Gereon Müller

Universität Tübingen, Germany

Incomplete Category Fronting

A Derivational Approach to Remnant Movement in German

Kluwer Academic Publishers

Dordrecht / Boston / London

1998
Contents

Preface vii
Acknowledgements xiii

1 Incomplete Category Fronting 1
 1. The Phenomenon 1
 2. The Remnant Movement Approach 3
 2.1. A Conceptual Argument for Remnant Movement 3
 2.2. Cross-linguistic Variation 5
 2.3. Remnant NPs 9
 2.3.1. The Phenomenon 9
 2.3.2. Extraction from NP 9
 2.3.3. Remnant NPs 12
 2.4. Remnant PPs 13
 2.5. Coherent Infinitives 15
 3. Peculiar Properties 18
 3.1. Proper Binding 18
 3.2. Freezing 19
 3.3. Movement Type Asymmetries 21
 3.4. Unbound Intermediate Traces 22
 4. Conclusion 24

2 Movement Theory 27
 1. Introduction 27
 2. Locality Constraints: The Barriers Condition 28
 3. Economy Constraints 31
 3.1. Procrastinate 31
 3.2. Fewest Steps 34
 3.2.1. Illicit Wh-Topicalization in English 35
 3.2.2. Illicit Wh-Scrambling in German 36
 3.2.3. Optional Movement 37
 3.2.4. Form Chain vs. Move α 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5. Argument/Adjunct Asymmetries</td>
<td>42</td>
</tr>
<tr>
<td>3.3. The Shortest Path Condition</td>
<td>44</td>
</tr>
<tr>
<td>3.3.1. The Shortest Path Condition and Yo-Yo Movement</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2. The Shortest Path Condition and Superiority Effects</td>
<td>46</td>
</tr>
<tr>
<td>3.4. Last Resort</td>
<td>47</td>
</tr>
<tr>
<td>3.4.1. The Constraint</td>
<td>47</td>
</tr>
<tr>
<td>3.4.2. Wh-Movement, Topicalization, and Scrambling</td>
<td>48</td>
</tr>
<tr>
<td>3.4.3. The Interaction of Last Resort and Fewest Steps</td>
<td>51</td>
</tr>
<tr>
<td>4. Cyclicity Constraints</td>
<td>53</td>
</tr>
<tr>
<td>4.1. Strict Cyclicity</td>
<td>53</td>
</tr>
<tr>
<td>4.1.1. The Strict Cycle Condition before Trace Theory</td>
<td>53</td>
</tr>
<tr>
<td>4.1.2. The Strict Cycle Condition and Trace Theory</td>
<td>56</td>
</tr>
<tr>
<td>4.1.3. The Strict Cycle Condition and Principles-&-Parameters Theory</td>
<td>57</td>
</tr>
<tr>
<td>4.1.4. The Strict Cycle Condition and the Minimalist Program</td>
<td>58</td>
</tr>
<tr>
<td>4.1.5. Deriving the Strict Cycle Condition from the Extension Condition</td>
<td>59</td>
</tr>
<tr>
<td>4.1.6. Against Deriving the Strict Cycle Condition from the Extension Condition</td>
<td>60</td>
</tr>
<tr>
<td>4.1.7. Formulating the Strict Cycle Condition in the Minimalist Program</td>
<td>62</td>
</tr>
<tr>
<td>4.2. Successive Cyclicity</td>
<td>64</td>
</tr>
<tr>
<td>4.2.1. Super-Raising in English</td>
<td>64</td>
</tr>
<tr>
<td>4.2.2. Long-Distance Scrambling in German</td>
<td>65</td>
</tr>
<tr>
<td>4.2.3. Unambiguous Binding</td>
<td>66</td>
</tr>
<tr>
<td>4.2.4. Complications</td>
<td>67</td>
</tr>
<tr>
<td>4.2.5. Wh-Movement vs. Topicalization</td>
<td>69</td>
</tr>
<tr>
<td>4.2.6. The Interaction of the PUB and Economy Constraints</td>
<td>72</td>
</tr>
<tr>
<td>5. Problems</td>
<td>73</td>
</tr>
<tr>
<td>5.1. Conceptual Problems</td>
<td>73</td>
</tr>
<tr>
<td>5.2. An Empirical Problem</td>
<td>75</td>
</tr>
<tr>
<td>5.2.1. Evidence for Modifying the Notion of Reference Set</td>
<td>75</td>
</tr>
<tr>
<td>5.2.2. Partial Wh-Movement</td>
<td>77</td>
</tr>
<tr>
<td>6. A Revised Approach to Economy</td>
<td>79</td>
</tr>
<tr>
<td>6.1. Assumptions</td>
<td>79</td>
</tr>
<tr>
<td>6.2. Form Chain and Economy</td>
<td>80</td>
</tr>
<tr>
<td>6.3. Wh-Movement and Economy</td>
<td>81</td>
</tr>
<tr>
<td>6.4. Topicalization and Economy</td>
<td>83</td>
</tr>
<tr>
<td>6.5. Scrambling and Economy</td>
<td>85</td>
</tr>
<tr>
<td>6.6. Deriving PUB Effects from Economy</td>
<td>86</td>
</tr>
<tr>
<td>6.6.1. Super-Raising and Economy</td>
<td>86</td>
</tr>
</tbody>
</table>
2.3.3. Derivation No. 3: Chain Interleaving .. 133
2.4. Conclusion .. 136
3. Anti-Freezing Effects with Remnant Movement 137
 3.1. The Problem .. 137
 3.2. The Representational Approach .. 139
 3.3. The Derivational Approach ... 140
 3.3.1. Why Remnant Movement Does Not Create Islands 140
 3.3.2. Why Remnant Movement Does Not Create Non-Islands .. 142
4. Anti-Freezing Effects with Extraposition .. 145
 4.1. The Phenomenon ... 145
 4.2. The Representational Approach ... 146
 4.3. The Derivational Approach .. 148
 4.3.1. The Problem .. 148
 4.3.2. Extraposition as Remnant Movement 150
5. Additional Evidence .. 151
 5.1. PP and NP Extraposition ... 151
 5.1.1. Anti-Freezing and PP Extraposition 152
 5.1.2. Anti-Freezing and NP Extraposition 153
 5.2. Freezing Effects with Extraposition ... 154
 5.2.1. CP Extraposition to VP .. 155
 5.2.2. PP Extraposition to VP .. 161
 5.2.3. Infinitive Extraposition to VP: The Third Construction 165
 5.3. Extraposition in SVO Languages .. 167
6. Multiply Embedded CPs and Chain Interleaving 168
 6.1. Extraction and Multiple Extraposition ... 169
 6.2. Other Cases of Chain Interleaving .. 173
7. (Anti-) Freezing and String-Vacuous Scrambling 177
 7.1. The Problem: Unexpected Anti-Freezing 177
 7.2. Categorial Selectivity .. 178
 7.3. String-Vacuous Scrambling as Extraposition 179
8. Conclusion ... 184

