Prof. Dr. B. Rosenow
Dr. C. Drukier
Dr. T. Hyart

Quantum Mechanics 2 - Problem Set 3

Wintersemester 2017/2018

Abgabe: The problem set will be discussed in the tutorials on Thursday, 02.11.2017, 11:00 (German) and Friday, 03.11.2017, 13:30 (English).

8. Eigenspinors
 $4+1$ Punkte

Consider a spin $1 / 2$ system in the presence of an external magnetic field $\mathbf{B}=B \hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ is a unit vector pointing in an arbitrary direction. The Hamiltonian of this system is given by

$$
\hat{H}=-\frac{e}{m c} \hat{\mathbf{S}} \cdot \mathbf{B}
$$

where e is the electron charge, m is the electron mass, c the speed of light, and $\hat{\mathbf{S}}$ the vector of spin $1 / 2$ operators.
(a) Calculate the eigenvalues and normalised eigenspinors of the Hamiltonian.
(b) Why does the direction of the eigenspinors only depend on $\hat{\mathbf{n}}$?

9. Time- and spin-reversal

(a) Denote the wavefunction of a spinless particle corresponding to a plane wave in three dimensions by $\psi(\mathbf{x}, t)$. Show that $\psi^{*}(\mathbf{x},-t)$ is the wavefunction for the plane wave if the momentum direction is reversed.
(b) Let $\chi(\hat{\mathbf{n}})$ be the eigenspinor calculated in the previous problem for eigenvalue $-e \hbar B /(2 m c)$. Using the explicit form of $\chi(\hat{\mathbf{n}})$ in terms of the polar and azimuthal angles which define $\hat{\mathbf{n}}$, verify that the eigenspinor with spin direction reversed is given by $-i \sigma_{y} \chi^{*}(\hat{\mathbf{n}})$.

10. Nearly free electron model

Consider a particle in a periodic potential with lattice vectors \mathbf{R}_{i} i.e. $U\left(\mathbf{x}+\mathbf{R}_{i}\right)=U(\mathbf{x})$. For such problems it is useful to write the periodic potential as a Fourier series

$$
U(\mathbf{x})=\sum_{\mathbf{G}} U_{\mathbf{G}} e^{i \mathbf{G} \cdot \mathbf{x}}
$$

where \mathbf{G} are reciprocal lattice vectors satisfying $e^{i \mathbf{G} \cdot \mathbf{R}_{\mathbf{i}}}=1$. We expand the wavefunctions in terms of a set of plane waves which satisfy the periodic boundary conditions of the problem

$$
\psi(\mathbf{x})=\sum_{\mathbf{k}} c_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}}
$$

(a) Using the expansions above, show that the Schrödinger equation

$$
\left[\frac{-\hbar^{2} \nabla^{2}}{2 m}+U(\mathbf{x})\right]=E \psi(\mathbf{x})
$$

can be written as

$$
\left(\frac{\hbar^{2} k^{2}}{2 m}-E\right) c_{\mathbf{k}}+\sum_{\mathbf{G}} U_{\mathbf{G}} c_{\mathbf{k}-\mathbf{G}}=0
$$

(b) Perform the shift $\mathbf{q}=\mathbf{k}+\mathbf{K}$, where \mathbf{K} is a reciprocal lattice vector which ensures that we can always find a \mathbf{q} which lies in the first Brillouin zone ${ }^{1}$, and show that the Schrödinger equation now gives

$$
\left(\frac{\hbar^{2}}{2 m}(\mathbf{q}-\mathbf{K})^{2}-E\right) c_{\mathbf{q}-\mathbf{K}}+\sum_{\mathbf{G}} U_{\mathbf{G}-\mathbf{K}} c_{\mathbf{q}-\mathbf{G}}=0
$$

(c) Consider for concreteness a one-dimensional chain, but in the simple case where only the leading Fourier component contributes to the potential

$$
U(x)=2 U_{0} \cos \frac{2 \pi x}{a} .
$$

Explain how your result in (b) can be used to calculate the energy of the system.
(d) Suppose now that U_{0} is very small. Near $k=\pi / a$ the Schrödinger equation reduces to

$$
\left(\begin{array}{cc}
\frac{\hbar^{2}}{2 m}\left(k-\frac{2 \pi}{a}\right)^{2}-E & U_{0} \\
U_{0} & \frac{\hbar^{2} k^{2}}{2 m}-E
\end{array}\right)\binom{c_{k-2 \pi / a}}{c_{k}}=0
$$

Calculate and plot the energy eigenvalues. What happens at $k=\pi / a$?

[^0]
[^0]: ${ }^{1}$ As an example of a Brillouin zone consider the simple cubic lattice with sides of length a. The lattice vectors can be written as $\mathbf{R}_{\mathbf{1}}=a \hat{\mathbf{x}}, \mathbf{R}_{\mathbf{2}}=a \hat{\mathbf{y}}$, and $\mathbf{R}_{\mathbf{3}}=a \hat{\mathbf{z}}$. In reciprocal space the basis vectors become $\mathbf{b}_{\mathbf{1}}=\frac{2 \pi}{a} \hat{\mathbf{x}}$, $\mathbf{b}_{\mathbf{2}}=\frac{2 \pi}{a} \hat{\mathbf{y}}$, and $\mathbf{b}_{3}=\frac{2 \pi}{a} \hat{\mathbf{z}}$. In this case the first Brillouin zone is the region $-\pi / a \leq k_{i} \leq \pi / a(i=x, y, z)$. The reciprocal lattice vectors can be written as $\mathbf{K}=\sum_{i} n_{i} \mathbf{b}_{\mathbf{i}}\left(n_{i} \in \mathbb{Z}\right)$. Therefore, for arbitrary \mathbf{k} it is possible to find $\mathbf{q}=\mathbf{k}+\mathbf{K}$ so that \mathbf{q} lies in the first Brillouin zone.

