Two Types of Remnant Movement

Gereon Müller
IDS Mannheim
February 10, 2001

1. Introduction

This article is concerned with stating and accounting for differences between two types of remnant movement that have been proposed in the literature. Remnant movement is movement of an XP β from which extraction of α has taken place earlier in the derivation; cf. (1). This phenomenon has been argued to support a derivational approach to syntax (cf. Chomsky (1998)): Since remnant movement creates an unbound α trace that is separated from its antecedent by an XP in non-selected position (i.e., a barrier), the wellformedness of the resulting structure is unexpected under representational approaches that require proper binding of traces and check locality constraints at S-structure; but nothing is wrong with (1) under a derivational approach in which proper binding is replaced by strict cyclicity and locality is checked directly after each movement operation.

(1) $[\beta_2 \ldots t_1 \ldots] \ldots [\ldots \alpha_1 \ldots [\ldots t_2 \ldots]]$

Remnant movement has been suggested for two different kinds of constructions. On the one hand, Thiersch (1985) and den Besten & Webelhuth (1987; 1990) have argued that cases of incomplete category fronting like (2-a) in German should be analyzed as involving a combination of scrambling of NP$_1$ and remnant VP$_2$ topical-
On the other hand, it has recently been proposed that remnant movement is a much more general phenomenon that also underlies certain other constructions where this may not be immediately obvious. Most notably, Kayne (1998) analyzes constructions like (2-b) in English as involving obligatory overt negative NP1 preposing followed by TP-internal remnant VP2 fronting. Henceforth, I will refer to the two constructions as “primary” and “secondary” remnant movement, respectively.

(2) a. \[\text{VP}_2 \ t_1 \text{Gelesen} \] hat das Buch1 keiner t2
 read has the book no-one
 “No-one read the book.”

b. John [\text{VP}_2 \text{reads} t_1] no novels1 t2

The goal of this paper is twofold. In section 2, I will show that the two constructions exhibit radically different properties. In section 3, I will argue that a unified analysis is possible despite these differences if we assume that shape conservation (Williams (1999)) can be a trigger for movement, in addition to feature checking (Chomsky (1995)). In particular, we will see that whereas primary remnant movement is feature-driven, secondary remnant movement is a repair strategy that is triggered by shape conservation. This latter idea will be implemented in a restrictive model of optimality theory (“local optimization”) for which I will present empirical support. Section 4 draws a conclusion. Finally, section 5 is an appendix that discusses extending the analysis to other cases of secondary remnant movement.

2. The Properties of Primary and Secondary Remnant Movement

This section highlights five differences between primary and secondary remnant movement. These differences are related to (i) independent availability, (ii) sec-

1 Also see Stechow & Sternefeld (1988), Bayer (1996), Müller (1998), Grewendorf & Sabel (1994; 1999), and references cited there.

2 Also see den Dikken (1996), Hinterhölzl (1997), Ordóñez (1997), Johnson (1998), Noonan (1999), and Koopman & Szabolcsi (2000) on related analyses for other constructions. In what follows, I will focus on Kayne’s analysis of negative NP preposing. See the appendix for possible extensions.
ondary object fronting, (iii) extraction, (iv) movement types, and (v) successive cyclicity.

2.1. Independent Availability

In primary remnant movement constructions, movement of both β_2 and α_1 in (1) must be independently available. Thus, German remnant VP topicalization as in (2-a) presupposes that VP topicalization and NP scrambling are independent options in the language, which indeed they are:

(3) a. $[\text{VP}_2 \text{ Das Buch}_1 \text{ gelesen }]$ hat keiner t_2
 the book read has no-one
 “No-one read the book.”
 b. daß das Buch$_1$ keiner $[\text{VP}_1 \text{ gelesen }]$ hat
 that the book no-one read has
 “that no-one read the book.”

Similarly, the English primary remnant movement construction in (4-a) relies on the independent existence of VP topicalization and NP raising of the subject, as in (4-bc).

(4) a. $[\text{VP}_2 \text{ Criticized } t_1 \text{ by his boss }]$ John$_1$ has never been t_2
 b. $[\text{VP}_2 \text{ Criticize John }]$ he wouldn’t t_2
 c. John$_1$ has never been $[\text{VP}_2 \text{ criticized } t_1 \text{ by his boss }]$

In line with this, English lacks the counterpart to the German remnant movement construction in (2-a), viz., (5-a), for the simple reason that although it has VP topicalization (cf. (5-b)), it does not have scrambling (cf. (5-c)):

(5) a. *[VP$_2$ Kicked t_1] John never has the dog$_1$ t_2
 b. [VP$_2$ Kicked the dog$_1$] John never has t_2
 c. *John never has the dog$_1$ [VP$_2$ kicked t_1]

In contrast, in secondary remnant movement constructions like (6-a) (= (2-b)), movement of neither α_1 nor β_2 is independently available. This is clear for negative NP preposing; cf. (6-c). Given that independent VP$_2$ fronting in (6-b) would be
string-vacuous, the question arises of whether this is an option. Since Kayne assumes that the “more emphatic, less neutral character” of sentences like (6-a) “must be correlated with VP-movement,” and since it is unclear which feature could trigger TP-internal VP fronting in (6-b), we may conclude that it is not. Consequently, none of the two movement operations in (6-a) is independently available in secondary remnant movement constructions.

(6) a. John [VP₂ reads t₁] no novels₁ t₂

b. *John [VP₂ likes that novel₁] t₂

c. *John no novels₁ [VP₂ reads t₁]

2.2. Secondary Object Fronting

Double object constructions reveal a second difference. Primary remnant VP topicalization in German may carry along or strand (by scrambling) any of the two objects:

(7) a. [VP₂ t₁ Ein Buch₃ zum Geburtstag geschenkt] hat sie dem Jason₁ t₂ a book₃acc for the birthday given has she ART Jason₃dat “She gave Jason a book as a birthday present.”

b. [VP₂ Dem Jason₁ t₃ zum Geburtstag geschenkt] hat sie ein Buch₃ t₂ ART Jason₃dat for the birthday given has she a book₃acc

c. [VP₂ t₁ t₃ Zum Geburtstag geschenkt] hat sie dem Jason₁ ein Buch₃ t₂ t₃ for the birthday given has she ART Jason₃dat a Buch₃ t₂ book₃acc

In contrast to this, whether secondary remnant VP fronting carries along an NP in a double object construction or strands it prior to VP fronting depends on whether the pre-movement order is maintained. If the negative NP is the first object, the second object cannot be fronted together with the verb, but must leave the VP by an earlier operation that I will call “secondary object fronting” (indicated here by underlining); this operation targets a position below that of the negative NP, Kayne states that negative NP preposing will “in turn ... require the ... VP to prepose,” which suggests that TP-internal VP fronting is not independently available in English.
thereby restoring the pre-movement order:4

(8) a. *John [VP gave t₁ to Mary₃] no books₁ t₂
 b. John [VP gave t₁ t₃] no books₁ to Mary₃ t₂
 c. *John [VP gave t₁ a book₃] no-one₁ t₂
 d. John [VP gave t₁ t₃] no-one₁ a book₃ t₂

If, on the other hand, the negative NP is the second object, the first object must be fronted together with the verb, and cannot undergo secondary object fronting:

(9) a. John [VP gave the book₁ t₃] to no-one₄ t₂
 b. *John [VP gave t₁ t₃] to no-one₃ the book₁ t₂
 c. John [VP gave Mary₁ t₃] no books₃ t₂
 d. *John [VP gave t₁ t₃] no books₃ Mary₁ t₂

2.3. Extraction

Both the remnant XP β₂ and the antecedent of the unbound trace α₁ in (1) are barriers for further extraction in primary remnant movement constructions. This is a standard freezing effect that is expected if (a) moved items end up in non-selected positions, where they are barriers (cf. Cinque (1990) vs. Lasnik & Saito (1992)), and (b) strict cyclicity ensures that extraction from an XP to a position γ cannot take place prior to XP-movement to a position ζ, where ζ is lower than γ (cf. Chomsky (1995) and references cited there). This is shown for the remnant XP β in (10) and (11), and for the antecedent of the unbound trace α in (12) (barriers are underlined).

(10) a. Ich denke [CP [VP₂ t₃ t₁ gegeben] hat dem Fritz₃ das Buch₁ keiner t₂]
 I think given has ART Fritz the book no-one
 “I think that no-one gave Fritz the book.”
 b. *Wem₃ denkst du [CP [VP₂ t₃ t₁ gegeben] hat das Buch₁ keiner t₂]?
 whom think you given has the book no-one
 “To whom do you think that no-one gave the book?”

