Quantum Mechanics 2 - Problem Set 9

Wintersemester 2017/2018

Abgabe: The problem set will be discussed in the tutorials on Thursday, 14.12.2017, 11:00 (German) and Friday, 15.12.2017, 13:30 (English).

28. Spin-orbit coupling in Hydrogen

The spin-orbit Hamiltonian for Hydrogen is given by

$$
H_{\mathrm{SO}}=\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{m^{2} c^{2} r^{3}} \mathbf{S} \cdot \mathbf{L} .
$$

We will treat this Hamiltonian as a perturbation in this problem.
(a) Using the relevant Hydrogen wave-function, calculate the leading order energy correction due to spin-orbit coupling, for $n=2$, and $l=1$. Take $s=1 / 2$ as the spin of the electron.
(b) Use Kramers' relation

$$
\frac{\alpha+1}{n^{2}}\left\langle r^{\alpha}\right\rangle-(2 \alpha+1) a\left\langle r^{\alpha-1}\right\rangle+\frac{\alpha}{4}\left[(2 l+1)^{2}-\alpha^{2}\right] a^{2}\left\langle r^{\alpha-2}\right\rangle=0
$$

where a is the Bohr radius, to derive a relation between $\left\langle r^{-2}\right\rangle$ and $\left\langle r^{-3}\right\rangle$.
(c) Calculate the leading order energy correction due to spin-orbit coupling for general n and l. You may use that

$$
\left\langle r^{-2}\right\rangle=\frac{1}{(l+1 / 2) n^{3} a^{2}} .
$$

29. Addition of three angular momenta

Consider three angular momenta with $l_{1}=l_{2}=l_{3}=1$.
(a) Add the three angular momenta to get a state with total angular momentum $L=0$. Hint: First add L_{1} and L_{2} and then add the resulting angular momentum with L_{3}. Use the same basis as in the problem 26. Keep only the basis functions that can result to $L=0$.
(b) Show that this state can be written as a 3×3 determinant and that it therefore is antisymmetric.

30. Quantisation of the Radiation Field

In the absence of charges, and in the Coulomb gauge $\nabla \cdot \mathbf{A}=0$, the electromagnetic field is described by the Lagrangian

$$
L=\frac{1}{2} \int_{\Omega} d^{3} x\left[\epsilon_{0}\left(\partial_{t} \mathbf{A}\right)^{2}+\frac{1}{\mu_{0}} \mathbf{A} \nabla^{2} \mathbf{A}\right] .
$$

Here ϵ_{0} denotes the vacuum dielectric constant, μ_{0} is the vacuum permeability, and Ω is a cuboid with extensions L_{x}, L_{y}, and L_{z}. Note that the speed of light is $c=1 / \sqrt{\epsilon_{0} \mu_{0}}$.
a) Write down the Lagrange equation for \mathbf{A}.
b) Find eigenfunctions $\mathbf{A}_{\mathbf{k}}$ and eigenvalues $\omega_{\mathbf{k}}^{2}$ of the equation

$$
-\nabla^{2} \mathbf{A}=\frac{\omega_{\mathbf{k}}^{2}}{c^{2}} \mathbf{A}
$$

by using periodic boundary conditions. It is useful to introduce, for each \mathbf{k}, orthonormal vectors $\hat{\xi}_{\mathbf{k}, 1}$ and $\hat{\xi}_{\mathbf{k}, 2}$ so that they are perpendicular to \mathbf{k}. The time-dependent solution then has a series expansion

$$
\mathbf{A}(\mathbf{x}, t)=\frac{1}{\sqrt{\Omega}} \sum_{\mathbf{k}, i} \alpha_{\mathbf{k}, i}(t) e^{i \mathbf{k} \cdot \mathbf{x}} \hat{\xi}_{\mathbf{k}, i} .
$$

Insert this series expansion in the Lagrangian, and find the momenta

$$
\pi_{\mathbf{k}, i}=\frac{\partial L}{\partial \dot{\alpha}_{\mathbf{k}, i}},
$$

canonically conjugate to the coordinates $\alpha_{\mathbf{k}, i}$. Use the Legendre transform $H=$ $\sum_{\mathbf{k}, i} \pi_{\mathbf{k}, i} \dot{\alpha}_{\mathbf{k}, i}-L\left(\pi_{\mathbf{k}, i}, \alpha_{\mathbf{k}, i}\right)$ to obtain the Hamiltonian.
c) The classical Hamiltonian $H\left(\left\{\pi_{\mathbf{k}, i}, \alpha_{\mathbf{k}, i}\right\}\right)$ can be quantised by imposing canonical commutation relations

$$
\left[\alpha_{\mathbf{k}, i}, \alpha_{\mathbf{q}, j}\right]=0, \quad\left[\pi_{\mathbf{k}, i}, \pi_{\mathbf{q}, j}\right]=0, \quad\left[\alpha_{\mathbf{k}, i}, \pi_{\mathbf{q}, j}\right]=i \hbar \delta_{\mathbf{k}, \mathbf{q}} \delta_{i, j}
$$

on the coordinates $\alpha_{\mathbf{k}, i}$ and their canonically conjugate momenta $\pi_{\mathbf{k}, j}$. In analogy to the one-dimensional harmonic oscillator, we define photon creation and annihilation operators

$$
a_{\mathbf{k}, j}^{\dagger}=\sqrt{\frac{\epsilon_{0} \omega_{\mathbf{k}}}{2 \hbar}}\left(\alpha_{-\mathbf{k}, j}-\frac{i}{\epsilon_{0} \omega_{\mathbf{k}}} \pi_{\mathbf{k}, j}\right), \quad a_{\mathbf{k}, j}=\sqrt{\frac{\epsilon_{0} \omega_{\mathbf{k}}}{2 \hbar}}\left(\alpha_{\mathbf{k}, j}+\frac{i}{\epsilon_{0} \omega_{\mathbf{k}}} \pi_{-\mathbf{k}, j}\right)
$$

Show that $a_{\mathbf{k}, j}$ and $a_{\mathbf{k}, j}^{\dagger}$ obey the commutation relations of harmonic oscillator ladder operators, and express the Hamiltonian in terms of $a_{\mathbf{k}, j}$ and $a_{\mathbf{k}, j}^{\dagger}$.

