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Abstract
Multiargument agreement poses a problem for the algorithmic learning of
inflection: While the invariant morphosyntactic features of a marker can often
be computed by intersecting the features of the agreed-with head from all of the
markers’ occurrences, this technique fails to capture the invariants that are at
hand wherever markers agree with varying or even multiple heads. We thus
provide an inventory of possible types of morphosyntactic feature specifications
that allows to capture all feature invariants to be found in transitive agreement.
As we define the intersection operation and subset relations for them, they can
be employed in any learning algorithm by means of simple set semantics.

1. Introduction

Algorithmic models of learning inflectional systems essentially extract form-
meaning-mappings (markers, lexemes) from a given pool of training data.
The training data contain full word forms or sentences paired with their
particular meaning and the learning algorithm identifies invariant form-
meaning correspondences. If some formal invariant always corresponds to the
meaning components of one specific head (e.g. a sound sequence/affix always
occurring when the subject has a certain person value), its meaning can be
captured by determining the invariance in that single head and recording it
together with some information that identifies the head (a case feature). As the
meaning of say an agreement head is typically represented by an unstructured
set of morphosyntactic features, the invariant meaning for different occurrences
of that head can be computed by simply intersecting the corresponding feature
sets (e.g. Pertsova 2007). However, in systems of multi-argument agreement,
markers inflect for varying or perhaps even multiple heads: For instance,
markers may have an ‘absolutive’ alignment/case (e.g. occur with first person
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intransitive subjects and transitive objects), neutral alignment (occur if any
argument is plural), or exhbit some portmanteau-like distribution (first person
subject when the object is plural). In learning algorithms using the sketched
meaning calculation technique (single head feature intersection plus case
features), this sort of meaning invariance cannot be recognized. As we show in
section 2, it is not only inadequate to handle such cases with a more complex
case feature system (one cannot avoid to adapt the learner), but it also fails to
capture the full set of feature invariants that are logically possible.

To lift these restrictions, we give a different solution where the information,
to which head(s) given features actually refer is represented by an independent,
higher-level component that supports plain set operations: an inventory of
feature specifications. In section 3 we formally define the range of possible feature
specifications that can be built upon intransitives and (mono-)transitives and
provide the rules for intersecting and subset testing them. A learning algorithm
can build and intersect the feature specifications for all transitive and intransitive
occurrences of a marker (or a marker candidate) and thereby compute the most
specific invariant, that can be formulated by the presence of feature values from
its occurrences. By the subset relation, all possible generalized variants of this
maximal specification can then be retrieved. Furthermore, this relation allows
to arrange feature specifications into implicational hierarchies of informativity.

2. Learning Inflection

On an abstract level, an inflection learning algorithm (or ‘learner’) is a function
which is given a set of form-meaning pairs (the input, or ‘text’) from which
it produces a set of ‘markers’ or ‘lexemes’ (a lexicon) that provides enough
information (for a grammar) to identify the right form given the meaning
and the right meaning given the form of any item in the input. As non-trivial
learners generate lexicons that contain less items than the original input, their
effort lies in detecting correspondences between form and meaning properties
that apply to multiple input items (generalizations). The challenge hence
lies in mapping formal invariants (phonemic features) to meaning invariants
(morphosyntactic features) and vice versa. Departures from plain one-to-one
correspondences like synonymy (free variation) and particularly homonymy
(syncretism) complicate this task. In the following, we will confine ourselves
to the meaning side and exemplify, how to generalize a single meaning from
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different occurrences of a form and show what problems arise with multi-
argument agreement. Hence, we can safely ignore the interdependence with
the identification of unique forms (e.g. segmenting phoneme sequences into
affix strings or identifying prosodic invariances like umlaut) for the moment
and leave this problem to concrete algorithms.