5 Remnant Movement Asymmetries .. 185
 1. Introduction .. 185
 2. The Phenomenon .. 186
 2.1. Remnant Topicalization vs. Remnant Scrambling 186
 2.1.1. Coherent Infinitives ... 186
 2.1.2. Remnant VPs ... 187
 2.1.3. Remnant APs .. 188
 2.1.4. Remnant NPs .. 189
 2.2. Remnant Wh-Movement ... 190
 2.3. Remnant Left Dislocation ... 192
Preface

This monograph is concerned with constructions in German like those in (1):

(1)
 a. Gelesen hat das Buch keiner
 read has the book acc no-one nom
 b. Zu lesen hat das Buch keiner versucht
 to read has the book acc no-one nom tried
 c. Zu lesen versucht hat keiner das Buch
 to read tried has no-one nom the book acc
 d. Ein Buch hat Antje über die Liebe gelesen
 a book acc has Antje nom about the love read

In all these cases, fronting of an “incomplete” category has taken place (a verbal category in (1-a), (1-b), and (1-c), and a nominal category in (1-d)). These items are incomplete in the sense that an internal argument of the head of the topicalized category has remained behind in the middle field of the clause. Thus, the examples in (1) differ minimally from those in (2), where the fronted categories are “complete”:

(2)
 a. Das Buch gelesen hat keiner
 the book acc read has no-one nom
 b. Das Buch zu lesen hat keiner versucht
 the book acc to read has no-one nom tried
 c. Das Buch zu lesen versucht hat keiner
 the book acc to read tried has no-one
 d. Ein Buch über die Liebe hat Antje gelesen
 a book acc about the love has Antje nom read

