Institut für Theoretische Physik
Universität Leipzig

Prof. Dr. B. Rosenow
Dr. C. Drukier
Dr. T. Hyart

Quantum Mechanics 2 - Problem Set 5

Wintersemester 2017/2018

Abstract

Abgabe: The problem set will be discussed in the tutorials on Thursday, 16.11.2017, 11:00 (German) and Friday, 17.11.2017, 13:30 (English).

15. Rashba wire

In this problem we consider a quantum wire in the presence of a magnetic field. The Hamiltonian is given by

$$
\hat{H}=\frac{p^{2}}{2 m}+\alpha p \sigma^{y}+B_{z} \sigma^{z}
$$

where α is a constant, B_{z} denotes the magnetic field in the z-direction, and σ_{i} are the usual Pauli matrices.
(a) First consider the case where $B_{z}=0$. Calculate the eigenvalues and eigenstates of the Hamiltonian. Plot the eigenvalues as a function of momentum and indicate the Kramers pairs in your plot. What is the total degeneracy?
(b) Repeat the calculation in (a) but with $B_{z} \neq 0$.
(c) Let now \hat{V} denote an operator which is even under time-reversal, that is $\hat{T} \hat{V}^{-1}=\hat{V}$. Let $|k, \sigma\rangle$ and $|-k,-\sigma\rangle$ denote the wave functions for the Kramer's pairs obtained in (a). Show that $\langle-k,-\sigma| \hat{V}|k, \sigma\rangle=0$.

Remark: A matrix element like the one in part (c) appears, for example, when trying to calculate the rate of backscattering of electrons. The life-time τ of the electrons is then given by Fermi's golden rule as

$$
\left.\frac{1}{\tau}=\frac{2 \pi}{\hbar} \rho_{F}|\langle-k,-\sigma| \hat{V}| k, \sigma\right\rangle\left.\right|^{2}
$$

with ρ_{F} denoting the density of states at the Fermi level.
(a) Consider a tight-binding Hamiltonian for graphene

$$
\hat{H}=-\sum_{\left\langle\mathbf{R}^{\prime}, \mathbf{R}\right\rangle} t_{\mathbf{R}, \mathbf{R}^{\prime}}\left|\mathbf{R}^{\prime}\right\rangle\langle\mathbf{R}|+\text { h.c },
$$

where the summation is over the pairs of nearest-neighbour lattice sites and the tunnel couplings $t_{\mathbf{R}, \mathbf{R}^{\prime}}$ are t_{1}, t_{2} and t_{3} for the bonds along the nearest-neighbor vectors $\vec{\delta}_{1}, \vec{\delta}_{2}$ and $\vec{\delta}_{3}$, respectively. Assume that the lattice sites corresponding to sublattice A are given as $\mathbf{R}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}\left(n_{1}, n_{2} \in \mathbb{Z}\right)$ and the lattice sites corresponding to sublattice \mathbf{B} are $\mathbf{R}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+\vec{\delta}_{1}\left(n_{1}, n_{2} \in \mathbb{Z}\right)$ similarly as in the lectures.
Use the basis transformation

$$
\begin{aligned}
|\mathbf{k}, A\rangle & =\frac{1}{N} \sum_{n_{1}, n_{2}=1}^{N} e^{i\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}\right) \cdot \mathbf{k}}\left|n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}\right\rangle \\
|\mathbf{k}, B\rangle & =\frac{1}{N} \sum_{n_{1}, n_{2}=1}^{N} e^{i\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+\vec{\delta}_{1}\right) \cdot \mathbf{k}}\left|n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+\vec{\delta}_{1}\right\rangle
\end{aligned}
$$

to show that the Hamiltonian can be written as

$$
\hat{H}=\sum_{\mathbf{k}}(|\mathbf{k}, A\rangle,|\mathbf{k}, B\rangle)\left(\begin{array}{cc}
0 & -\sum_{i=1}^{3} t_{i} e^{i \mathbf{k} \cdot \vec{\delta}_{i}} \\
-\sum_{i=1}^{3} t_{i} e^{-i \mathbf{k} \cdot \overrightarrow{\delta_{i}}} & 0
\end{array}\right)\binom{\langle\mathbf{k}, A|}{\langle\mathbf{k}, B|} .
$$

(b) Now consider next-nearest neighbour hoppings. The corresponding Hamiltonian is

$$
\hat{H}_{2}=-t^{\prime} \sum_{\left\langle\left\langle\mathbf{R}^{\prime}, \mathbf{R}\right\rangle\right\rangle}\left|\mathbf{R}^{\prime}\right\rangle\langle\mathbf{R}|+\text { h.c, }
$$

where the summation is now over pairs of second-nearest-neighbour lattice sites. Show that with the help of the basis transformation given above this Hamiltonian can be written as

$$
\hat{H}_{2}=\sum_{\mathbf{k}}(|\mathbf{k}, A\rangle,|\mathbf{k}, B\rangle)\left(\begin{array}{cc}
-t^{\prime} f(\mathbf{k}) & 0 \\
0 & -t^{\prime} f(\mathbf{k})
\end{array}\right)\binom{\langle\mathbf{k}, A|}{\langle\mathbf{k}, B|} .
$$

where

$$
f(\mathbf{k})=2 \cos \left(\sqrt{3} k_{y} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} k_{y} a\right) \cos \left(\frac{3}{2} k_{x} a\right) .
$$