2.1. The Meaning of a Marker

A small fragment of the English pronoun paradigm serves as a simple example:

(1) Determining the invariant meaning of a syncretic marker by intersection

a.
sg pl

1 I we
2 you you

b. form occurrences invariance
I [1,sg] [1,sg]
we [1,pl] [1,pl]
you [2,sg],[2,pl] [2]

The paradigm in (1a) contains the four distinct form-meaning pairs representing
the input (I-1sg, we-1pl, you-2sg, you-2pl), while the table in (1b) records the
meanings associated with all occurrences for each of the three distinct forms.
The last column with the invariant meaning of the markers is computed by
intersecting the feature sets from their occurrences. In the case of I and we
there is exactly one occurrence, so the (trivial) ‘invariance’ is identical to the
meaning of that single occurrence. In case of the syncretic you the intersection
of [2,sg] and [2,pl] yields the underspecified meaning [2] for the marker. This
meaning is both necessary and sufficient for this form in the current paradigm:

(2) a. you→ [2] b. you← [2]

All instances of you have a second person meaning (2a), and it is the only
marker, that is second person, so every time there is a second person feature
in the meaning, the form you occurs (2b). As all computed meanings are
necessary and sufficient (↔) for their form, the result (3) is a valid lexicon for
the given data (i.e. it allows to derive all forms from their meaning and vice
versa).

(3) a. I↔ [1,sg] b. we↔ [1,pl] c. you↔ [2]
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To quickly examine the impact of different syncretism types on the intersected
meaning and the relation between the calculated meaning and the occurrence
of the form, we next look at two abstract examples naming the forms A to G:

(4) Different marker distributions and their invar. meaning by intersection
a. (i) sg pl

1 A D
2 B D
3 C C

(ii) sg pl
1 E F
2 E G
3 G G

b. form occurrences invariance relation
A [+1,+sg] [+1,+sg] =
B [+2,+sg] [+2,+sg] =
C [+3,+sg],[+3,+pl] [+3] ↔
D [+1,+pl],[+2,+pl] [−3,+pl] ↔
E [+1,+sg],[+2,+sg] [−3,+sg] ↔
F [+1,+pl] [+1,+pl] =
G [+2,+pl],[+3,+sg],[+3,+pl] [−1] →

For the non-sycretic markers A, B and G, the ‘calculated’ meaning is again
identical to the meaning of their single occurrence (=).1 For the syncretic
markers with a ‘rectangular’ distribution (C, D and E), the intersected meaning
is both necessary and sufficient (↔) for their occurrence: As the syncretism
field of C spans over all number values, it is captured by the calculated full
neutralization/underspecification of number, while for D and E negative feature
values, feature decomposition or other means of expressing partial information
(non-third person) have to be employed. For the remaining, default-like
distributions like the ‘L-shaped’ one of G, the intersection only yields their
necessary but not sufficient features (→): Every occurrence of G is second or
third person (5a), but in the non-first person there is also marker E (5b), so an
implication from non-first-person to G (5c) does not hold (is not true for all
cases):

(5) a. G→ [−1] b. E ∨ G← [−1] c. G↚ [−1]

1Note that such trivial invariance is both necessary and sufficient by definition.
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To derive the right forms from the calculated meaning of this marker, it thus
has to be ensured that only E and not G ends up as the form for the second
person singular case (where in principle both their meanings match). So the
component (the grammar) that picks the matching marker entry from the
lexicon for a given form or meaning needs to be adapted/explicated: It may
adhere to some provided (extrinsic) precedence ordering (e.g. E blocks G),
and/or resolve the competition between multiple matching marker entries
by their (intrinsic) properties (like e.g. the subset principle does). With such
adjustments, the information computed in (4b) again ends up as valid lexicon
for the given data.

2.2. Multiargument Agreement

So far, we silently assumed that all forms in the input covary with the properties
(morphosyntactic features) of the same single syntactic head. Hence in the
training data, there was no need to explicitly specify which head was exactly
meant (e.g. subject or object) – the task for the leaning algorithm was to
solely determine meaning invariance within that single head. With transitive
agreement though – markers possibly agree with different or even multiple
heads –, the input items need to specify which head has which features for
each form. We will try to use the common case features S (intransitive subject),
A (transitive subject), and P (transitive object) to represent this information
within the feature sets. Consider the following abstract intransitive (6a) and
transitive (6b) paradigm parts (subjects features notated in the rows, object
features in the columns) with the markers A to F:

(6) a. S
1 A
2 B
3 C

b. A→P 1 2 3
1 A B EF
2 AB B BDF
3 AC BCD CF

The meaning associated with the single occurrence of the only non-syncretic
form E (and its identical invariant) is represented as follows:

(7) form occurrences invariance
E [A,+1][P,+3] [A,+1][P,+3]
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Note that this notates E as a true portmanteaumarker specifying a person feature
value for both transitive subject and object: The specification [A,+1][P,+3]
represents a logical conjunction of the statements ‘the transitive subject is
first person’ and ‘the object is third person’.2 The invariant meaning for the
transitive-only marker F, may be calculated by separately intersecting the
subjects’ and the object features found in all its occurrences:

(8) form occurrences invariance
F [A,+1][P,+3], [A,+2][P,+3], [A,+3][P,+3] [A][P,+3]

As the marker’s occurrence is not sensitive to the subject’s features, the invariant
meaning doesn’t specify any substantial features (is underspecified) for the
subject: The transitive subject case feature [A] in the result doesn’t refer to any
(person) feature and should thus rather be ignored. The result represents the
statement that the transitive object is third person, which is both necessary and
sufficient for F.

The remaining markers all exhibit distributions, where the invariant features
span over different heads. To recognize such generalizations via intersections
we need to both adapt the case feature system and the intersection of multi-head
feature structures: Additional case features or a feature decomposition must
account for all possible combinations/alignments of cases (SA, SP, AP, SAP)
and the intersection needs to consider the different possible ways of combining
feature specifications withmultiple heads.3 For example for amarker that occurs
in the two cases represented by (9a), to retain both invariant features (first
person ‘nominative’ and singular ‘absolutive’), the case features are extended by
the highlighted combined features in (9b) and then the results of both ways of
intersecting the intransitive (9b-i) with one of the transitive heads from (9b-ii)
are combined (by logical conjunction) to form (9c):

(9) a. (i) [S,+1,+sg] (ii) [A,+1,+pl][P,+3,+sg]
b. (i) [S,SA,SP,+1,+sg] (ii) [A,SA,+1,+pl][P,SP,+3,+sg]
c. [SA,+1][SP,+sg]

2Models with a more restricted format for notating the meaning of a marker might translate
such an invariant to a specification using a contextual restriction (e.g. either ‘first person
transitive subject in the context of second person object’ or the other way around) or also
completely avoid specifying more than one heads’ features by using independent machinery like
blocking rules or impoverishment to implement such distributions.
3Note that we leave out some of the combined case features in the following for readability.
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It may be worth to point out, that such additions that allow to recognize markers
of all possible case alignments may technically not be necessary in systems with
single-argument agreement: If all markers obey one fixed alignment for the
language, this can be implemented by initially having the right combined case
features on the syntactic side. Yet, in systems with multi-argument agreement,
we typically face markers of different alignment types, so this complexity
demands for additional machinery to find all invariant features.
Coming back to the remaining markers from (6), the introduced changes

to the case features and the intersection operation for the learner suffice to
calculate the invariant features, that are both necessary and sufficient for the
occurrence of the absolutive first person marker A:

(10) form occurrences invariance
A [S,SA,SP,+1], [A,SA,+1][P,SP,+1],

[A,SA,+2][P,SP,+1], [A,SA,+3][P,SP,+1]
[SA][SP,+1]

Marker A occurs if and only if the intransitive subject or transitive object (SP)
is first person. The nominative (SA) third person distribution of marker C is
fully captured as well:

(11) form occurrences invariance
C [S,SA,SP,+3], [A,SA,+3][P,SP,+1],

[A,SA,+3][P,SP,+2], [A,SA,+3][P,SP,+3]
[SA,+3][SP]

Marker B exhibits the distribution of a marker, that is underspecified for case
(or has a neutral alignment): It occurs as soon as any argument is second
person. This is another type of invariant that spans over different heads. To
capture it, it is again crucial to intersect each head of a specification with each
head of the other specifications that it is intersected with.

