Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow

Dr. C. Drukier

Dr. T. Hyart

Quantum Mechanics 2 - Problem Set 6

Wintersemester 2017/2018

Abgabe: The problem set will be discussed in the tutorials on Thursday, 23.11.2017, 11:00 (German) and Friday, 24.11.2017, 13:30 (English). Bachelor students will get bonus points by solving these problems. The exam for the bachelor students will not contain questions about the Dirac equation.

17. Klein tunneling

Consider a scattering of a one-dimensional Dirac fermion with mass m from a potential barrier. The Hamiltonian describing this scattering process is

$$
\hat{H}=-\hat{p} \sigma_{y}+m \sigma_{z}+V(x)
$$

and the potential barrier is given by $V(x)=V_{0}$ for $0 \leq x \leq a$ and $V(x)=0$ elsewhere.
(a) Describe how to calculate the transmission probability $T(E)$ assuming that the energy of the incoming particle satisfies $E>m$.
(b) Calculate $T(E)$ for $m=0$.

Remark: Signatures of Klein tunneling have been experimentally observed in graphene [e.g. N. Stander, B. Huard and D. Goldhaber-Gordon, Physical Review Letters 102, 026807 (2009) and A. F. Young and P. Kim, Nature Physics 5, 222 (2009)].

18. Representations of γ matrices

The γ matrices can be written as

$$
\begin{aligned}
\gamma^{i} & =\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right), \quad i=1,2,3 \\
\gamma^{0} & =\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right),
\end{aligned}
$$

where σ_{i} denotes a Pauli matrix and $\mathbb{1}_{n}$ the $(n \times n)$ unit matrix.
(a) Show that the γ matrices satisfy the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1}_{4}, \mu, \nu=0,1,2,3$.
(b) A different representation is the Weyl representation where

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2} \\
\mathbb{1}_{2} & 0
\end{array}\right) .
$$

Show that these still satisfy the Clifford algebra.
(c) Using the Clifford algebra show that $\operatorname{Tr}\left(\gamma^{\mu}\right)=0, \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu}$ and $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)=0$.
19. Continuity equation for the Dirac equation

Prove that the solutions Ψ of Dirac equation satisfy the continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{j}=0
$$

where

$$
\mathbf{j}=\Psi^{\dagger}\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) \Psi \quad \text { and } \quad \rho=\Psi^{\dagger} \Psi
$$

20. Free particle solutions of the Dirac equation
 5 Punkte

Calculate the eigenvalues of the free-particle Dirac equation

$$
\left(\begin{array}{cccc}
m & 0 & p & 0 \\
0 & m & 0 & -p \\
p & 0 & -m & 0 \\
0 & -p & 0 & -m
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)=E\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)
$$

