Institut für Theoretische Physik
Universität Leipzig
Prof. Dr. B. Rosenow
Dr. C. Drukier
Dr. T. Hyart

## Quantum Mechanics 2 - Problem Set 4

Wintersemester 2017/2018
Abgabe: The problem set will be discussed in the tutorials on Thursday, 09.11.2017, 11:00 (German) and Friday, 10.11.2017, 13:30 (English).

## 11. Momentum-space wavefunctions

Let $\phi(\mathbf{p})$ be the momentum-space wavefunction for a state $|\alpha\rangle$, such that $\phi(\mathbf{p})=\langle\mathbf{p} \mid \alpha\rangle$. Let also $\Theta$ denote the time-reversal operator. Is the momentum-space wavefunction for the time-reversed state $\Theta|\alpha\rangle$ given by $\phi(\mathbf{p}), \phi(-\mathbf{p}), \phi^{*}(\mathbf{p})$, or $\phi^{*}(-\mathbf{p})$ ? Justify your answer.

## 12. Time reversal symmetry of non-degenerate states $2+3$ Punkte

Consider a spinless particle bound to a fixed centre by a potential $V(\mathbf{x})$ so asymmetrical that no energy levels are degenerate.
(a) Using time-reversal prove that

$$
\langle\mathbf{L}\rangle=0,
$$

for any energy eigenstate. Here $\mathbf{L}$ is the orbital angular momentum.
(b) Assume now that the wavefunction is expanded as

$$
\sum_{l} \sum_{m} F_{l m}(r) Y_{l}^{m}(\theta, \phi),
$$

where $Y_{l}^{m}(\theta, \phi)$ are the spherical harmonics. What kind of phase restrictions do we obtain on $F_{l m}(r)$ ?

## 13. Spin 1 system

The Hamiltonian for a spin 1 system is given by

$$
\hat{H}=A \hat{S}_{z}^{2}+B\left(\hat{S}_{x}^{2}-\hat{S}_{y}^{2}\right)
$$

where the $S_{i}$ are spin operators.
(a) Find the normalised energy eigenstates and eigenvalues.
(b) Is the Hamiltonian invariant under time reversal? How do the normalised eigenstates you calculated in part (a) transform under time reversal?

## 14. Time reversal of a lattice Hamiltonian

In this problem we will consider the effects of time reversal on a lattice Hamiltonian.
(a) First consider the lattice translation operator $\hat{T}_{a}=e^{-i \hat{p} a / \hbar}$. How does the eigenvalue of the translation operator change when a momentum eigenstate $|p\rangle$ is transformed to its time-reversed state $\hat{\theta}|p\rangle$ ?
(b) Now consider the Hamiltonian

$$
H(\mathbf{k})=A_{x} \sin \left(k_{x} a\right) \sigma_{x}+A_{y} \sin \left(k_{y} a\right) \sigma_{y}+M \sigma_{z},
$$

where $\hbar k_{x}$ and $\hbar k_{y}$ are components of the momentum appearing in the eigenvalues of the translation operator, $a$ is the lattice constant, and $A_{x}, A_{y}$ and $M$ are constants. How does this Hamiltonian transform in the time-reversal symmetry transformation in the case where $\sigma$ are (i) spin matrices and (ii) the type of "orbital" matrices (sublattice degree of freedom) considered in the problem on the SSH model? If $H(\mathbf{k})$ obeys time-reversal symmetry, what are the consequences for the coefficients $A_{x}, A_{y}$ and $M$ in both cases.
(c) Generalise your result to a Hamiltonian of the form $H(\mathbf{k})=\mathbf{d}(\mathbf{k}) \cdot \sigma$.