4Derivations of the type in (8-a) have sometimes been argued to underlie heavy NP shift; but this issue is clearly not relevant in the case at hand.
(11) a. I think that \([\text{CP} \ [\text{VP}_2 \ \text{written} \ t_1 \ \text{for} \ \text{children}_3] \ \text{those books}_1 \ \text{could not} \ \text{possibly be} \ t_2]\)

b. *\text{Children}_3 \ I \ \text{think} \ \text{that} \ \ [\text{CP} \ [\text{VP}_2 \ \text{written} \ t_1 \ \text{for} \ t_3] \ \text{those books}_1 \ \text{could not} \ \text{possibly be} \ t_2]\)

(12) a. \([\text{VP}_2 \ \text{t}_1 \ \text{Gerechnet}] \ \text{hat} \ \text{gestern} \ [\text{PP}_1 \ \text{da}_3\text{-mit}] \ \text{wieder keiner} \ t_2\]
 \text{counted} \ \text{has} \ \text{yesterday} \ \text{there-with again} \ \text{no-one}
 \text{“Again, no-one reckoned with it yesterday.”}

b. *\([\text{VP}_2 \ \text{t}_1 \ \text{Gerechnet}] \ \text{hat} \ \text{da}_3 \ \text{gestern} \ [\text{PP}_1 \ \text{t}_3 \ \text{mit}] \ \text{wieder keiner} \ t_2\]
 \text{counted} \ \text{has} \ \text{there yesterday} \ \text{with again} \ \text{no-one}
 \text{“Again, no-one reckoned with it yesterday.”}

In contrast, neither the remnant XP \(\beta_2\) nor the antecedent of the unbound trace \(\alpha_1\) is a barrier for further extraction in secondary remnant movement constructions; cf. \(wh\)-movement in (13-a) and topicalization in (13-b), respectively.\(^5\) Given the interaction of barriers theory and strict cyclicity, this anti-freezing effect is a priori unexpected.

(13) a. Which book\(_3\) did John \([\text{VP}_2 \ \text{give} \ t_3 \ \text{t}_1] \ [\text{PP}_1 \ \text{to no-one}] \ t_2\)?

b. About Nixon\(_3\) John \([\text{VP}_2 \ \text{read} \ t_1] \ [\text{NP}_1 \ \text{only one book} \ t_3] \ t_2\)

2.4. Movement Types

It has often been noted that not all movement types seem to be able to affect (primary) remnant XPs equally well, the crucial distinction being that between middle field-external and middle field-internal movement operations. E.g., whereas topicalization of a remnant infinitival VP is possible in German (cf. (14-a)), scrambling of the same remnant VP leads to ungrammaticality (cf. (14-b)).\(^6\)

(14) a. \([\text{VP}_2 \ \text{t}_1 \ \text{Zu lesen}] \ \text{hat} \ \text{das Buch}_1 \ \text{keiner} \ t_2 \ \text{versucht} \ \text{to read} \ \text{has} \ \text{the book} \ \text{no-one} \ \text{tried}
 \text{“No-one tried to read the book.”}

\(^5\)Note that Kayne (1998) treats only-phrases on a par with negative NPs.

b. *daß [VP₂ t₁ zu lesen] das Buch₁ keiner t₂ versucht hat
that to read the book no-one tried has
“that no-one tried to read the book.”

No such asymmetry arises with topicalization vs. scrambling of full, i.e., non-
remnant, infinitival VPs:

(15) a. [VP₂ Das Buch₁ zu lesen] hat keiner t₂ versucht
the book to read has no-one tried
“No-one tried to read the book.”

b. daß [VP₂ das Buch₁ zu lesen] keiner t₂ versucht hat
that the book to read no-one tried has
“that no-one tried to read the book.”

Again, things are different with secondary remnant movement. Indeed, secondary
remnant VP₂ fronting is not only permitted to target a middle field-internal (post-
subject) landing site (cf. (16-a) = (2-b)); it is required to do so (cf. the failed
attempt at topicalization in this context in (16-b)).

(16) a. John [VP₂ reads t₁] no novels₁ t₂

b. *[VP₂ Reads t₁] (I think that) John t₁′ no novels₁ t₂

2.5. Successive Cyclicity

Unbound intermediate traces that result from successive-cyclic movement via SpecC
cannot occur in primary remnant movement constructions.⁷ In (17-a), a complex
VP₂ that is headed by a bridge verb and contains an argument CP₃ is topicalized
across a wh-island. Complement topicalization from a wh-island typically results in a
mild, Subjacency-like effect in German (cf. Fanselow (1987)), and VP₂ topicalization
behaves as expected here. However, in (17-b), successive-cyclic wh-movement has
taken place from CP₃ prior to complex VP₂ topicalization; the wh-island itself is
created by the antecedent of the traces t₁, t₁′. In this case, an unbound intermediate
trace t₁′ comes into being, and strong ungrammaticality arises.

(17) a. ?[VP$_2$ Gesagt [CP$_3$ daß sie Fritz$_1$ liebt]] weiß ich nicht [CP ob sie t$_2$ hat]
 “I do not know whether she said that she loves Fritz.”

b. *[VP$_2$ Gesagt [CP$_3$ t$_1'$ daß sie t$_1$ liebt]] weiß ich nicht [CP wen$_1$ sie t$_2$ hat]
 “I do not know who she said that she loves.”

Note that the effect in (17-b) cannot be due to an intrinsic island property of VP$_2$ or CP$_3$: Successive-cyclic wh-movement is possible with VP$_2$ in situ and CP$_3$ in extraposed position:

(18) Ich weiß nicht [CP wen$_1$ sie [VP$_2$ gesagt hat]] [CP$_3$ t$_1'$ daß sie t$_1$ liebt]
 “I do not know whom she said has that she loves.”

Again, the case is different with secondary remnant movement constructions. Kayne (1998) discusses examples like (19-a), which exhibit both a narrow scope reading for the negative NP (force > no-one), and a wide scope reading (no-one > force). The narrow scope reading involves local negative NP preposing within the infinitive and local secondary remnant VP preposing of exactly the type we have been concerned with so far; cf. (19-b). However, Kayne argues that to obtain the wide scope reading, the negative NP no-one must undergo long-distance movement into the matrix clause. By standard locality assumptions, this movement must proceed via SpecC. Hence, subsequent secondary remnant fronting of the matrix VP creates an unbound intermediate trace. This is shown in (19-c), where no-one takes scope over force (as a result of c-commanding a trace of the VP headed by force, i.e., via reconstruction).

(19) a. I will force you to marry no-one
 b. I will force you [CP to [VP$_2$ marry t$_1$ | no-one$_1$ t$_2$]] (narrow scope)
 c. I will [VP$_3$ force you [CP t$_1'$ to marry t$_1$]] no-one$_1$ t$_3$ (wide scope)
Thus, the difference between legitimate unbound intermediate traces with secondary remnant movement, as in (19-c), and illegitimate unbound intermediate traces with primary remnant movement, as in (17-b), is a priori unexpected.

To sum up this section, we have seen that primary and secondary remnant movement constructions differ radically. One might want to take this to indicate that one of the two approaches should be abandoned. Given that both approaches have their virtues, I will not draw this conclusion here. Rather, I will develop a unified approach that explains the diverging properties of primary and secondary remnant movement constructions by distinguishing between feature-driven movement and repair-driven movement.

3. A Unified Approach

3.1. Shape Conservation and Local Optimization

All movement operations can plausibly be viewed as being feature-driven in primary remnant movement constructions. Thus, (20-a) involves a combination of NP raising (triggered by the EPP feature) and VP topicalization (triggered by a topic feature); and (20-b) has NP scrambling (which I will here assume to be triggered by a specific scrambling feature\(^8\)) followed by VP topicalization (again triggered by a topic feature). In contrast, in secondary remnant movement constructions, it looks as though only one movement operation is feature-driven; in the construction at hand, this is negative NP preposing. All other movement operations are parasitic – they depend on the first operation having taken place. The absence of a feature that triggers secondary remnant movement and secondary object fronting is illustrated in (20-c).

\[(20) \quad a. \quad \text{[VP}_2 \text{Criticized } t_1 \text{ by his boss }] - [\text{top}] \text{ John}_1 [-D] \text{ has never been } t_2\]

\(^8\)See Grewendorf & Sabel (1999) and Sauerland (1999). Arguably, there is more than one possible trigger for scrambling in German, and this fact might be formally encoded by assigning a complex internal structure to the scrambling feature. This would not affect the issue at hand, though.
b. \[\text{[VP}_2 \text{ t}_1 \text{ t}_3 \text{ Zum Geburtstag geschenkt } \text{-}[\text{top}] \text{ hat sie dem Jason}_1\text{-[scr] ein Buch}_3\text{-[scr] t}_2\text{ a book} \]

c. John [VP gave t_1 t_3]\text{-}\text{Ø no books}_1\text{-[neg]} to Mary_3\text{-Ø t}_2

Then, given constraints like the Feature Condition (FC) in (21) and Last Resort (LR) in (22) (cf. Chomsky (1995)), a problem arises: Some instances of movement in secondary remnant movement constructions are not triggered by FC, and they thus violate LR. Consequently, a different trigger must be involved, and respecting this trigger must permit a violation of LR, which is otherwise impossible. Thus, secondary remnant movement emerges as a repair strategy: Exceptionally, LR can be violated so as to prevent even greater damage.

(21) **Feature Condition (FC):**

Strong features must be checked by overt movement.

(22) **Last Resort (LR):**

Overt movement must result in checking of a strong feature.

I would like to suggest that the trigger in question is the Shape Conservation (SC) constraint that is proposed on independent grounds in Williams (1999). For the sake of concreteness, I will assume that SC basically demands that the shape of predicate phrases, or vPs, must be preserved in derivations: 9

(23) **Shape Conservation (SC):**

Feature checking must not change the linear order of lexical items established in vP.