In these cases, we can assume that a full XP has been fronted – a VP in (2-a) and (2-c), an infinitival clause in (2-b), and an NP in (2-d). In seminal (though largely still unpublished) work carried out within the Principles and Parameters framework, Craig Thiersch (1985) and Hans den Besten & Gert Webellhuth (1987) have proposed that cases of incomplete category fronting as in (1) are amenable to basically the same kind of analysis as their counterparts in (2). According to this view, topicalization in (1-a) through (1-d) involves XP movement. However, the fronted XPs contain traces of the internal arguments that have been extracted prior to fronting; they are “remnant” XPs.
The operation that is responsible for this removal of an argument from a remnant XP is identified as Ross's (1967) scrambling rule: This movement rule transports the internal argument to a middle-field internal position before topicalization applies. Thus, in this approach the sentences in (1) all have the general format in (3):

(3) [XP ... t₁ ...]₂ ... YP₁ ... t₂ ...

The remnant movement approach to incomplete category fronting that is embodied in (3) makes a number of interesting and welcome predictions, but, as is well known, it also raises a lot of problems. Four of these strike me as particularly relevant, and I want to address them in this study. First, it is evident that the remnant movement approach presupposes that traces can occur unbound: t₁ in (3) is not c-commanded by its antecedent; however, such a configuration seems to be illegitimate otherwise (due to the Proper Binding Condition). Second, the construction in (3) does not exhibit a Freezing effect: Moved items are usually islands and cannot contain traces whose antecedent is located outside of the moved item, but this Freezing generalization does not seem to hold in (3) (i.e., an Anti-Freezing effect shows up). Third, otherwise undocumented asymmetries between movement types seem to arise that are not predicted under the remnant movement approach per se; for instance, whereas (3) can be a grammatical structure if XP is topicalized, as in (1), it has often been noted that (3) is normally impossible if XP is scrambled; compare, for instance, (1-b) with (4):

(4) *daß zu lesen das Buch keiner versucht hat
 that to read the book no-one tried has

Fourth and finally, it seems that there are restrictions on the kind of trace that can show up unbound in (3). In particular, intermediate traces that arise as a result of successive-cyclic movement seem to be barred in this construction. Thus, whereas the first two problems can be viewed as part of the more general question of why remnant movement exists at all, the latter two problems relate to the question of why remnant movement appears to behave differently from other, well-established instances of movement.

My main goal here is to account for these problems posed by the remnant movement approach to incomplete category fronting in German and to do so without invoking construction-specific assumptions (this implies, without special constraints that mention unbound traces). The main claim that I would like to argue for is the following: What at first sight looks like a peculiar property of remnant movement actually turns out not to be peculiar at all if we adopt a derivational theory of movement along the lines of Chomsky's minimalist program, which has grown out of the Principles and Parameters approach. The minimalist program is renowned for its initial lack of independent empirical motivation and for the fact that it forces us to reconsider and alter many successful analyses of syntactic phenomena that were developed within the more representational Principles and Parameters theory. However, I believe that in the domain of incomplete category fronting at least, the case is different: A strictly deriva-
tional movement theory that incorporates some of the main premises of the minimalist program offers the key to the solution of a number of recalcitrant problems raised by this construction.

Of course, although I think that such a derivational approach unravels some of the mysteries of incomplete category fronting and remnant movement, it is quite clear that it does not automatically solve all problems with remnant movement; in fact, many new problems arise in domains where one would not expect them to under a more representational approach. Let me name just one that is especially striking and conceptual in nature: In a derivational theory of movement, constraints are typically also derivational, i.e., they do not act as surface filters (in contrast to, e.g., most of the constraints in standard Principles and Parameters theory). Hence, it often does not suffice to look simply at the surface string of a sentence to determine whether or not a given constraint is violated; rather, complete derivations must be examined. This usually complicates syntactic argumentation significantly and thereby sometimes makes explanations look less simple than they do in a representational approach that relies on surface filters. In spite of this, though, I think that more is gained by adopting the derivational approach to incomplete category fronting than is lost by largely dispensing with surface filters, but this is, of course, up to the reader to decide for her/himself.

