Mathematical Methods of Modern Physics - Problem Set 2

Summer Semester 2024
Due: The problem set will be discussed in the seminars on 18.04. and 19.04.
Internet: The problem sets can be downloaded from
https://home.uni-leipzig.de/stp/Mathematical_methods_2_ss24.html

1. Curves in the complex plane

Which curves in the complex plane are described by the following equations:
a) $\left|\frac{z-1}{z+1}\right|=1$
b) $\left|\frac{z-1}{z+1}\right|=2$
c) $\operatorname{Re}\left(z^{2}\right)=4$
d) $\bar{z}=z^{-1}$

2. Complex functions

Write the following functions in the form $w(x+i y)=u(x, y)+i v(x, y)$ and determine their domain of definition
a) $f(z)=3 z^{2}+5 z+i+1$
b) $g(z)=\frac{z+i}{z^{2}+1}$
c) $h(z)=\frac{2 z^{2}+3}{|z-1|}$
d) $q(z)=e^{z}+e^{-\bar{z}}$
e) What is the range of $q(z)$ in d)?

3. Complex sine and cosine

The complex sine and cosine can be defined either by their power series or by the complex exponential

$$
\begin{aligned}
\sin (z) & :=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right) \\
\cos (z) & :=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)
\end{aligned}
$$

Show that:
a) For $z \in \mathbb{R}$ these definitions give the known real sine and cosine.
b) The equations $\sin (z)=0$ and $\cos (z)=0$ have only real solutions.
c) For all $z \in \mathbb{C}$ it is $(\sin (z))^{2}+(\cos (z))^{2}=1$.
d) It is $|\sin (z)| \xrightarrow{\operatorname{Im}(z) \rightarrow \infty} \infty$ and $|\cos (z)| \xrightarrow{\operatorname{Im}(z) \rightarrow \infty} \infty$.