9This presupposes that structures are linearized in syntax already, not at some later point (PF). For predecessors of this constraint, see Lakoff (1971), Kroch (1974), Huang (1982), Reinhart (1983), Lasnik & Saito (1992), Watanabe (1992), Haegeman (1995), Meinunger (1995), and Müller (2001). In general, these constraints are defined in structural rather than linear terms. This would not be sufficient for the present analysis – SC-driven movement restores linear order, not c-command.
The English vP shape that will be relevant is completely standard, and given in (24).\(^{10}\)

\[
(24) \quad [_{vP} \text{NP}_1 \left[v' \text{ v+V } [_{vP} \text{NP}_2 \left[v' \text{ t_V } \{ \text{NP}_3/\text{PP}_3 \} \right] \right] \right]]]
\]

The analysis then relies on three assumptions. First, feature-driven movement of the negative NP\(_1\) in (20-c) ends up in the specifier of a functional head Neg that bears a strong [neg] feature. Given SC, it follows that vP\(_2\)-[Ø] (and not VP, as assumed thus far) must be fronted to an outer specifier of Neg (i.e., to a position that precedes NP\(_1\)-[neg] within the same projection), as an instance of repair-driven movement.\(^{11}\)

We can also conclude that repair-driven movement of PP\(_3\)-[Ø] in (20-c) must end up in an inner specifier of the very same domain, NegP.

The second assumption concerns a qualification. Whereas negative NP preposing requires vP shape conservation, other movement operations do not. This is obvious in the case of wh-movement in English: Checking of [wh] with an object NP in the C domain does not trigger repair-driven movement of TP\(_4\) to an outer specifier of C; cf. (25-a) vs. (25-b).

\[
(25) \quad \text{a. What}_1-[\text{wh}] \text{ did } [_{\text{TP}_4} \text{ you}_3 \left[_{\text{vP}_2} \text{ t}_3 \text{ see } \text{t}_1 \right]]? \\
\text{b. } \ast [_{\text{TP}_4} \text{ You } \left[_{\text{vP}_2} \text{ t see } \text{t}_1 \right]]-\text{Ø what}_1-[\text{wh}] \text{ did } \text{t}_4 ?
\]

This means that SC either does not hold for wh-movement in English (and many other movement operations), or that it holds, but in a weaker form.\(^{12}\) I will draw

\(^{10}\)Here, v introduces the external argument, and V is obligatorily raised to v. Whether NP\(_2\) occupies SpecV as a result of movement or base-generation in dative shift constructions is immaterial for present purposes – as long as there is no vP yet, all movement (including V-to-v raising) satisfies SC vacuously. As for German, I will postulate the vP shape in (i).

\[
(i) \quad [_{vP} \text{NP}_1 \left[v' \left[_{vP} \text{NP}_2 \left[v' \text{ t_V } \{ \text{NP}_3/\text{PP}_3 \} \right] \right] \right] \text{ v+V }]]
\]

This is essentially the same structure, the only difference being that v+V is right-peripheral in vP.

\(^{11}\)This position follows typical adverb positions; cf. the evidence against V-to-T raising in English.

\(^{12}\)An idea that does not strike me as completely implausible would be to assume that a derivation as in (25-b) might underlie certain wh-in situ languages for which it has been argued that wh-in
the second conclusion here and suggest that SC is to be split up, and made sensitive to feature classes: Features like \([\text{neg}]\) obey a strong SC constraint that permits a violation of LR (cf. the references in footnote 2 and the appendix for other possible features with this property), whereas features like \([\text{wh}]\) obey only a weaker SC constraint that does not permit a violation of LR (other features in this class include \([\text{top}]\) and \([\text{scr}]\)). It is tempting to conclude that the relevant distinction is between features that trigger A-movement and features that trigger A-bar movement. Indeed, most cases of NP raising to SpecT will automatically satisfy SC; cf. (26-a). NP raising in passive constructions as in (26-b) and successive-cyclic NP raising as in (26-c) may initially look problematic, though.

(26)
a. \([\text{TP} \quad \text{John}_1 \quad T \; [\text{VP} \; t_1 \; \text{likes} \; [\text{VP} \; t_V \; \text{Mary}]]]]\)
b. \([\text{TP} \quad \text{John}_1 \; \text{was} \; [\text{VP} \; \text{kissed} \; t_1]]\)
c. \([\text{TP} \quad \text{John}_1 \; T \; [\text{VP} \; \text{seems} \; [\text{TP} \; t_1' \; \text{to} \; [\text{VP} \; t_1 \; \text{like} \; [t_V \; \text{Mary}]]]]]\)

Suppose first that \(v\) is present only if an external argument is present, i.e., that the root vPs in (26-bc) are actually VPs. Then, SC is vacuously respected in (26-b), and (26-c) is accounted for as well: the linear order of the three items \(\text{John}, \text{like},\) and \(\text{Mary}\) is not changed by \([D]\) feature checking with \(\text{John}\) in either the embedded or the matrix SpecT position. However, this approach is called into question by the observation that secondary remnant movement takes place in passive constructions

situ has properties commonly associated with overt chain formation; cf., e.g., Watanabe (1992) on Japanese. Given a vP shape as in German (with SOV order), secondary remnant movement would target an inner SpecC position, and secondary argument fronting, an outer SpecC position:

(i) \([\text{CP} \quad \text{John-wa}_1 \quad [\text{C} \; \text{nani-o}_2 \; [\text{C'} \; [\text{VP}_3 \; t_1 \; t_2 \; \text{kaimasita} \;] \; [\text{C} \; \text{ka} \; t_3]]]] \, ?\)

“What did John buy?”

The main (but probably not insurmountable) problem with such an analysis would be the phenomenon of optional \(\text{wh}\)-scrambling. One might argue that such an approach would be in the spirit of Kayne’s (1998) program, where apparent X-in situ that exhibits properties of X-movement is reanalyzed as X-movement with subsequent secondary remnant movement. However, I will not pursue this issue here.
This is indicative of SC and thus suggests that a vP is involved throughout (also see Chomsky (1999)).

(27) a. \[TP \text{ The books}_1 \text{ were } [vP_2 \text{ given } t_1 t_3] \text{ to no-one}_3 t_2] \]
 b. \[\ast TP \text{ The books}_1 \text{ were to no-one}_3 [vP_2 \text{ given } t_1 t_3] \]

In view of this, I will assume that there is an intermediate movement step of NP$_1$ to Specv of the root clause in (26-b), (26-c), and (27-a) that determines the respective vP shapes. Then, we can conclude that SC is systematically respected by NP raising in English. In the same way, Scandinavian object shift is well known for its rigid order preservation. Thus, let us assume that there are only two general SC constraints – SC$_A$ (including [D], [Neg]) and SC$_\pi$ (including [wh], [top], [scr]).

Third, since the analysis involves the notion of repair and depends on the violability and ranking of constraints, it lends itself to an optimality-theoretic implementation. The implicit ranking just sketched can be made explicit as follows (the ranking of FC and SC$_A$ is not determined by the evidence discussed here):

(28) \{FC, SC$_A$\} \gg LR \gg SC$_\pi$

Repair phenomena are certainly among those constructions where optimality theory has proven most successful, and the notion of repair itself can be given a precise characterization in this approach: A repair is a competition in which the optimal candidate incurs an (otherwise fatal) violation of a high-ranked constraint C$_i$ in order to respect an even higher-ranked constraint C$_j$. However, standard global optimization procedures as laid out in Prince & Smolensky (1993) induce complexity of a type that more recent versions of the minimalist program (those that do without transderivational constraints) manage to avoid (see Collins (1997) and Frampton & Gutman (1999), among others). In view of this, and deviating from the vast majority of work in optimality-theoretic syntax, I would like to suggest that syn-

13I am grateful to the reviewer for pointing this out.

14Multiple object shift strictly preserves vP shape, and it seems possible to reanalyze double object NP$_1$-Pronoun$_2$ orders as the result of feature-driven pronominal object shift accompanied by SC-driven NP$_1$ fronting. See Williams (1999), Müller (2001), and references cited there.
tactic optimization is local, not global, and takes place repeatedly throughout the derivation.15

For the sake of concreteness, suppose that syntactic derivations proceed as in Chomsky (1995, ch. 4): Merge and Move alternate, with each XP a cyclic node. Crucially, the subderivation from one cyclic node α to the next cyclic node β is subject to input/output optimization. An XP is optimal if the subderivation that creates it best satisfies an ordered set of violable constraints and respects inviolable constraints (like strict cyclicity), which can be conceived of as parts of the definitions of Merge and Move. Thus, an XP that is the optimal output of a subderivation forms the input for the next subderivation, together with a new lexical item Y (and possibly another optimal ZP if SpecY is to be filled by Merge). Optimization determines the new optimal output YP, which in turn shows up in the input of the next subderivation, and so on, until the optimal root is reached.16 Based on these assumptions, the differences between primary and secondary remnant movement can now be explained.

3.2. Independent Availability and Secondary Object Fronting Revisited

Consider again a typical secondary remnant movement example like (29-c):

15Versions of multiple optimization in phonology are discussed in Prince & Smolensky (1993, ch.2), McCarthy (1999), Rubach (2000), and the contributions in Hermans & van Oostendorp (2000). Heck (2001) and Wilson (2001) assume multiple (but non-local) optimization in syntax – three times per sentence in the former case (to determine D-structure, S-structure, and LF), and twice in the latter case (to determine interpretation and syntactic expression). The specific approach adopted here is further developed in Heck & Müller (2000). Also note that there is a trade-off: Whereas there is more complexity with global optimization than there is with local optimization, local optimization in turn requires a large number of optimization procedures.