A few remarks are due concerning the scope of the present study. Despite its length, this monograph has an essay-like character, in the sense that I focus on a few problems and systematically neglect “fringe issues” that arise in the course of the discussion and would eventually have to be settled. Thus, the central rationale is not to give as comprehensive an overview of constructions involving incomplete category fronting as possible, but rather to adopt one specific approach and explore it in depth. In line with this, I will not be concerned with certain other cases that involve (or at least have been argued to involve) incomplete category fronting, such as the so-called “NP split” construction, as shown in (5):

\[(5) \quad \begin{array}{ll}
 a. \text{Bücher hat Karl keine gelesen} & \\
 \quad \text{books_{acc} has Karl_{nom} none read} & \\
 \quad \text{‘As for books, Karl has not read any.’} & \\
 b. \text{daß Bücher Karl keine gelesen hat} & \\
 \quad \text{that books_{acc} Karl_{nom} none read has}
\end{array}\]

Despite some claims to the contrary that can be found in the literature, I believe that this construction differs substantially from the one exemplified by the data in (1). Hence, omitting NP split constructions from an approach to incomplete category fron-

\[\text{I will name just a few differences: First, unlike cases of incomplete category fronting as in (1), NP split constructions show non-matching effects in the sense that the fronted item does not necessarily correspond to the gap postulated in the middle field. Thus, van Riemsdijk (1989, 106) gives sentences like (i-a), and Fanselow (1993, 59) even marginally accepts sentences like (i-b).}\]
ting of the type in (1) seems justifiable to me.

Another case where the limited scope of the present study becomes apparent concerns cross-linguistic variation. Throughout this study, the main focus is on incomplete category fronting in German, but the proposed analyses tend to be formulated in a much more general way so that they make predictions for other languages, too. Accordingly, I sometimes adduce data involving incomplete category fronting in a number of other languages (among them Breton, Danish, Dutch, English, French, Italian, Japanese, Korean, Serbo-Croatian, and Swedish) and show how they relate to the analysis suggested for German. By and large, it seems to me that the predictions of the proposed system are more often than not confirmed by evidence from other languages, but it should be noted that I do not attempt to account for incomplete category fronting in other languages in a systematic way.

The book is organized as follows. In chapter 1, I introduce the phenomenon of incomplete category fronting in German. I present the two fundamentally different approaches to the construction (viz., in terms of remnant movement and in terms of movement of a “small” category), report some initial evidence in favour of the remnant movement approach, and then go on to develop the four problems related to this approach which I will strive to solve in the remainder of the book.

Since these solutions crucially rest on the adoption of (a specific version of) the derivational movement theory assumed in the minimalist program, I then leave remnant movement completely aside for a chapter and address the issue of movement theory in the minimalist program in chapter 2. At the end of this chapter, a particular combination of derivational locality constraints (Barriers Condition), economy constraints (Fewest Steps, Last Resort), and cyclicity constraints (Strict Cycle Condition) is adopted that serves as the basis for the approach to remnant movement that is carried out

(i) a. Einen Wagen hat er sich noch keinen leisten können
 As for cars, he has not been able to afford one yet.

 b. ?Raubvögel mag er nur Bussarde
 As for birds of prey, he only likes buzzards.

Second, the issue of whether NP split constructions involve movement at all or should be analyzed in terms of base-generation cannot yet count as settled. However, even if we assume movement to be involved, it seems highly unlikely that we are dealing with configurations that take the form of (3), i.e., that involve an unbound trace in the fronted item – but if there is no unbound trace involved, the two problems related to the Proper Binding Condition and Freezing effects do not arise in the first place. Third, as Grewendorf (1995, 1298) observes, NP split constructions are not sensitive to the kind of restriction that is documented in (4); e.g., as shown in (5-b), the fronted item in this construction can occupy a scrambling position, provided that an appropriate intonation pattern is present. Given these properties (and others that can be found in the literature, see, e.g., Fanselow (1988; 1993), van Riemsdijk (1989), Tappe (1989), Grewendorf (1995), and references cited in these articles), I think it is fair to conclude that the NP split construction in German is of a different type than the kind of incomplete category fronting I am interested in here and obeys (partially) different laws.
in the four ensuing chapters. In these chapters, the four fundamental problems with remnant movement are addressed in turn.

