Quantum Mechanics 2 - Problem Set 6

Wintersemester 2017/2018

Abgabe: The problem set will be discussed in the tutorials on Thursday, 23.11.2017, 11:00 (German) and Friday, 24.11.2017, 13:30 (English). Bachelor students will get bonus points by solving these problems. The exam for the bachelor students will not contain questions about the Dirac equation.

17. Klein tunneling

3+2 Punkte

Consider a scattering of a one-dimensional Dirac fermion with mass m from a potential barrier. The Hamiltonian describing this scattering process is

$$\hat{H} = -\hat{p}\sigma_y + m\sigma_z + V(x)$$

and the potential barrier is given by $V(x) = V_0$ for $0 \le x \le a$ and V(x) = 0 elsewhere.

- (a) Describe how to calculate the transmission probability T(E) assuming that the energy of the incoming particle satisfies E > m.
- (b) Calculate T(E) for m = 0.

Remark: Signatures of Klein tunneling have been experimentally observed in graphene [e.g. N. Stander, B. Huard and D. Goldhaber-Gordon, Physical Review Letters **102**, 026807 (2009) and A. F. Young and P. Kim, Nature Physics **5**, 222 (2009)].

18. Representations of γ matrices

2+1+2 Punkte

The γ matrices can be written as

$$\gamma^{i} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix}, \qquad i = 1, 2, 3$$
$$\gamma^{0} = \begin{pmatrix} \mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2} \end{pmatrix},$$

where σ_i denotes a Pauli matrix and $\mathbb{1}_n$ the $(n \times n)$ unit matrix.

- (a) Show that the γ matrices satisfy the Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}_4, \ \mu, \nu = 0, 1, 2, 3.$
- (b) A different representation is the Weyl representation where

$$\gamma^0 = \left(\begin{array}{cc} 0 & \mathbb{1}_2 \\ \mathbb{1}_2 & 0 \end{array} \right).$$

Show that these still satisfy the Clifford algebra.

(c) Using the Clifford algebra show that $\text{Tr}(\gamma^{\mu}) = 0$, $\text{Tr}(\gamma^{\mu}\gamma^{\nu}) = 4\eta^{\mu\nu}$ and $\text{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}) = 0$.

19. Continuity equation for the Dirac equation

5 Punkte

Prove that the solutions Ψ of Dirac equation satisfy the continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0,$$

where

$$\mathbf{j} = \Psi^\dagger \left(egin{array}{cc} 0 & \vec{\sigma} \ \vec{\sigma} & 0 \end{array}
ight) \Psi \ \ ext{and} \ \
ho = \Psi^\dagger \Psi.$$

20. Free particle solutions of the Dirac equation

5 Punkte

Calculate the eigenvalues of the free-particle Dirac equation

$$\begin{pmatrix} m & 0 & p & 0 \\ 0 & m & 0 & -p \\ p & 0 & -m & 0 \\ 0 & -p & 0 & -m \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = E \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix}.$$