16One might envisage a third type of optimization that is more complex than the local approach based on iterated XP evaluation but still less complex than the standard, global approach, viz., an optimization of phases (i.e., vP and CP), as in Chomsky (1998; 1999). Such an approach is pursued in Fanselow & Čavar (2001). However, the two problems raised below for the global approach also hold for a phase optimization approach (which implies that evaluation of NegP, TP, and CP takes place simultaneously).
What we want to derive is that NP₁ moves to SpecNeg to check a strong [neg] feature and thereby respect FC, and that vP₂ then raises to an outer SpecNeg position without feature checking in order to respect SCₐ, even if this violates LR. The optimization procedure that is responsible for this outcome is the one that takes the optimal vP₂ in (29-a) and Neg as inputs and creates a set of NegPs as output candidates. The optimal NegP is the one in (29-b), which violates LR but respects FC and SCₐ, and thus has a better constraint profile than its competitors, which fatally violate either FC (by not applying negative NP₁ preposing) or SCₐ (by not applying secondary remnant vP₂ movement). The local competition is shown in tableau T₁.

T₁: Local optimization of NegP: Secondary remnant movement

<table>
<thead>
<tr>
<th>Input: [vP₂ John₃ reads [vP₄ tV no novels₁]], Neg</th>
<th>FC</th>
<th>SCₐ</th>
<th>LR</th>
<th>SCₐ₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>☞ O₁: [NegP [vP₂ John₃ reads [vP₄ tV t₁]] no novels₁ Neg t₂]</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>O₂: [NegP no novels₁ Neg [vP₂ John₃ reads [vP₄ tV t₁]]]</td>
<td></td>
<td></td>
<td>*</td>
<td>!</td>
</tr>
<tr>
<td>O₃: [NegP − Neg [vP₂ John₃ reads [vP₄ tV no novels₁]]]</td>
<td></td>
<td></td>
<td>*</td>
<td>!</td>
</tr>
<tr>
<td>O₄: [NegP [vP₂ John₃ reads [vP₄ tV no novels₁]] Neg t₂]</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>O₅: [NegP reads₄ no novels₁ Neg [vP₂ John₃ t₄ [vP₄ tV t₁]]]</td>
<td></td>
<td></td>
<td>*</td>
<td>!</td>
</tr>
</tbody>
</table>

The optimal NegP O₁ is then merged with T, and subsequent TP optimization produces the expected result: The best subderivation fronts the subject NP₃ to SpecT and has v+V in situ (this output violates none of the constraints at hand). Note that only O₁ can be in the input for the next optimization procedure, not O₂–O₅ or other suboptimal outputs. It is this property that minimizes complexity: Under standard, global optimization, all these suboptimal outputs would have to be continued to the end (in representational terms: considered as substructures of the whole sentence) and would thereby give rise to exponential growth of the candidate set.
In addition to this conceptual difference, local optimization turns out to also yield a desirable empirical difference. In the present system, it is clear that V raising is not an alternative to remnant vP movement: Local V raising to SpecNeg as in O₅ does not satisfy SCₐ, leading to VOS instead of SVO order; and non-local V-to-T raising later in the derivation can never satisfy SCₐ within NegP. In contrast, under global optimization there would be no SCₐ violation with, e.g., non-local V-to-T raising (violating LR), due to subsequent NP₃ raising to SpecT (which ultimately restores SVO order), and repair-driven V raising might incorrectly (given adverb placement facts) be permitted along with (or instead of) remnant vP movement.¹⁷

Next consider the case where secondary remnant movement is accompanied by secondary object fronting, as in the double object construction (30-c).

(30) a. \([vP₂ \text{John₄ gave } [VP \text{no books}_₁ tV \text{to Mary₃ }]] + \text{Neg} \rightarrow \]

b. \([\text{NegP } [vP₂ \text{John₄ gave } [VP \text{t₁ tV } t₃] \text{no books}_₁ \text{to Mary₃ Neg t₃ }] + \text{T} \rightarrow \]

c. \([\text{TP John₄ T } [\text{NegP } [vP₂ \text{t₄ gave } [VP \text{t₁ tV } t₃] \text{no books}_₁ \text{to Mary₃ Neg t₃ }]]] \)

Again, the important subderivation is the step from vP in (30-a) to NegP in (30-b), and essentially the same reasoning applies as before. The optimal NegP is one in which NP₁ moves to SpecNeg to check the \([\text{neg}]\) feature and thereby respect FC, and PP₃ and vP₂ undergo repair-driven movement to inner and outer specifiers of NegP, respectively, to respect SCₐ. This incurs two violations of LR, but, as shown in tableau T₂, all competing subderivations fatally violate higher-ranked constraints.

Note in particular that O₁ blocks O₅ as suboptimal; O₅ has secondary remnant vP

¹⁷Of course, V raising could still independently be filtered out by stipulating a higher-ranked constraint that, e.g., bans movement of a lexical category (cf. Grimshaw (1997), Vikner (2001), and Kayne (1998, fn. 11), who notes: “The lexical verb in English cannot raise by head movement, yet it must move, consequently the whole VP moves”); or – in the case of O₅ in T₁ – by resorting to an appropriate structure preservation requirement. Still, the point remains that local and global optimization differ empirically, and the former approach offers a simpler account in the case at hand.
movement but fails to apply secondary object fronting.18

\textbf{T2: Local optimization of NegP: Secondary remnant movement and object fronting}

<table>
<thead>
<tr>
<th>Input: ([vP_2 \text{ John}_4 \text{ gave } [vP \text{ no books}_1 \text{ t}_V \text{ to Mary}_3]), Neg</th>
<th>FC & SC\textsubscript{A}</th>
<th>LR</th>
<th>SC\textsubscript{(\overline{A})}</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{NegP} \ [vP_2 \text{ John}_4 \text{ gave } [vP \text{ t}_1 \text{ v}_V \text{ t}_3] \text{ no books}_1 \text{ to Mary}_3 \text{ Neg } t_2])</td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>([\text{NegP} \text{ no books}_1 \text{ Neg } [vP_2 \text{ John}_4 \text{ gave } [vP \text{ t}_1 \text{ v}_V \text{ t}_3] \text{ to Mary}_3])</td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>([\text{NegP} \text{ Neg } [vP_2 \text{ John}_4 \text{ gave } [vP \text{ no books}_1 \text{ t}_V \text{ to Mary}_3])</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>([\text{NegP} \ [vP_2 \text{ John}_4 \text{ gave } [vP \text{ no books}_1 \text{ t}_V \text{ to Mary}_3] \text{ Neg } t_2])</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>([\text{NegP} \ [vP_2 \text{ John}_4 \text{ gave } [vP \text{ t}_1 \text{ v}_V \text{ t}_3] \text{ no books}_1 \text{ Neg } t_2])</td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>([\text{NegP} \text{ no books}_1 \text{ to Mary}_3 \text{ Neg } [vP_2 \text{ John}_4 \text{ gave } [vP \text{ t}_1 \text{ v}_V \text{ t}_3])</td>
<td></td>
<td></td>
<td>!*</td>
</tr>
</tbody>
</table>

As before, the step from (30-b) to (30-c) is straightforward because a constraint conflict does not arise and FC, SC\textsubscript{A}, and LR can all be satisfied.

Furthermore, a second empirical argument for local optimization can be gained. Suppose that PP\(_3\) in (30) bears a [top] feature. Then, local optimization proceeds exactly as shown here, creating (30-b) from (30-a) as in T\(_2\), and then (30-c) from (30-b). The only difference is that later in the derivation, PP\(_3\) is moved to the topic position, yielding (31).19

(31) \([CP \text{ To Mary}_3 \ C \ [TP \text{ John}_4 \ T \ [\text{NegP} \ [vP_2 \text{ John}_4 \text{ gave } [vP \text{ t}_1 \text{ v}_V \text{ t}_3] \text{ no books}_1 \text{ t}_3' \text{ Neg } t_2]] \)]

Viewed globally, SC\textsubscript{A} cannot be fulfilled by this sentence. This would threaten to undermine the motivation for remnant vP movement in this context.20 In contrast,

18The number of SC\textsubscript{A} violations of a given output O is determined as follows: Given a linear precedence \(\alpha \succ \beta\) in vP (where \(\alpha, \beta\) are lexical items), an occurrence of \(\beta \succ \alpha\) in O incurs a violation of SC\textsubscript{A}, and multiple violations add up. Thus, O\(_5\) in T\(_2\) violates SC\textsubscript{A} exactly once because PP\(_3\) precedes NP\(_1\) (and all other instances of vP-internal linear precedence remain unchanged); O\(_2\) in T\(_2\) violates SC\textsubscript{A} twice because NP\(_1\) precedes both NP\(_4\) and V; and O\(_6\) violates SC\textsubscript{A} four times because NP\(_1\) precedes NP\(_4\) and V, and PP\(_3\) does the same.

19I am assuming here that English topicalization is movement to SpecC, but the same argument can be made if topicalization is adjunction to TP, movement to SpecTop, etc.

20It would not help to assume that SC can be fulfilled by traces like \(t'_4\) because, if nothing else is said, this would mean that SC is trivially respected by all sentences, vP order always being
no problem arises if optimization is local: The subderivation from vP to NegP respects FC and SC\textsubscript{\text{A}} by violating the lower-ranked LR, and the subderivation from TP to CP respects FC and LR by violating the lower-ranked SC\textsubscript{T}. Instead of giving a tableau that shows this latter optimization procedure, let me proceed to the case of primary remnant movement, where exactly the same reasoning applies. A simple example is (32-d) from German, with its derivation in (32-abc).