(12) form occurrences invariance
B [S,SA,SP,+2], [A,SA,+1][P,SP,+2],

[A,SA,+2][P,SP,+1], [A,SA,+2][P,SP,+2]
[A,SA,+2][P,SP,+3], [A,SA,+3][P,SP,+2]

[+2][]

While this delivers the necessary and sufficient invariants for the kinds of
markers we have shown so far, it also has to be considered quite inadequate:
The different nature of the case features on the one and the substantial features
on the other side is not accounted for in the representation, but rather results
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in additional complications (e.g. to ignore feature sets that solely consist of case
features). From a logical point of view, the case features implement higher grade
meta information on the substantial features, as the case determines the scope
to which the substantial information applies (to which head(s)). Furthermore,
it is undesirable for learning algorithms to employ a special new intersection
technique for feature specifications from transitive agreement (the need to
intersect all possible combinations). So these specifics needed to account
for multi-argument agreement are better factored out into an independent
component, that provides the same simple set-like interface that learning
algorithms use for cases with a single head only.
Ultimately, the sketched system fails to fully capture the distribution of

markers like D. Being a ‘symmetric’ portmanteau, D occurs in transitives where
one argument is second and the other is third person:

(13) form occurrences invariance
D [A,+3][P,+2], [A,+2][P,+3] [+3][+2]

For markers with such distributions the necessary and sufficient invariant is,
that one (transitive) head has one property and the non-identical remaining
head has another one. The crucial point is, that there is no occurrence, where
both properties are found on the same head, which of course can be the case, if
the properties are compatible – e.g. a person and a number feature or negative
feature values. The representation in (13) doesn’t capture the non-identity
requirement of the two heads: Following the intersection operation used so far,
intersecting [+2][+3] with [+3,+2] would yield [+2][+3] again (i.e. [+2][+3] is a
subset of/implied by [+3,+2] in this notation). Without case features, there is
hence no semantic difference between a two-head feature specification ([x][y])
and a single-head specification with the features of both ([x,y]) in the current
notation. To disambiguate these cases, the system would need to be further
extended to notate (non-)identity of heads and the intersection operation again
needed to be adapted to that. The notations we develop in the next section will
account for all this while providing the same clean interface for all cases.

3. Feature Specifications for Multiargument Agreement

The specifications we define serve to capture all possible invariants to be found
in the feature values for intransitives and monotransitives. They basically



Intersecting Multiargument Feature Specifications 255

state the presence of features values in the three heads under consideration:
intransitive subject (S), transitive subject (A), and transitive object (P). While
feature values represent true statement on the properties of a head (14a) and
feature sets refer to logical conjunctions of the included statements (14b), feature
specifications represent statements on the scope of such statements (14c).

(14) Feature values, sets and specifications with their equivalent statements
a. +1 = The head is first person.

−du = The head has non-dual number.
b. [+1,−du] = The head is first person and has non-dual number.
c. SA[+1,−du] = For the intransitive or transitive subject it is true that

it is first person and has non-dual number.

A learner can build a specification for every single occurrence of a form and then
intersect these. The resulting specification (or specification set) then represents
the feature properties, that are true for all occurrences of the form – its necessary
condition. By the provided semantics for the implication relation, it can easily
be determined, if the result is also sufficient or if additional information is
needed to derive all forms from the calculated meaning. The implication can
furthermore be used to choose among different generalized but still necessary
meanings.

As the specifications determine the scope of given (substantial) feature values,
we define them as functions taking (none, one, or two) non-empty sets of
feature values as arguments. The single specification without an argument is
the trivial case of an empty specification:

(15) Empty()⇔ [ ]∅
This is the empty specification.

Specifications that take one argument are monopersonal. They express that
the given features are always present on one specific head (S, A, P), across a
specific group of two heads (SA, SP, AP), or on any of the three heads (SAP).
Specifications with two arguments are bipersonal. As they simultaneously
postulate the presence of features for two distinct heads, they can’t be found in
intransitives. They serve to represent the full specification of transitives and
may also be used to describe the meaning of all kinds of portmanteau markers.
This gives the basic distinctions for a simple type hierarchy of the different
kinds of specifications we will define:
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(16) Specifications Empty

monopersonal Any (SAP)
group Nominative (SA)

Absolutive (SP)
Biargumentive (AP)

single Intransitive (S)
Ergative (A)

Accusative (P)
bipersonal MirrorPortmanteau

Transitive
SpecSet

All instances of specifications support the basic operation of intersection
(∩) yielding the logically strongest specification the intersected items have in
common – or the empty specification in case they have nothing in common:

(17) a. Intransitive([+1]) ∩ Ergative([+1]) = Nominative([+1])
b. Nominative([+3,−pl]) ∩ Accusative([+3,+pl]) = Any([+3])
c. Intransitive([+2]) ∩ Transitive([+3],[+2]) = Absolutive([+2])
d. Transitive([+2,+pl],[+3,+pl]) ∩ Any([+1,−pl]) = Empty()

