Quantum Field Theory of Many-Particle Systems - Problem Set 3

Summer Semester 2024

Due: \quad The problem set will be discussed in the tutorial on Friday, 26.04.2024, 13:30. Problem 2 is a bonus problem for extra points and will not be counted towards the 50% threshold for exam admission.

Internet: The problem sets can be downloaded from
https://home.uni-leipzig.de/stp/QFT_of_MPS_SS24.html

1. Functional Derivative

A functional $F[\varphi]$ maps the function $\varphi(x)$ to the real numbers. The functional derivative of a functional with respect to a function is defined as

$$
\begin{equation*}
\frac{\delta F[\varphi]}{\delta \varphi(z)}=\lim _{\epsilon \rightarrow 0} \frac{F[\varphi(x)+\epsilon \delta(x-z)]-F[\varphi(x)]}{\epsilon} . \tag{1}
\end{equation*}
$$

This definition is in analogy to the definition of a partial derivative

$$
\frac{\partial F(\boldsymbol{x})}{\partial x_{j}}=\lim _{\epsilon \rightarrow 0} \frac{F\left(\boldsymbol{x}+\epsilon \boldsymbol{e}_{j}\right)-F(\boldsymbol{x})}{\epsilon} .
$$

When making the transition from partial to functional derivatives, the discrete index j turns into a continuous index x, and the unit vector in j direction turns into the Dirac delta distribution $\delta(x-z)$. The derivative of a functional is a function and depends on the position z.
Using this definition, compute the functional derivatives of the following functionals:
(a) $F[\varphi]=\varphi\left(x_{0}\right)$ for a fixed x_{0}.
(b) $F[\varphi]=\varphi\left(x_{0}\right)^{2}$ for a fixed x_{0}.
(c) For a function $f(x)$ that can be expanded in a power series, show that the functional derivative of $F[\varphi]=f\left(\varphi\left(x_{0}\right)\right)$ is given by

$$
\frac{\delta F[\varphi]}{\delta \varphi(z)}=f^{\prime}\left(\varphi\left(x_{0}\right)\right) \delta\left(z-x_{0}\right) .
$$

(d) $F[\varphi]=\int_{a}^{b} \mathrm{~d} x A(x) \varphi(x)$
(e) $F[\varphi]=\int \mathrm{d}^{3} x A(x)[\varphi(x)]^{2}$
(f) $F[\varphi]=\int \mathrm{d}^{3} x A(x)[\varphi(x)]^{n}$
(g) $F[\varphi]=\int \mathrm{d}^{3} x A(x) f(\varphi(x))$
(h) $\quad F[\varphi]=\int \mathrm{d}^{n} x[\nabla \varphi(x) \cdot \nabla \varphi(x)]$
(i) $F[\varphi]=\int \mathrm{d}^{n} x g(\nabla \varphi(x))$
(j) $\quad F[\varphi]=\int \mathrm{d}^{n} x f\left(\varphi(x), \nabla \varphi(x), \Delta \varphi(x), \nabla^{3} \varphi(x), \ldots\right)$
(k) $F[q]=\int \mathrm{d} t \mathcal{L}(q(t), \dot{q}(t))$

2. Jordan-Wigner transformation

In this problem we will show that a spin $1 / 2$ system can be represented in terms of fermionic operators. In particular, we represent an up spin as a particle and a down spin as the vacuum $|0\rangle$ such that $|\uparrow\rangle=|1\rangle=c^{\dagger}|0\rangle$ and $|\downarrow\rangle=|0\rangle=c|1\rangle$, with c denoting a fermionic operator. Naively we might try to construct a representation by writing $\sigma^{+}=c^{\dagger}$ and $\sigma^{-}=c$, with $\sigma^{z}=2 c^{\dagger} c-1$.
(a) Show that, in this representation, the spins indeed satisfy the spin algebra $\left[\sigma^{x}, \sigma^{y}\right]=2 i \sigma^{z}$.
(b) There is however a problem with this representation since spins on different sites commute whilst fermionic operators anti-commute. This sign somehow has to be fixed. In one dimension this can be done by the following transformation, known as a Jordan-Wigner transformation:

$$
\sigma_{n}^{+}=c_{n}^{\dagger} e^{-i \pi \sum_{j<n} n_{j}}, \quad \sigma_{n}^{-}=c_{n} e^{i \pi \sum_{j<n} n_{j}}, \quad \sigma_{n}^{z}=2 c_{n}^{\dagger} c_{n}-1
$$

Here $n_{j}=c_{j}^{\dagger} c_{j}$ is the number operator. In one dimension the interpretation of this representation is as follows: We order the particles on a line. By then counting the number of particles to the left of a given site we pick up a phase of +1 or -1 . This allows us to consider the particles as fermions. Using the Jordan-Wigner transformation, show that $\sigma_{n}^{+} \sigma_{n+1}^{-}=c_{n}^{\dagger} c_{n+1}$.
(c) Consider now the so-called spin- $1 / 2 \mathrm{XY}$ model in a magnetic field h pointing in the zdirection

$$
H=-\sum_{n=1}^{N-1}\left[J_{x} \sigma_{n}^{x} \sigma_{n+1}^{x}+J_{y} \sigma_{n}^{y} \sigma_{n+1}^{y}\right]-\sum_{n=1}^{N} h \sigma_{n}^{z}
$$

Here $J_{x}+J_{y}>0$ and we will assume periodic boundary conditions. Using the JordanWigner transformation, show that the Hamiltonian can be written, up to unimportant constants, as

$$
\begin{aligned}
H & =\sum_{n=1}^{N-1}\left[-\left(J_{x}+J_{y}\right)\left(c_{n}^{\dagger} c_{n+1}+c_{n+1}^{\dagger} c_{n}\right)+\left(J_{x}-J_{y}\right)\left(c_{n+1}^{\dagger} c_{n}^{\dagger}+c_{n} c_{n+1}\right)\right] \\
& -\sum_{n=1}^{N} 2 h c_{n}^{\dagger} c_{n} .
\end{aligned}
$$

(d) For $J_{y}=0$ the Hamiltonian in the previous part reduces to the transverse Ising model. In this case diagonalize the Hamiltonian and thus calculate the spectrum. For which values of J_{x} does the system become gapless?