(32)
\begin{align*}
&\text{a. } [vP\text{ der Fritz}_3 \text{ ein Buch}_1 \text{ gelesen }] \quad + [v \text{ hat }] \rightarrow \quad b. \quad [VP \text{ ein Buch}_1 [vP\text{ der Fritz}_3 t_1 \text{ gelesen }] [v \text{ hat }]] \\
&\text{c. } [TP \text{ der Fritz}_3 [VP \text{ ein Buch}_1 [vP\text{ t}_3 t_1 \text{ gelesen }] [v t_V]] [T \text{ hat }]] \\
&\text{d. } [CP [vP\text{ t}_3 t_1 \text{ gelesen }] \text{ hat } [TP \text{ der Fritz}_3 \text{ ein Buch}_1 t_2] t_V]
\end{align*}

Consider first the subderivation from vP\textsubscript{2} to VP in (32-ab); cf. tableau T\textsubscript{3}. Assuming that the object NP\textsubscript{1} has an optional [scr] feature that is matched by [v hat] (and the subject NP\textsubscript{3} does not), the optimal VP is O\textsubscript{1}. Here, NP\textsubscript{1} moves to SpecV (respecting FC), and NP\textsubscript{3} stays in situ (respecting LR and violating SC\textsubscript{\text{A}}): Whereas [neg] obeys SC\textsubscript{\text{A}}, [scr] obeys SC\textsubscript{T}. This precludes repair-driven movement as in O\textsubscript{3}.

\textit{T}_3: \textit{Local optimization of VP: Scrambling}

\begin{table}[h]
\begin{tabular}{|c|c|c|c|}
\hline
Input: & FC | SC\textsubscript{\text{A}} | LR | SC\textsubscript{T} \\
\hline
\textit{EPO}_1: & [VP \text{ ein Buch}_1 [vP\text{ der Fritz}_3 t_1 \text{ gelesen }] [v \text{ hat }]] & | & \ast \ \\
\textit{O}_2: & [VP [vP\text{ der Fritz}_3 \text{ ein Buch}_1 \text{ gelesen }] [v \text{ hat }]] & \ast ! & | \ \\
\textit{O}_3: & [VP \text{ der Fritz}_3 \text{ ein Buch}_1 [vP\text{ t}_3 t_1 \text{ gelesen }] [v \text{ hat }]] & | & \ast ! \ \\
\textit{O}_4: & [VP \text{ der Fritz}_3 [vP\text{ t}_3 \text{ ein Buch}_1 \text{ gelesen }] [v \text{ hat }]] & \ast ! & | \ast \ \\
\hline
\end{tabular}
\end{table}

The optimal VP O\textsubscript{1} (= (32-b)) is subsequently merged with T. Assuming that the EPP feature can optionally be strong in German, and is strong in the case at hand, recoverable with the help of vP-internal traces.

21The derivation given here rests on some decisions that are controversial and, to some extent, arbitrary (concerning the projection of auxiliaries, here identified with a vP-external VP; subject raising to SpecT; V raising to a right-peripheral T; etc.). The only important assumption is that both NP\textsubscript{1} scrambling and vP\textsubscript{2} topicalization are triggered by features that obey SC\textsubscript{T}.

18
the optimal output of the subderivation from VP to TP is (32-c), in which the subject NP moves to SpecT (in addition, V moves to T). Since this subderivation respects FC, LR, and SC, it is not necessary to illustrate the competition by a tableau. Finally, the optimal TP in (32-c) is merged with C. In V/2 languages, an empty finite declarative C bears a [top] feature (and a feature attracting V). Assuming that [top] is also instantiated on vP, the optimal output of the subderivation from TP to CP is (32-d), which involves remnant vP movement to SpecC and respects FC and LR at the cost of violating the lower-ranked SC (cf. O vs. O3 in tableau T4).

T₄: Local optimization of CP: Primary remnant VP movement

<table>
<thead>
<tr>
<th>Input:</th>
<th>CP der Fritz ein Buch vP t₃ t₁ gelesen] hat</th>
<th>CP der Fritz ein Buch vP t₃ t₁ gelesen]</th>
<th>FC</th>
<th>SC</th>
<th>LR</th>
<th>SC</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>☞ O₁:</td>
<td>[vp₂ t₃ t₁ gelesen] hat</td>
<td>[vp₂ t₃ t₁ gelesen]</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>O₂:</td>
<td>[tp der Fritz ein Buch_vP t₃ t₁ gelesen]</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td></td>
</tr>
<tr>
<td>O₃:</td>
<td>[cp der Fritz ein Buch_vP t₃ t₁ gelesen] hat</td>
<td>[tp t₃ t₁]</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td></td>
</tr>
<tr>
<td>O₄:</td>
<td>[cp der Fritz_vP t₃ t₁ gelesen] hat</td>
<td>[tp t₃ t₁]</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td>☞</td>
<td></td>
</tr>
</tbody>
</table>

SCₐ has not yet been fatally violated by a candidate; i.e., it has played no role in the analysis so far. However, there is evidence for a low-ranked SC: As soon as two or more subderivations behave identically with respect to higher-ranked constraints, the decision is passed on to the low-ranked SC. A particularly obvious case is the superiority effect in English:

(33) a. (I wonder) [CP who₁ C [TP t₁ bought what₂]]
 b. *(I wonder) [CP what₂ C [TP who₁ bought t₂]]

Suppose that C bears a strong [wh] feature here which is matched by weak [wh] features on both wh-phrases. Tableau T₅ then shows that the subderivation from TP to CP must involve movement of one wh-phrase to SpecC, so as to fulfill FC (cf.

22 Other phenomena that lend themselves to the same kind of analysis are German weak pronoun fronting and multiple wh-movement in Bulgarian. These phenomena are covered by the violable constraint PAR-MOVE in Müller (2001); it seems that SCₐ can do all the work that was attributed to that constraint.
3.3. Extraction Revisited

Recall that both the remnant XP β_2 in (34-a) and the antecedent of the unbound trace α_1 in (34-b) are barriers for extraction of some element δ_3 in primary remnant movement constructions (a freezing effect; cf. (10)–(12)), and that neither β_2 nor α_1 is a barrier for extraction in secondary remnant movement constructions (an anti-freezing effect; cf. (13)).

\begin{align*}
(34) \quad a. \quad & \delta_3 \ldots \left[\underbrace{\beta_2 \ldots t_3 \ldots t_1 \ldots } \right] \ldots \alpha_1 \ldots \left[\ldots t_2 \ldots \right] \\
& b. \quad \delta_3 \ldots \left[\underbrace{\alpha_1 \ldots t_3 \ldots } \right] \ldots \left[\ldots t_2 \ldots \right]
\end{align*}

Assuming that XPs in derived positions are barriers, the freezing effect with primary remnant movement can be accounted for. But how can secondary remnant movement escape this effect? The key to a solution is that secondary remnant movement is triggered by SC_A rather than by FC. Hence, secondary remnant movement

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Input: $[TP \ \text{who}_1 [vP \ t_1 \ \text{bought \ what}_2]]$, $C_{+/wh}$ & FC & SC$_A$ & LR & SC$_A$ \\
\hline
\textcolor{red}{\textbf{O1}: $[CP \ \text{who}_1 C \ [TP \ t'_1 [vP \ t_1 \ \text{bought \ what}_2]]]$} & | & | & | & | \\
\hline
\textcolor{red}{O2}: $[CP \ \text{what}_2 C \ [TP \ \text{who}_1 [vP \ t_1 \ \text{bought \ t}_2]]]$ & | & | & | & | \\
\hline
\textcolor{red}{O3}: $[CP \ C \ [TP \ \text{who}_1 [vP \ t_1 \ \text{bought \ what}_2]]]$ & *! & | & | & | \\
\hline
\textcolor{red}{O4}: $[CP \ \text{who}_1 \ \text{what}_2 C \ [TP \ t'_1 [vP \ t_1 \ \text{bought \ t}_2]]]$ & | & | & *! & | \\
\hline
\end{tabular}
\end{table}

23As in approaches that rely on the ECP or the MLC, the question arises of why German does not exhibit superiority effects (at least not with wh-phrases that are clause-mates). I will have nothing new to say about this here, and merely confine myself to pointing out that many of the existing accounts that reconcile the absence of (clause-bound) superiority effects in German with the ECP/MLC can be transferred into the present approach. See, e.g., Fanselow (1997).
always restores local relations that existed earlier in the derivation. Thus, if α_1, β_2 are not barriers in situ, they will not be turned into barriers in secondary remnant movement constructions because each selected XP will still be in the same minimal domain as the head that selects it. To execute this idea, let us assume the BARRIERS CONDITION (BC) in (35-a), and define barriers as in (35-b); this definition differs from standard approaches (cf. Cinque (1990) and references cited there) mainly in replacing the notion of sisterhood in (35-b.(ii)) by the slightly more liberal notion of same minimal domain (see Chomsky (1995, 178)).

(35) **BARRIERS CONDITION (BC):**

a. Movement must not cross a barrier.

b. An XP γ is a barrier unless there is a non-derived head σ such that:

 (i) σ selects γ.

 (ii) σ and γ are in the same minimal domain.