Chapter 3 is concerned with the problem raised by the existence of unbound traces in light of the Proper Binding Condition. Here I show that the Proper Binding Condition can (in fact, should) be dispensed with in any form; illicit lowering is excluded by the Strict Cycle Condition, which, however, does not block remnant movement.

Chapters 4 and 5 form the core of this monograph. In chapter 4, I address the problem of Freezing and Anti-Freezing effects, and I show how the interaction of the Barriers Condition, Fewest Steps, Last Resort, and the Strict Cycle Condition yields the result that moved XPs normally are islands for extraction, whereas they are not in the case of remnant movement. Furthermore, the analysis is extended to extraposition, and it is shown that the well-known Anti-Freezing effect with extraposition in German can be explained by assuming (certain kinds of) extraposition to involve remnant movement, i.e., unbound traces.

Next, chapter 5 discusses the (apparent) sensitivity of remnant movement to the type of movement involved (e.g., remnant topicalization is possible, remnant scrambling is not). I argue that such a bifurcation cannot cover all data and that the correct underlying generalization is that the remnant XP and the antecedent of the unbound trace in a structure like (3) must occupy different positions; i.e., the two items cannot be affected by the same type of movement. This is first accounted for by introducing a (non-construction-specific) constraint of “Unambiguous Domination;” then, I attempt to derive the generalization from an independently motivated revision of the Last Resort condition that incorporates the Minimal Link Condition.

In chapter 6 I turn to the problem raised by ill-formed sentences that involve unbound intermediate traces in remnant movement constructions. I argue that it is neither necessary nor possible to maintain that there is a specific prohibition against unbound intermediate traces, and I try to show that the basic restrictions fall out of the theory developed so far, once certain facts about extraposition options in German are taken into account.

Finally, chapter 7 draws a conclusion and briefly sketches the consequences of this study for an inherently derivational approach to syntax.
Acknowledgements

Many people have contributed to this monograph over the last years, by offering helpful comments, raising interesting questions, providing data (or data judgements), etc. For all this, I would like to thank Steve Abney, Josef Bayer, Sigrid Beck, Kirsten Brock, Michael Brody, Daniel Büsing, Chris Collins, João Costa, Danny Fox, Werner Frey, Hans-Martin Gärtner, Jochen Geilfuß, Willi Geuder, Günther Grewendorf, Jane Grimshaw, Hubert Haider, Tilman Höhle, Hanneke van Hoof, Kyle Johnson, Jung-Goo Kang, Shin-Sook Kim, Hisatsugu Kitahara, Hap Kolb, Uli Lutz, Anoop Maha-ajan, Kimberly Miller, Marga Reis, Bernhard Rohrbacher, Joachim Sabel, Ken Safir, Matthias Schlesewsky, Uli Sauerland, Peter Staudacher, Arnim von Stechow, Craig Thielsch, Hubert Truckenbrodt, Sten Vikner, Gert Webelhuth, and Chris Wilder. A special thank you goes to Gisbert Fanselow and Wolfgang Sternefeld, whose influence on this book is tremendous and who also provided detailed written comments. I also gratefully acknowledge the opportunity to present part of the material in this study to audiences at the 19th GGS meeting in Zürich (1993), the 9th Comparative Germanic Syntax Workshop at Harvard University (1994), the Potsdam University Workshop on Phrase Structure and Lexical Structure (1994), the LOT Winter School at Tilburg University (1995), the SFB-Workshop “Nachfeldsyntax” at Tübingen University (1995), the Utrecht University Workshop on Optionality (1995), the colloquium of the Graduiertenkolleg at Stuttgart University (1996), and a seminar at Potsdam University (1996/1997). Finally, I would like to thank the two reviewers for Studies in Natural Language and Linguistic Theory for their careful reading and their helpful comments, which led to numerous improvements.

