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1. Functional Derivative 11 Punkte

A functional F [φ] maps the function φ(x) to the real numbers. The functional derivative of a
functional with respect to a function is defined as

δF [φ]

δφ(z)
= lim

ϵ→0

F [φ(x) + ϵδ(x− z)]− F [φ(x)]

ϵ
.(1)

This definition is in analogy to the definition of a partial derivative

∂F (x)

∂xj
= lim

ϵ→0

F (x+ ϵej)− F (x)

ϵ
.

When making the transition from partial to functional derivatives, the discrete index j turns into
a continuous index x, and the unit vector in j direction turns into the Dirac delta distribution
δ(x− z). The derivative of a functional is a function and depends on the position z.
Using this definition, compute the functional derivatives of the following functionals:

(a) F [φ] = φ(x0) for a fixed x0.

(b) F [φ] = φ(x0)
2 for a fixed x0.

(c) For a function f(x) that can be expanded in a power series, show that the functional
derivative of F [φ] = f(φ(x0)) is given by

δF [φ]

δφ(z)
= f ′(φ(x0)) δ(z − x0) .

(d) F [φ] =
∫ b
a dxA(x)φ(x)

(e) F [φ] =
∫
d3xA(x)[φ(x)]2

(f) F [φ] =
∫
d3xA(x)[φ(x)]n

(g) F [φ] =
∫
d3xA(x)f(φ(x))

(h) F [φ] =
∫
dnx [∇φ(x) · ∇φ(x)]

(i) F [φ] =
∫
dnx g(∇φ(x))

(j) F [φ] =
∫
dnx f

(
φ(x),∇φ(x),∆φ(x),∇3φ(x), ...

)
(k) F [q] =

∫
dtL(q(t), q̇(t))
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2. Jordan-Wigner transformation Bonus 1+2+2+2 Punkte

In this problem we will show that a spin 1/2 system can be represented in terms of fermionic
operators. In particular, we represent an up spin as a particle and a down spin as the vacuum |0⟩
such that | ↑⟩ = |1⟩ = c†|0⟩ and | ↓⟩ = |0⟩ = c|1⟩, with c denoting a fermionic operator. Naively
we might try to construct a representation by writing σ+ = c† and σ− = c, with σz = 2c†c− 1.

(a) Show that, in this representation, the spins indeed satisfy the spin algebra [σx, σy] = 2iσz.

(b) There is however a problem with this representation since spins on different sites commute
whilst fermionic operators anti-commute. This sign somehow has to be fixed. In one
dimension this can be done by the following transformation, known as a Jordan-Wigner
transformation:

σ+
n = c†ne

−iπ
∑

j<n nj , σ−
n = cne

iπ
∑

j<n nj , σz
n = 2c†ncn − 1.

Here nj = c†jcj is the number operator. In one dimension the interpretation of this rep-
resentation is as follows: We order the particles on a line. By then counting the number
of particles to the left of a given site we pick up a phase of +1 or −1. This allows us to
consider the particles as fermions. Using the Jordan-Wigner transformation, show that
σ+
n σ

−
n+1 = c†ncn+1.

(c) Consider now the so-called spin-1/2 XY model in a magnetic field h pointing in the z-
direction

H = −
N−1∑
n=1

[
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1

]
−

N∑
n=1

hσz
n.

Here Jx + Jy > 0 and we will assume periodic boundary conditions. Using the Jordan-
Wigner transformation, show that the Hamiltonian can be written, up to unimportant
constants, as

H =

N−1∑
n=1

[
−(Jx + Jy)(c

†
ncn+1 + c†n+1cn) + (Jx − Jy)(c

†
n+1c

†
n + cncn+1)

]
−

N∑
n=1

2hc†ncn.

(d) For Jy = 0 the Hamiltonian in the previous part reduces to the transverse Ising model. In
this case diagonalize the Hamiltonian and thus calculate the spectrum. For which values
of Jx does the system become gapless?
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