Thus, extraction from α_1, β_2 does not violate BC in secondary remnant movement constructions. However, given that feature-driven movement in primary remnant movement constructions typically has the effect that an XP γ and its selecting head σ are not in the same minimal domain anymore, extraction from α_1, β_2 violates BC in this case. To derive ungrammaticality from this violation, one could postulate that BC is an inviolable constraint (part of the definition of Move), or that it is ranked high. Let us assume the latter. The optimal subderivation from YP to ZP (where SpecZ is the landing site of δ_3 in (34)) can then be one that yields an empty output (which vacuously respects BC/FC and violates a lower-ranked ban on empty

24Whereas the notion “minimal domain” plays a role in the definition of barriers, it must not replace the more restrictive notion of “minimal residue” in the definition of checking domains; otherwise, movement to a specifier position would not be a prerequisite for feature checking by an XP anymore.

25By “non-derived head” I mean a head in a base position (which may be a trace, as in the case of v-to-V movement, where the trace of V suffices to make an object transparent for wh-extraction). The confinement to non-derived heads in (35-b) ensures that γ may not become transparent by accidentally ending up in the same domain as σ after non-local movement; cf. (10-b).
outputs) – the derivation cannot continue; it crashes.26

We expect that movement in primary remnant movement constructions does not create barriers if it is extremely local. As noted by den Besten & Webelhuth (1990), this prediction is borne out. Whereas PP₁ is a barrier for extraction in (36-a) (=(12-b)), it is transparent in (36-b), where it has undergone extremely local string-vacuous scrambling.

\[(36)\] a. *\[vP₂ t₁ Gerechnet \] hat da₃ gestern [PP₁ t₃ mit] wieder keiner t₂
counted has there yesterday with again no-one
“Again, no-one reckoned with it yesterday.”

b. \[vP₂ t₁ Gerechnet \] hat da₃ gestern wieder keiner [PP₁ t₃ mit] t₂
counted has there yesterday again no-one with
“Again, no-one reckoned with it yesterday.”

3.4. Movement Types Revisited

Based on examples like those in (14), I have so far assumed that middle field-internal movement (e.g., scrambling) cannot affect remnant XPs, whereas middle field-external movement (e.g., topicalization) can. This generalization has proven problematic in the light of secondary remnant movement, which is obligatorily middle field-internal; cf. (16-a) vs. (16-b). The illformedness of (16-b) can now be accounted for by invoking the fact that SCₐ-driven movement is strictly local.27

However, the difference between illegitimate primary remnant scrambling in (14-b)

26Alternatively, one could assume that the optimal subderivation removes the features that triggers δ₃-movement and, e.g., changes a [+wh] w-b-element into a [−wh] indefinite, and a [+wh] C into a [−wh] C. Then, δ₃ can remain in situ without violating BC or FC, at the cost of a violation of a lower-ranked faithfulness constraint; this amounts to neutralization of a [±wh] distinction in the input.

27This is a necessary condition, but not yet a sufficient one. To completely rule out (16-b) on this basis, we can make the standard assumption that finite vPs cannot bear a [top] feature. However, as noted by the reviewer, it might be that a bit more must be said to exclude cases like (i-b), formed via (i-a).

(i) a. John₃ has \[vP₂ t₃ read t₁ \] no novels₁ t₂

b. *\[vP₂ t₃ Read t₁ \] John₃ has t₂ \′ no novels₁ t₂

22
and legitimate local secondary remnant movement in (16-a) still calls for an explanation. This turns out to be straightforward. Note that the above generalization is not quite correct: Remnant scrambling is in fact possible if the antecedent of the unbound trace has not also undergone scrambling, but another type of movement, e.g., weak pronoun fronting; cf. (37-a) (= (14-b)) vs. (37-b).

(37) a. *daß [vP₂ t₁ zu lesen] das Buch₁ keiner t₂ versucht hat
 that to read the book no-one tried has
 “that no-one tried to read the book.”

b. daß [vP₂ t₁ zu lesen] es₁ keiner t₂ versucht hat
 that to read it no-one tried has
 “that no-one tried to read it.”

Similarly, middle field-external remnant *wh*-movement is impossible if the antecedent of the unbound trace has also undergone *wh*-movement, and possible if it has undergone another type of movement, e.g., scrambling; cf. (38-a) vs. (38-b).

(38) a. *[NP₂ Was für ein Buch t₁] fragst du dich [CP [PP₁ über wen] du
 what for a book ask you REFL about whom you
 t₂ lesen sollst ?]
 read should
 “*What kind of book do you wonder about whom to read?”

b. [NP₂ Was für ein Buch t₁] hast du [PP₁ über die Liebe] t₂ gelesen ?
 what for a book have you about the love read
 “What kind of book did you read about love?”

The strong illformedness of (38-a) cannot solely be due to the *wh*-island. This is shown by (39). Here, a complete *wh*-phrase is extracted from the *wh*-island, and the result is much improved.

Participle vPs can in principle undergo topicalization (i.e., bear a [top] feature) in English. Thus, unless there is an intervening factor responsible for the illformedness of (sentences like) (i-b), one might conclude that remnant XPs are frozen in place if they have undergone secondary remnant movement (but not if they have undergone primary remnant movement). Technically, this could be implemented by stipulating that movement operations that violate LR strip off all remaining movement features – an assumption that is not innocuous in view of some cases discussed in Heck & Müller (2000), and in view of the speculation in footnote 30 below. I will leave this issue open.
(39) Which book about the love you REFL whether you read should

The same contrast between remnant and non-remnant *wh*-movement shows up in English, as noted by Barss (1986) and Saito (1989), among others; cf.:

(40) a. *[NP Which picture of t1] do you wonder [CP who1 John likes t2] ?
 b.?? [NP Which picture of Mary] do you wonder [CP whether John likes t2] ?

Thus, the data suggest that the following generalization is the correct one: A remnant XP cannot undergo a given type of feature-driven movement if the antecedent of the unbound trace has undergone the same type of movement earlier in the derivation; it is neither necessary nor possible to invoke specific stipulations as to which movement type may affect remnant XPs. This generalization can be captured by a constraint like UNAMBIGUOUS DOMINATION (UD) in (41).

(41) **UNAMBIGUOUS DOMINATION (UD):**

In ... [α ... β ...] ..., α and β cannot check the same kind of feature (outside α).

It can easily be verified that UD is violated in cases like (37-a) and (38-a), but respected in (37-b), (38-b), and typical primary remnant movement constructions that involve a combination of scrambling (or NP raising) and topicalization. Furthermore, it is now clear why secondary remnant movement as in (16-a) can never violate UD: The problem that α and β check the same feature can never arise if α does not check a feature at all.

28UD is from Müller (1998, ch. 5). To ensure ungrammaticality of subderivations that violate UD, the same reasoning applies as in the case of BC: The optimal subderivation respects UD by either violating a ban on empty outputs (crash), or by deleting the features that trigger the offending movement operation (neutralization). For more empirical evidence and attempts to derive (something like) this constraint from even more general assumptions, see Takano (1993), Koizumi (1995), Kitahara (1997), and Müller (1998, ch. 5).
3.5. Successive Cyclicity Revisited

Recall the above generalization according to which unbound intermediate traces resulting from successive-cyclic movement via SpecC cannot occur in primary remnant movement constructions, whereas they can occur in secondary remnant movement constructions (cf. (17-b) vs. (19-c)). In contrast to what turned out to be the case with the original movement type generalization discussed in the preceding section, this generalization is not directly falsified by empirical evidence. However, it seems clear that a ban on unbound intermediate A-bar traces in primary remnant movement constructions should not be stated as such; rather, it should be derived from more general assumptions. Elsewhere, I have argued that it can be derived by a conspiracy of extraction and extraposition (cf. Müller (1998, ch. 6; 1999)). Here, I will confine myself to presenting the basic idea, so as to show that there is no principled, construction-specific difference between primary and secondary remnant movement in this domain either. Consider two examples that illustrate the ban on unbound intermediate traces with primary remnant topicalization in German. (42-a) has been discussed above (cf. (17-b)); (42-b) differs from (42-a) in that CP₃ is topicalized, not vP₂.

(42) a. *[vP₂ t₃ Gesagt [CP₃ t₁ dass sie t₁ liebt]] weiß ich nicht [CP wen₁ sie t₂ hat]
 [CP wen₁ sie t₂ that she loves know I not whom she has]
 “I do not know who she said that she loves.”

 b. *[CP₃ t₁ Daß sie t₁ liebt] weiß ich nicht [CP wen₁ sie [vP₂ t₃ gesagt]
 [CP wen₁ sie [vP₂ t₃ that she loves know I not whom she said]
 hat] t₃'
 has
 “I do not know who she said that she loves.”

The crucial assumption we need to make is that argument CPs are base-generated to the left of v+V in German. In principle, they may then either remain in situ, within vP (cf. (43-a)), or undergo extraposition to a vP-, TP-, or CP-adjoined position (cf.
(43-b)), with a clear stylistic preference for the latter option:

(43) a. daß sie [\(CP_2\) daß sie Fritz liebt] gesagt hat
that she that she_{nom} Fritz_{acc} loves said has
‘that she said that she loves Fritz.’

b. daß sie \(t_2\) gesagt hat [\(CP_2\) daß sie Fritz liebt]
that she said has that she_{nom} Fritz_{acc} loves
‘that she said that she loves Fritz.’

However, if extraction takes place from \(CP_2\), \(CP_2\) extraposition is obligatory rather than stylistically preferred. This is shown by the contrast in (44).