The intersection – as well as the strength comparison – is based on an im-
plication (or subset) relation (→) between specifications. Together with the
intersection of the feature sets given as function arguments, this defines the
computations in (17). By the implication relation, specifications are arranged
into a partial order. This allows for equivalence checking (two way implication),
checking if a marker is to be inserted in a given environment (implication from
environment to marker specification), and finally to construct hierarchies of
possible generalizations of the meaning for a marker:

(18) a. MirrorPortmanteau([+1],[+pl])↔MirrorPortmanteau([+pl],[+1])
b. Transitive([+1],[+3])→ Nominative([+1])
c. Ergative([+pl])

→ Nominative([+pl]), Biargumentive([+pl])
→ Any([+pl])
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Furthermore, if multiple markers compete for insertion, this comparison may
contribute to determining the specificity relations between them – e.g. instead
of defining arbitrary specificities for case features. In (18c) for instance, the first
specification is the most specific one – it implies both specifications on the
second line, which both imply the most generic last one.

3.1. Monopersonal Specifications

The strongest specifications referring to a single argument simply state, that the
given features are found on a single out of the three possible heads:

(19) a. Intransitive(x)⇔ [. . . ]S
The intransitive subject has the feature(s) x.

b. Ergative(x)⇔ [. . . ]A
The transitive subject has the feature(s) x.

c. Accusative(x)⇔ [. . . ]P
The transitive object has the feature(s) x.

The next subtype consists of the three possibilities to form a less specific
combined case out of two of them:

(20) a. Nominative(x)⇔ [. . . ]SA
The intransitive subject or transitive subject has the feature(s) x.

b. Absolutive(x)⇔ [. . . ]SP
The intransitive subject or transitive object has the feature(s) x.

c. Biargumentive(x)⇔ [. . . ]AP
The transitive subject or transitive object has the feature(s) x.

The weakest monopersonal specification finally states, that the features are
found on any of the three heads:

(21) Any(x)⇔ [. . . ]SAP
There is an argument that has the feature(s) x.

Because (20) and (21) are built by combining the cases from (19) and the empty
specification is implied by all specifications, it is easy to identify the exact
implication relations between the specification types hitherto defined. Their
rules of intersection can then be briefly described with a graph showing these
implications: If two specifications from (22) are intersected, the resulting
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specification type is the nearest one, that can be reached by going down from
both (summing the steps). The feature values result from plain intersection.

(22)

Empty()

Any(x)

Nominative(x) Biargumentive(x) Absolutive(x)

Ergative(x) Intransitive(x) Accusative(x)

If both specifications have the same type, the resulting type trivially doesn’t
change – it’s the nearest one, e.g. (23a). If one of them is (directly or indirectly)
implied by the other one, the resulting type is of the implied, less specific one
(23b).4 All remaining cases are combinations of nodes from one of the two
uppermost ‘tiers’ in (22).

(23) a. Ergative([+1,+pl]) ∩ Ergative([+pl]) = Ergative([+pl])
b. Intransitive([+2]) ∩ Any([+2,−pl]) = Any([+2])
c. Ergative([+pl]) ∩ Intransitive([+3,+pl]) = Nominative([+pl])
d. Nominative([+3,−pl]) ∩ Accusative([+3,−pl]) = Any([+3,−pl])

By these relations, intersecting Ergative(x) with Accusative(x) yields Biargu-
mentive(x), because it is the only one directly reachable from both. If this
specification type is removed from (22), the nearest crossing point defining the
result would be Any(x) instead.

3.2. Bipersonal Specifications

For monotransitives, there are two possible ways to specify feature invariants
for both heads at once: Either it is fully specified, to which argument the two
feature sets belong, or it is left undetermined for both.5 The former is captured

4In fact, the behaviour of identical and indirectly implied items relate to the reflexivity and the
transitivity of the implication relation.
5A specification system accounting for ditransitives also needed to define the three possibilities

of only specifying the exact head for one feature set in tripersonal specifications and furthermore
additional bipersonal specifications for the possible groupings of three heads.
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by a logical conjunction of an Ergative(x) and an Accusative(x) specification
whose arguments are referring to different heads:

(24) Transitive(x,y)⇔ [[. . . ][. . . ]]A≢P
The transitive subject has the feature(s) x
and the transitive object has the feature(s) y.

