Prof. Dr. B. Rosenow
Dr. C. Drukier
Dr. T. Hyart

Quantum Mechanics 2 - Problem Set 10

Wintersemester 2017/2018

Abgabe: The problem set will be discussed in the tutorials on Thursday, 04.01.2018, 11:00

 (German) and Friday, 05.01.2018, 13:30 (English).
31. Singlet and triplet states

Consider two angular momenta $\hat{\mathbf{S}}_{1}$ and $\hat{\mathbf{S}}_{2}$ with $s_{1}=s_{2}=1 / 2$. In this problem we will calculate the eigenvalues and eigenstates of $\hat{\mathbf{S}}^{2}$, where $\hat{\mathbf{S}}=\hat{\mathbf{S}}_{1}+\hat{\mathbf{S}}_{2}$. The eigenstates can be written as linear combinations of the 4 basis states

$$
\left|s_{1}=1 / 2, s_{2}=1 / 2 ; m_{1}, m_{2}\right\rangle, \quad \text { with } m_{1}, m_{2}=-1 / 2,1 / 2 .
$$

(a) Construct the 4×4 matrix representation of the operator $\hat{\mathbf{S}}^{2}$ in this basis.
(b) Calculate the eigenvalues of $\hat{\mathbf{S}}^{2}$ by diagonalising the matrix.
(c) Calculate the corresponding eigenstates.

32. Casimir Effect

As shown in problem 30, the Hamiltonian of the quantised radiation field confined to a box with volume $V=L_{1} L_{2} L_{3}$ and with periodic boundary conditions, is given by

$$
H=\sum_{\mathbf{k}} \sum_{\lambda= \pm} \hbar \omega_{\mathbf{k}}\left(a_{\mathbf{k}, \lambda}^{\dagger} a_{\mathbf{k}, \lambda}+\frac{1}{2}\right), \quad \omega_{\mathbf{k}}=c|\mathbf{k}|, \quad k_{i}=\frac{2 \pi}{L_{i}} n_{i}, \quad n_{i} \in \mathbb{N} .
$$

In particular we found that the ground state, in which no modes are excited, has a divergent energy. Whilst this divergent vacuum zero-point energy is not observable, the dependence on the boundaries does lead to observable phenomena.
To investigate this, we consider in the following two conducting plates with surface areas $A=L_{1} L_{2}$ seperated by a distance L_{3}. In the plane of
 the plates we will still be using periodic boundary conditions and consider the limit $L_{1}, L_{2} \rightarrow \infty$. Since the electric field \mathbf{E} between the plates vanishes, only modes with $|\mathbf{E}| \propto \sin \left(k_{3} x_{3}\right)$ are possible. Here $k_{3}=n_{3} \pi / L_{3}$ with $n_{3}=1,2, \ldots$. To get a finite vacuum energy we will moreover introduce an exponential cutoff $e^{-\epsilon \omega_{\mathbf{k}}}$ with $\epsilon>0$, and take the limit of $\epsilon \rightarrow 0$ at the end of the calculation. The energy density per unit plate area between the plates is given by

$$
\begin{aligned}
\sigma_{E}\left(L_{3}\right) & =\lim _{L_{1}, L_{2} \rightarrow \infty} \frac{1}{L_{1} L_{2}} \sum_{\mathbf{k}} \hbar \omega_{\mathbf{k}} e^{-\epsilon \omega_{\mathbf{k}}} \\
& =\hbar c \sum_{n_{3}=1}^{\infty} \int \frac{d^{2} k}{(2 \pi)^{2}} \sqrt{k_{1}^{2}+k_{2}^{2}+\left(\frac{\pi n_{3}}{L_{3}}\right)^{2}} e^{-\epsilon c \sqrt{k_{1}^{2}+k_{2}^{2}+\left(\frac{\pi n_{3}}{L_{3}}\right)^{2}}}
\end{aligned}
$$

(a) Using polar coordinates and a suitable subsitution show that $\sigma_{E}\left(L_{3}\right)$ can be written as

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}} \frac{\partial^{2}}{\partial \epsilon^{2}} \sum_{n=1}^{\infty} \int_{n \pi c / L_{3}}^{\infty} d \omega e^{-\epsilon \omega}
$$

(b) Calculate the integral over ω and perform the sum to show that

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}} \frac{\partial^{2}}{\partial \epsilon^{2}}\left(\frac{1}{\epsilon} \frac{1}{e^{\epsilon \pi c / L_{3}}-1}\right)
$$

Show further that

$$
\sigma_{E}\left(L_{3}\right)=\frac{\hbar}{2 \pi c^{2}}\left(\frac{6}{\epsilon^{4}} \frac{L_{3}}{\pi c}-\frac{1}{\epsilon^{3}}-\frac{1}{360}\left(\frac{\pi c}{L_{3}}\right)^{3}+\mathcal{O}\left(\epsilon^{2}\right)\right)
$$

(c) The energy density calculated in the previous part diverges as the distance between the plates increases $\left(L_{3} \rightarrow \infty\right)$. This will be our reference point. We therefore consider two plates separated by a fixed distance a, together with two external plates which are places a further distance $(L-a) / 2$ away. The relevant energy density is then given by

$$
\sigma_{E}(a, L)=\sigma_{E}(a)+2 \sigma_{E}\left(\frac{L-a}{2}\right)
$$

Find an expression for $\sigma_{E}(a, L)$ using your result in (b).
(d) Since the energy density varies with the distance between plates, the plates experience a pressure which is given by

$$
p_{\mathrm{vac}}=-\lim _{L \rightarrow \infty} \frac{\partial}{\partial a} \sigma_{E}(a, L)
$$

How large is this pressure for $A=1 \mathrm{~cm}^{2}$ and $a=1 \mu \mathrm{~m}$?

33. Bonus Problem

Consider N particles with angular momenta $l_{1}=l_{2}=\ldots .=l_{N}=(N-1) / 2$. Write down a state with total angular momentum $L=0$. Explain why the total angular momentum for your state is zero. Is this state unique for $N=1,2,3,4$?
Hint: Think about the solutions of problems 29 and 31.