(44) a. *(Ich weiß nicht) wen_1 sie [\(CP_2\) \(t'_1\) daß sie \(t_1\) liebt] gesagt hat
I know not who_{acc} she that she_{nom} loves said has
“I do not know who she said that she loves.”

b. (Ich weiß nicht) wen_1 sie \(t_2\) gesagt hat [\(CP_2\) \(t'_1\) daß sie \(t_1\) liebt]
I know not who_{acc} she said has that she_{nom} loves
“I do not know who she said that she loves.”

Thus, obligatory CP extraposition can be viewed as a reflex of successive-cyclic movement from SpecC to SpecC in German, on a par with other (primarily morphophonological) reflexes affecting the C system in languages such as Modern Irish, Basque, Ewe, Spanish, and Malay. For present purposes, it is immaterial why this reflex arises in German; what is important here is the mere fact that there is such a reflex. Given this state of affairs, the only thing that needs to be shown is that obligatory CP extraposition forced by successive-cyclic \(wh\)-movement must lead to ungrammaticality in the examples in (42), in contrast to what is the case in (44-b). As a matter of fact, the illformedness of (42-a) follows from strict cyclicity: \(Wh\)-extraction from \(CP_3\) must take place prior to \(CP_3\) extraposition (because of the \textbf{Barriers Condition}). Strict cyclicity then implies that \(CP_3\) extraposition must target a position that is not lower than the landing site of \(wh\)-movement of \(wen_1\); i.e., \(CP_3\) extraposition must minimally end up in the next higher CP domain. However,

\footnote{\(CP\) extraposition to vP is possible only if CP does not interrupt a TP-internal V cluster; i.e., if vP is topicalized. For an account of this and ample evidence in support of deriving V CP structures by CP extraposition in German, cf. Büring & Hartmann (1997).}
the fact that the extraposed CP$_3$ is carried along with vP$_2$ under vP$_2$ topicalization shows that the landing site of CP$_3$ was lower than that, in violation of strict cyclicity. Similarly, obligatory extraposition accounts for the illformedness of (42-b). As before, given successive-cyclic wh-extraction from CP$_3$, we know that CP$_3$ has to undergo extraposition (to the CP domain, given strict cyclicity). Remnant CP$_3$ topicalization then takes place not from the in situ-position of CP$_3$, but from the extraposition site. This mixing of A-bar movement types (CP$_3$ extraposition followed by CP$_3$ topicalization) then qualifies as an instance of improper movement. Such improper movement can be blocked in various ways (see, e.g., the Principle of Unambiguous Binding (PUB) in Müller & Sternefeld (1993), which requires A-bar traces to be bound from one type of position only; or the transderivational constraint that minimizes optional features in Chomsky (1995, 294; 1999, 28)).

Evidently, the notion of an unbound intermediate trace does not play a role in this approach to (42). There is no ban on unbound intermediate traces as such; rather, the problems with examples like (42-a) and (42-b) are solely due to obligatory CP extraposition triggered by successive-cyclic wh-movement. Since obligatory CP extraposition is not an issue in English, derivations like the one in (19-c) are unproblematic.

4. Conclusion and Outlook

I have tried to show that the different properties of primary and secondary remnant movement do not force us to abandon one of the two concepts. Most of the differences follow from the fact that primary remnant movement is feature-driven, whereas secondary remnant movement is not: It is a repair strategy forced by SHAPE CONSERVATION and the FEATURE CONDITION, in violation of LAST RESORT. As a consequence of this, secondary object fronting may also be required; BARRIERS

30 Under an approach to improper movement that relies on feature minimization, even obligatory CP extraposition after wh-extraction in some language would be predicted to be unproblematic for secondary remnant movement in this language. The reason is that ensuing “secondary CP fronting” would be a repair strategy forced by SC that does not involve feature checking.
CONDITION violations can be avoided; and UNAMBIGUOUS DOMINATION violations do not show up. Furthermore, an apparent difference between primary and secondary remnant movement with respect to the legitimacy of unbound intermediate traces was shown to be spurious; what distinguishes the two constructions is the presence vs. absence of obligatory CP extraposition.

On a more general note, I have argued that since repair-driven secondary remnant movement presupposes constraint violability and ranking, it lends itself to an optimality-theoretic analysis. What is more, it provides evidence that syntactic optimization is local, not global (as is standarly assumed): On the one hand, there are ill-formed derivations that are indeed locally suboptimal, but globally optimal (cf. T₁). And on the other hand, there are well-formed derivations that are locally optimal, but globally suboptimal (cf. T₂). In general, it seems that syntactic repair is typically a local phenomenon: An “offending” property is removed instantaneously, not at some earlier or later stage in the derivation. This holds for other cases of repair-driven movement that have been proposed in the literature; cf. Heck & Müller (2000), where arguments are given for local analyses of, e.g., semantically vacuous QR that is forced by a higher-ranked parallelism constraint (Fox (1995)), and wh-scrambling that is forced by a higher-ranked Neg-intervention constraint (Beck (1996)). Moreover, many other cases of syntactic repair that have been approached in terms of global optimization (cf., e.g., Grimshaw (1997) on do-support, Pesetsky (1998) and Legendre, Smolensky, & Wilson (1998) on resumptive pronouns, Schmid (1998) on the Westgermanic “Ersatzinfinitiv”) can be treated by local optimization. It remains to be seen, though, whether local optimization can (or should) do all the work that global optimization has been held responsible for in syntax.

Finally, a discussion of parametrization options in the present system has been conspicuously absent in the preceding pages. Basically, two possibilities arise. The approach has inherited both the concept of feature strength from the minimalist program, and the concept of constraint reranking from optimality theory. At present, I take it to be an open question whether both concepts are needed, or whether one
can (or should) be dispensed with in favour of the other.

5. Appendix: Other Cases of Secondary Remnant Movement

As noted in footnote 2, secondary remnant movement has found applications beyond Kayne’s (1998) treatment of negative NPs; cf. den Dikken (1996), Hinterhölzl (1997), Ordóñez (1997), Johnson (1998), Noonan (1999), and Koopman & Szabolcsi (2000), among others. What has been said above about secondary remnant movement in Kayne’s (1998) approach also holds for other analyses, to various degrees. In what follows, I will briefly discuss aspects of three of these analyses, viz., Johnson (1998), Noonan (1999), and Koopman & Szabolcsi (2000), and point out their consequences for the present approach.

5.1. Quantifier Raising in Johnson (1998)

Johnson proposes an approach to quantifier raising (QR) that is in many respects similar to Kayne’s (1998) approach to negative NPs. He suggests that quantifier raising can take place overtly in English; but the effects of this operation are masked by subsequent remnant VP (or “VC,” for “verbal complex” – this projection may contain negation, e.g.) fronting to a higher position. This is shown in (45-a).

\[(45)\]
\[
\text{a. Jill } [\text{VP}_2 \text{ didn’t answer } t_1] [\text{NP}_1 \text{ two thirds of the questions }] t_2
\]
\[
\text{b. Jill } [\text{VP}_2 \text{ didn’t answer } [\text{NP}_1 \text{ two thirds of the questions }]] t_2
\]

By assumption, overt QR is necessary to give NP\textsubscript{1} scope over negation in (45) (by virtue of c-commanding a trace of VP\textsubscript{2} that contains negation; i.e., under VP\textsubscript{2} reconstruction). Narrow scope with respect to negation is accomplished by leaving NP\textsubscript{1} in situ. Still, VP\textsubscript{2} is assumed to obligatorily undergo fronting. Of course, in this case, the fronting is string-vacuous and non-remnant; cf. (45-b). Thus, there are two substantial differences to (my reconstruction of) Kayne’s analysis. First, if we assume that QR is driven by a feature [quant] (cf. Chomsky (1995, ch. 4)), we have to conclude that this feature is only optionally strong, in contrast to [neg]. Second, in contrast to what is the case in Kayne’s approach, remnant VP fronting
is in fact not assumed to be a repair strategy; rather, there must be some feature that triggers this movement. However, it seems that the main motivation behind VP fronting in Johnson’s analysis is the illformedness of (46), where overt QR is not accompanied by remnant VP movement.

(46) *Jill [NP, two thirds of the questions] [VP2 didn’t answer t1]

Moreover, the combination of optional overt QR and obligatory VP fronting in English does not suffice to predict all orders correctly. This becomes obvious when we consider double object constructions. Suppose that (the extended) VP contains negation, that the first object is a quantified NP and the second object a proper name, and that the quantified NP takes scope over negation by QR. If nothing else is said, Johnson’s approach wrongly predicts the ungrammatical surface orders in (47-ac). Thus, as in Kayne’s approach, secondary object fronting to a lower position must apply, yielding (47-bd) (as before, this process is indicated by underlining).

