hat{B}-\hat{B} \hat{A}$ for the operators \hat{A} and \hat{B}. It can also be useful to define the anti-commutator $\{\hat{A}, \hat{B}\}=\hat{A} \hat{B}+\hat{B} \hat{A}$. Let in the following \hat{A}, \hat{B}, and \hat{C} be arbitrary operators and \hat{x} is the position and \hat{p} the momentum operator. Show that:
(a) $[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}$.
(b) If \hat{A} and \hat{B} are Hermitian operators, so are $i[\hat{A}, \hat{B}]$ and $\{\hat{A}, \hat{B}\}$.
(c) For integers $n \geq 1$ holds $\left[\hat{A}, \hat{B}^{n}\right]=n[\hat{A}, \hat{B}] \hat{B}^{n-1}$ assuming that $[\hat{B},[\hat{A}, \hat{B}]]=0$.
(d) $[\hat{p}, f(\hat{x})]=-i \hbar f^{\prime}(\hat{x})$. Assume here that $f(x)$ can be expressed as a power series $f(x)=$ $\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^{n}$ and use the commutation relation $[\hat{x}, \hat{p}]=i \hbar$.

3. Expectation values for the harmonic oscillator

Compute the expectation values of the operators $\hat{x}, \hat{p}, \hat{x}^{2}$, and \hat{p}^{2} in the state

$$
\Phi(x)=\frac{1}{\sqrt{2}}\left(\psi_{0}(x)+\psi_{2}(x)\right)
$$

where ψ_{0} and ψ_{2} are wave functions for the ground state and the second excited state of the one-dimensional harmonic oscillator, respectively. Use the relations

$$
\begin{aligned}
& \psi_{n+1}(x)=\frac{1}{\sqrt{n+1}} \hat{a}^{\dagger} \psi_{n}(x) \\
& \psi_{n-1}(x)=\frac{1}{\sqrt{n}} \hat{a} \psi_{n}(x)
\end{aligned}
$$

where \hat{a}^{\dagger} and \hat{a} are the creation and annihilation operators for the harmonic oscillator.