The latter then is a conjunction of two Any(x) or rather Biargumentive(x)
specifications for distinct heads:

(25) MirrorPortmanteau(x,y)⇔ [[. . . ][. . . ]]AP≢AP
There is an argument that has the feature(s) x
and there is a different argument that has the feature(s) y.

Thus, the order of the two arguments is significant for Transitive(x,y), while it is
insignificant by definition for MirrorPortmanteau(x,y) – as already stated in
(18a). As both bipersonal specifications contain two monopersonal specifi-
cations and (24) is clearly a more specific version of (25), their implication
relations are as follows:

(26) Transitive(x,y)

MirrorPortmanteau(x,y)

Ergative(x) Accusative(y)

Biargumentive(x) Biargumentive(y)

This already suggests, how the intersection of a bipersonal and a monopersonal
(or empty) specificationM is to be computed: M is intersected with the included
specifications for both arguments and then both results must be combined,
which we will notate as union (∪):

(27) a. Transitive(x,y) ∩M(z) ∶=
(Ergative(x) ∩M(z)) ∪ (Accusative(y ∩M(z))

b. MirrorPortmanteau(x,y) ∩M(z) ∶=
(Biargumentive(x) ∩M(z)) ∪ (Biargumentive(y) ∩M(z))

The union is needed to retain the feature invariants from both heads at once:

(28) a. Transitive([+1,+pl],[+3,−pl]) ∩ Absolutive([+1,−pl]) =
Any([+1]) ∪ Absolutive([−pl])
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b. Transitive([+1,+pl],[+3,−pl]) ∩ Intransitive([+1,−pl]) =
Nominative([+1]) ∪ Absolutive([−pl])

Furthermore this allows to unambiguously state all possible underspecified
assignments of multiple feature values onto the given heads – same head,
different heads, and finally same or different head:

(29) Any([+2,+pl]) ∩MirrorPortmanteau([+2],[+pl]) =
Any([+2]) ∪ Any([+pl])

The intersection of two bipersonal specifications is again computed by the
union of two possible ways to combine them (straight and crossed). The result
only contains another bipersonal specification, if (either way) both arguments
have a common subset at the same time.

(30) a. Transitive(x1,y1) ∩ Transitive(x2,y2) ∶=
Straight(x1∩x2,y1∩y2) ∪ Crossed(x1∩y2,y1∩x2)

b. MirrorPortmanteau(x1,y1) ∩ Bipersonal(x2,y2) ∶=
Crossed(x1∩x2,y1∩y2) ∪ Crossed(x1∩y2,y1∩x2)

c. Straight(x,y) ∶=
Transitive(x,y) if x ≠ ∅ and y ≠ ∅
Ergative(x) if x ≠ ∅ and y = ∅
Accusative(y) if x = ∅ and y ≠ ∅
Empty() if x = ∅ and y = ∅

d. Crossed(a,b) ∶=
MirrorPortmanteau(a,b) if a ≠ ∅ and b ≠ ∅
Biargumentive(a) if a ≠ ∅ and b = ∅
Biargumentive(b) if a = ∅ and b ≠ ∅
Empty() if a = ∅ and b = ∅

Due to the implication from Transitive(x,y) to MirrorPortmanteau(x,y), the
intersection can only yield the former specification type if all intersected items
are of this logically stronger type.

(31) a. Transitive([+3,+sg],[+2,+pl]) ∩ Transitive([+3,+pl],[+1,+pl]) =
Transitive([+3],[+pl])

b. Transitive([+sg],[+pl]) ∩MirrorPortmanteau([+1,+sg],[+2,+pl]) =
MirrorPortmanteau([+sg],[+pl])
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c. Transitive([+1,+du],[+3,+pl]) ∩ Transitive([+2,+pl],[+1,+pl]) =
MirrorPortmanteau([+1],[+pl]) ∪ Accusative([+pl])

The rules for implications between bipersonal specifications are already implic-
itly defined by their intersection instructions: A Transitive(x,y) specification
implies another one if both matched argument pairs are in the subset (or impli-
cation) relation, while a MirrorPortmanteau(x,y) is also implied by another
bipersonal specification if the intersection holds with crossed arguments:

(32) a. Transitive(x1,y1)→ Transitive(x2,y2) iif
x1 → x2 and y1 → y2

b. Bipersonal(x1,y1)→MirrorPortmanteau(x2,y2) iif
(x1 → x2 and y1 → y2) or (x1 → y2 and y1 → x2)

As mentioned earlier, the mirror (or symmetric) portmanteau specification
is restricted to the cases, where it is undecidable, which head the given features
exactly refer to. Thus, a specification like (33) with a common non-empty subset
of the two feature sets is not well-formed – the common subset mandatory
refers exactly to the transitive subject and object. In such cases, the common
subset has to be ‘factored out’ into a separate (more specific) Transitive(x,y)
specification, or some implication relations may not be recognized:

(33) *MirrorPortmanteau([+3,+pl],[+3])⇔
Transitive([+3],[+3]) ∪ Biargumentive([+3,+pl])

Similarly, symmetric portmanteaus whose two arguments could not refer
to a single head simply because they are incompatible can’t differ from the
combination of two Biargumentive(x) specifications and have to be converted
to represent this logically weaker status:

(34) *MirrorPortmanteau([−pl],[+pl])⇔
Biargumentive([−pl]) ∪ Biargumentive([+pl])

The same finally holds for symmetric portmanteau specifications with two
feature sets, that are compatible but only, because all values are non-orthogonal
and thus compatible by definition (e.g. negative features of a single category):

(35) *MirrorPortmanteau([−1],[−3])⇔
Biargumentive([−1]) ∪ Biargumentive([−3])
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With these special cases in mind – they ultimately depend on definitions
in the concrete feature system used – all implicational relations between
specifications are defined. This can be used to create redundancy-free sets of
feature specifications.

3.3. Specification Sets

As seen in the last section, any intersection with a bipersonal specification
yields a set of specifications which retains feature invariants for both heads. So
far, this has been represented by the union operator. The implication relation
allows us to define a potentially more compact representation of such unions:

(36) SpecSet(. . . )⇔ {. . . }⇆̸⇐ Spec1 ∪ Spec2 . . .∪ Specn
Set of logically conjuncted pairwise non-implying specifications

The environments (or the set of paradigm cells) matched by a SpecSet() is the
environment matched by all of its members (the intersection of their cell sets).
A SpecSet() without members is equivalent to the Empty() specification, and a
single specification is equivalent to a singleton SpecSet() with this specification
as its only member. Being pairwise non-implying removes all redundancy – the
sets are reduced to the logically independent minimum:

(37) Transitive([+1,+sg],[+3,+pl]) ∩ Transitive([+1,+sg],[+3,+sg]) =
Transitive([+1,+sg],[+3]) ∪ Biargumentive([+sg]) =
SpecSet(Transitive([+1,+sg],[+3]))

Furthermore, we can straightforwardly perform intersection and implication
checking with more than two specifications by defining them on SpecSets:

(38) a. SpecSet(a1,a2,. . . ,an) ∩ SpecSet(b1,b2,. . . ,bm) ∶=
SpecSet(a1∩b1,a1∩b2,. . . ,a1∩bm,a2∩b1,a2∩b2,. . . ,an∩bm)

b. SpecSet(a1,a2,. . . ,an)→ SpecSet(b1,b2,. . . ,bm) iif
for every b ∈ b1,b2,. . . ,bm there is an a ∈ a1,a2,. . . ,an such that a→ b

As by (38a) sets of specifications are intersected by a union of the intersections
of all possible combinations of pairs (the Cartesian product), the Transitive(x,y)
specification can now also be expressed by an equivalent SpecSet containing
both included monopersonal specifications:
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(39) Transitive(x,y)↔ {Ergative(x),Accusative(y)}⇆̸

While this makes the definition of the transitive specification as primitive
notion formally redundant, this crucially does not hold for the symmetric
portmanteau: A specification set of its included monopersonal specifications
does not include the restriction, that both have to refer to distinct heads. Thus,
this set is only a logically weaker, implied but not equivalent version of the
symmetric portmanteau:

(40) MirrorPortmanteau(x,y)→ {Biargumentive(x),Biargumentive(y)}⇆̸

This finally allows us to compute intersections on arbitrary sets of specifica-
tions. This is the way to capture all feature invariants found in the different
occurrences of a marker:

(41) ⋂{Intransitive([+1,−du,−pl]),
Intransitive([+1,−du,+pl]),
Transitive([+1,−du,−pl],[+3,−du,+pl]),
Transitive([+1,+du,−pl],[+3,−du,+pl]),
Transitive([+1,−du,+pl],[+3,−du,+pl])} =

{Nominative([+1]),Absolutive([−du])}⇆̸

The partial order of the implication relation allows to build a hierarchy of
possible generalizations of such a complex specification set. Here, every ‘tier’ of
equally ordered specification sets is generated by applying generalization of
exactly one member of the mother node:

(42) [+1]SA,[−du]SP

[+1]SA,[−du]SAP [+1]SAP,[−du]SP

[+1]SA,[ ]∅ [ ]∅,[−du]SP[+1]SAP,[−du]SAP

[+1]SAP,[ ]∅ [ ]∅,[−du]SAP

[ ]∅,[ ]∅

If applied to specifications with multiple features, the generalization hierarchy –
apart from type generalization – of course also includes the different possibilities
to delete exactly one feature information from the mother node. Note that (42)
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does not contain the specification [+1,−du]SAP, because this invariant does not
hold, as it is contradicted by Transitive([+1,+du,−pl],[+3,−du,+pl]) from (41).
This may be clarified by another example for the implication relations between
a monopersonal specification and a specification set built from a partition of its
features – also see (29):

(43) Any(+1,+2,−sg,+pl)→ {Any(+1),Any(+2,−sg),Any(+pl)}⇆̸

The atomic specification is logically stronger, because it is only fulfilled, if all
features are found on the same head, while this is sufficient but not necessary
for the invariant formalized by the weaker specification set.

Finally, (44) provides the missing full visualization of the possible generaliza-
tion paths for bipersonal specifications:

(44) Transitive(x,y)

MirrorPortmanteau(x,y)
Ergative(x) Accusative(y)

Biargumentive(x) Biargumentive(y)

Nominative(x) Biargumentive(x∩y) Absolutive(y)

Any(x) Any(y)

Any(x∩y)

Empty()

4. Summary

Virtually any algorithm of learning is based on the identification of invariants.
On a very abstract level, learning inflectional systems can be summarized as
search for bidirectional mappings of formal invariants and meaning invariants.
In case of inflectional markers, their meaning is typically represented as sets of
feature values for themorphosyntactic contrasts that are distinguished in a given
language. With multiple of such unstructured sets from different occurrences of
a marker, the invariant meaning is easily determined by intersection. However,
if an inflectional system with the potential to agree with different or even
multiple syntactic heads is to be learned, the representation of the meaning has
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to reflect this structure and the intersection operation has to be adapted to
handle this complexity.
In section 2, we showed, that this can partly be achieved by adding plain

case features to the feature sets for the different heads the agreement system is
sensitive to. However, it is quite hard – and for certain cases impossible – to
capture all feature invariants that can be found this way and it almost always
takes additional machinery or definitions. Furthermore, the different nature of
‘case’ information, defining the scope for the other substantial features is not
reflected in the representation this way.
To overcome these shortcomings, we provided a well defined formalism

that represents all possible feature invariants to be found in intransitives and
monotransitives. With these tools, a learning algorithm can simply stick to the
intersection operation on the meaning representations for different occurrences
of a marker. Crucially, they don’t restrict the algorithm to a certain type of
invariants to be found: By traversing the implication hierarchy in search of the
relevant invariant, an algorithm might introduce any bias towards specific types
of specifications on its own – e.g. preferring monopersonal over bipersonal
markers or grouped monopersonal specifications that conform to the general
case alignment of the given language. If specific types of specifications are to be
excluded per se – e.g. the rather unusual Biargumentive or MirrorPortmanteau
specification – they can be removed from the implicational hierarchy of
the specification types. Retaining the implicational paths they spun, the
intersection operation then simply yields the maximal specific invariant, that
can be formulated without the removed specification types. Having said that, it
may be interesting to search for exactly these kinds of feature invariants just
because they look unusual at first sight: either to confirm their possibility or to
work out a theory that accounts for their non-occurrence or rarity.
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