(47) a. *Jill [VP2 didn’t give t1 to John3] two books1 t2
 b. Jill [VP2 didn’t give t1 t3] two books1 to John3 t2
 c. *Jill [VP2 didn’t give t1 her new book3] two friends1 t2
 d. Jill [VP2 didn’t give t1 t3] two friends1 her new book3 t2

Clearly, the search for a feature as a trigger is futile here – whether or not secondary object fronting applies depends solely on what NP QR has applied to. This is shown by the impossibility of secondary object fronting in cases where the quantified NP taking wide scope is the second object, not the first one; cf.:

(48) a. Jill [VP2 didn’t give her new book3 t1] to two friends1 t2
 b. *Jill [VP2 didn’t give t3 t1] to two friends1 her new book3 t2
 c. Jill [VP2 didn’t give John3 t1] two books1
 d. *Jill [VP2 didn’t give t3 t1] two books1 John3

Hence, we may conclude that something like SC must play a role in Johnson’s approach anyway. Since there does not appear to be substantial independent evidence in support of string-vacuous non-remnant clause-internal VP fronting in English,
we may conclude that it is possible to treat remnant VP fronting in this approach exactly like remnant VP fronting in Kayne’s approach, as a repair strategy forced by SC.31 Given that [quant] is an A-feature that may be strong in English, this follows without further assumptions. It is then expected that secondary remnant movement in Johnson’s approach shares other properties with secondary remnant movement in Kayne’s analysis. This seems to be the case. Since QR is usually clause-bound, unbound intermediate traces cannot be tested easily. However, VP fronting in Johnson’s approach does not give rise to UD effects. In addition, neither the remnant VP nor the antecedent of the unbound trace is a barrier for further extraction in constructions in which the quantified NP takes scope over negation. This anti-freezing is illustrated for \textit{wh}-extraction in (49-a) (with respect to VP\textsubscript{2}), and for topicalization in (49-b) (with respect to NP\textsubscript{1}).

(49) \begin{enumerate}
\item (I wonder) which new book\textsubscript{3} Jill \textsubscript{VP\textsubscript{2}} didn’t give \textsubscript{3} to two friends\textsubscript{1} \textsubscript{t}\textsubscript{2} \item This man\textsubscript{3} Jill \textsubscript{VP\textsubscript{2}} has not seen \textsubscript{3} \textsubscript{NP\textsubscript{1}} many pictures of \textsubscript{3} \textsubscript{t}\textsubscript{2}
\end{enumerate}

5.2. CP Fronting in Noonan (1999)

Noonan’s goal is to show that cases of long-distance \textit{wh}-movement in Modern Irish should be reanalyzed as involving CP fronting and secondary remnant movement. Consider the following example.

(50) \begin{center}
[CP Céard\textsubscript{1} a chreideann Séan [CP t\textsubscript{1}’ a dhéanfá pro t\textsubscript{1}]] ?
\textit{what aL believes Séan aL would say-2s}
\textit{“What does Sean believe that you would say?”}
\end{center}

(50) is the structure that is standardly assigned to this kind of sentence; but this is not the structure that Noonan argues for. Specifically, she proposes that \textit{wh}-movement from a CP always involves an object-shift-like operation applying to CP

31Johnson assumes that German also has overt QR, but no VP fronting: i.e., no obligatory movement that masks the effects of QR and reestablishes the pre-movement order. This could be accounted for under either of the options of parametrizing SC-driven movement that were briefly sketched above.
in Irish (also cf. the above suggestion for German). This CP shift is reflected by the marker \(aL\) in the higher clause (which is thus indicative of CP movement, and not of \(wh\)-movement per se, as is standardly assumed); and it triggers secondary remnant movement that restores the original order. The first relevant step in the derivation of (50) that Noonan postulates is local, feature-driven DP preposing of \(c\'e\text{ard} ('\text{what}')\) to the embedded SpecC position in (51-a) (accompanied by V raising). Next, by assumption, CPs that contain \(wh\)-phrases must undergo feature-driven movement to a focus/Case head in the matrix clause; cf. (51-b) (accompanied by V raising in the matrix clause). Third, Noonan assumes that the \(wh\)-phrase \(c\'e\text{ard}\) moves to the matrix SpecC position, as in (51-c). Finally, secondary remnant FP movement to a position between the matrix SpecC position and the fronted CP\(_2\) restores the word order and yields the string in (50); cf. (51-d).

(51) Noonan’s derivation:

\[
\begin{align*}
\text{a. } & [\text{CP}_2 \ c\'e\text{ard}_1 \ a\ \text{dh\'eanf\'a\ pro\ } t_1] \rightarrow \ldots \rightarrow \\
\text{b. } & [\text{CP}_2 \ c\'e\text{ard}_1 \ a\ \text{dh\'eanf\'a\ pro\ } t_1] [\text{FP}_3 \ a\ \text{ch\'redeann\ S\'ean\ } t_2] \rightarrow \\
\text{c. } & [\text{CP} \ c\'e\text{ard}_1 \ [\text{CP}_2 \ t'_1 \ a\ \text{dh\'eanf\'a\ pro\ } t_1] [\text{FP}_3 \ a\ \text{ch\'redeann\ S\'ean\ } t_2]] \rightarrow \\
\text{d. } & [\text{CP} \ C\'e\text{ard}_1 \ [\text{FP}_3 \ a\ \text{ch\'redeann\ S\'ean\ } t_2] [\text{CP}_2 \ t'_1 \ a\ \text{dh\'eanf\'a\ pro\ } t_1] t_3]
\end{align*}
\]

As it stands, this derivation is not directly compatible with the approach developed above. The reason is that CP\(_2\) fronting in the second step is the movement operation that triggers secondary remnant movement; but the repair operation is not local – it occurs in the last step, preceded by \(wh\)-movement. (\(Wh\)-movement in turn cannot trigger secondary remnant movement in Irish; cf. (51-a).) Interestingly, there is another peculiarity with the last two steps in (51): Remnant FP\(_3\) fronting violates strict cyclicity. This, as such, is not a problem for Noonan (1999) because she explicitly assumes that remnant FP fronting in (51) is a post-cyclic rule, triggered by (unspecified) prosodic considerations. However, suppose now that the trigger for remnant FP fronting is not prosody, but SC, and that the last two movement operations in (51) are reversed, as required by strict cyclicity. Then, we obtain the following derivation:
(52) *Derivation required by SC_A:*

a. $[\text{CP}_2 \text{ céard}_1 \text{ a dhéanfá pro } t_1] \rightarrow ... \rightarrow$

b. $[\text{CP}_2 \text{ céard}_1 \text{ a dhéanfá pro } t_1 \quad [\text{FP}_3 \text{ a chreideann Séan } t_2] \rightarrow$

c. $[\text{FP}_3 \text{ a chreideann Séan } t_2 \quad [\text{CP}_2 \text{ céard}_1 \text{ a dhéanfá pro } t_1] \quad t_3 \rightarrow$

d. $[\text{CP} \text{ Céard}_1 \quad [\text{FP}_3 \text{ a chreideann Séan } t_2 \quad [\text{CP}_2 \quad t'_1 \text{ a dhéanfá pro } t_1 \quad t_3]$

Feature-driven fronting of CP$_2$ in (52-b) immediately triggers secondary remnant movement of FP$_3$ to an outer specifier of the same domain in (52-c); finally, *wh*-extraction from CP$_2$ takes place (cf. (52-d)). Assuming that FP can be equated with vP (Noonan suggests TP, but the difference is probably not crucial, with a proviso concerning local V raising), and that the feature checked by CP$_2$ fronting is an A-feature, the basic properties of Noonan’s analysis are derived: As in Kayne’s approach, secondary remnant movement is a repair strategy that is parasitic on another, feature-driven movement operation (CP$_2$ fronting; cf. the role of negative NP preposing in Kayne (1998)). Furthermore, the moved CP$_2$ is not a barrier for *wh*-extraction because CP$_2$ fronting and secondary remnant movement of FP$_3$ end up in the same domain; hence, the anti-freezing effect is accounted for. Finally, UD cannot block clause-internal remnant FP$_3$ movement because this movement operation is not feature-driven. (Since CP fronting is always clause-bound in Noonan’s analysis, repair-driven remnant FP$_3$ movement as such will never be successive-cyclic either; for this reason, it is difficult to test whether unbound intermediate traces are possible in this construction.)

5.3. Verbal Complexes in Koopman & Szabolcsi (2000)

Based on Hinterhölzl (1997) and others, Koopman & Szabolcsi set out to develop a principled account of verb cluster formation in languages like Hungarian, Dutch, and German. This account crucially rests on (a) the postulation of extremely articulated syntactic structures, and (b) massive remnant movement (and pied piping). I will not try to sketch this approach here, or to give a sample derivation of verb cluster formation that would illustrate it. I would like to confine myself to pointing out
that, despite of what one might think at first sight, most of the instances of remnant movement envisaged by Koopman & Szabolcsi (2000) actually behave like primary remnant movement, not like secondary remnant movement: They are feature-driven, they show freezing effects (e.g., a remnant XP that is moved to a specifier position is a barrier for further extraction), and they obey a constraint like UD in a non-trivial way (being feature-driven). Still, there is one type of movement (remnant or other) that behaves differently. In order to ensure that all derivations respect strict cyclicity, Koopman & Szabolcsi (2000, ch. 4.2) introduce “stacking positions,” i.e., positions that provide landing sites that XPs can reach without feature checking. Of these positions, they say: “The [stacking] positions ... are not extrinsically ordered, rather, movement into them is constrained by the convention that it must replicate the already existing linear order of the pertinent XPs.” Movement which is not feature-driven and replicates pre-movement order is of course strongly reminiscent of secondary movement forced by SC. However, at present I would like to leave open the question of whether a simple application of SC is possible for Koopman & Szabolcsi’s order-preserving movements to stacking positions.
References

Fanselow, Gisbert, & Damir Čavar. 2001. Remarks on the Economy of Pronunci-

Thiersch, Craig. 1985. VP and Scrambling in the German Mittelfeld. Ms., University of Tilburg.