Research for this monograph was supported by a DFG grant to the Sonderforschungsbereich 340, project A7 (Arnim von Stechow & Wolfgang Sternefeld, principal investigators). Part of the material in this book is also contained (in a somewhat different, earlier version) in articles that have appeared elsewhere. First, the analysis given in section 6 of chapter 2 is taken from the paper “Optional Movement and the Interaction of Economy Constraints” which has appeared in the volume The Role of Economy Principles in Linguistic Theory, edited by Manfred Bierwisch, Hans-Martin Gärtner, and Chris Wilder (Berlin: Akademieverlag, 1997, pp. 115-145). Second, parts of chapter 4 show up as the article “Extraposition as Remnant Movement” that appears in the volume Rightward Movement, edited by Dorothee Beermann, David LeBlanc,
and Henk van Riemsdijk (Amsterdam: Benjamins, 1997). Finally, an earlier version of parts of chapter 5 is contained in the paper “A Constraint on Remnant Movement” that has appeared in *Natural Language and Linguistic Theory* 14 (1996), pp. 355-407.
Chapter 1

Incomplete Category Fronting

1. The Phenomenon

It is a well-known characteristic of German syntax that “incomplete” or “partial” constituents can be fronted. Consider the following examples involving topicalization of a verbal category.¹

(1) a. [, Gelesen]₁ hat [IP das Buch keiner t₁]
 read has the book\textsubscript{acc} no-one\textsubscript{nom}

b. [, Gelesen]₁ hat [IP keiner das Buch t₁]
 read has no-one\textsubscript{nom} the book\textsubscript{acc}

In these examples, a participle has been moved in front of the finite verb in V/2 position. The central question connected with this movement is the following: Does the fronted verbal category \(\beta \) include a trace of the direct object (\textit{das Buch} (‘the book’)) in (1-a) and (1-b), or does \(\beta \) only contain a verb? This question has been answered controversially in the literature within the Principles and Parameters framework as developed in, for instance, Chomsky (1981; 1986) and Chomsky & Lasnik (1993).

On the one hand, Thiersch (1985) and den Besten & Webelhuth (1987; 1990) (and, following them, Stechow & Sternefeld (1988, ch.12), Huang (1993), Bayer (1993), and Grewendorf & Sabel (1994)) have argued that \(\beta \) in (1) is a full VP containing a trace of the direct object. What is fronted under this approach is a remnant category, i.e., a VP including a trace of the direct object that is not bound at S-structure. In this analysis, the derivation of (1-a) and (1-b) necessarily involves two instances of movement. First, the direct object \textit{das Buch} is scrambled out of the VP and adjoined to IP in front of the subject in (1-a) and (string-vacuously) to VP in (1-b); second, the

¹See, e.g., Paul (1919, par. 68) for some early discussion. Paul gives examples like \textit{Gemahnt hab ich ihn schon oft} (lit. ‘Reminded have I him already often’), and notes: “In besonderen Fällen kann der Inf. oder das Part. wie ein anderes Satzglied als psychologisches Subj. an die Spitze des Satzes treten.”
remnant VP is topicalized. This is shown for (1-a) in (2):²

(2) \[VP \ t_2 \ Gelesen \hat{1} \ IP \ [NP \ das \ Buch]_2 \ [IP \ keiner \ t_1] \]

The structure of (1-b), under this view, looks as in (3):³

(3) \[VP \ t_2 \ Gelesen \hat{1} \ IP \ [NP \ das \ Buch]_2 \ [IP \ keiner \ t_1] \]

In what follows, I will refer to this analysis as the remnant movement approach.

On the other hand, it has been suggested by Fanselow (1983; 1992), van Riemsdijk (1989), and Frey & Tappe (1991), among others, that incomplete category fronting as in (1-a) does not involve remnant movement in the sense of (2) and (3); rather, β in (1-a) is assumed to be a complete verbal category that does not contain a trace of the direct object. This kind of analysis comes in two subvarieties. Fanselow (1983) and van Riemsdijk (1989) propose that verbal projections other than VPs can undergo topicalization in German (i.e., V' categories and V⁰ categories as well); the structure of, e.g., (1-a) then looks as in (4-a). Frey & Tappe (1991) and Fanselow (1992), in contrast, argue that although what has undergone movement in the sentences in (1-a) is a VP, the fronted category does not contain an unbound trace – in this approach, arguments of the verb are base-generated in VP-adjoined positions, so that a lower VP segment that does not dominate an argument trace can be topicalized; cf. (4-b):

(4) a. \[V \ Gelesen \hat{1} \ IP \ [NP \ das \ Buch] \ keiner \ t_1] \]

b. \[VP \ Gelesen \hat{1} \ IP \ [NP \ das \ Buch]_2 \ keiner \ [VP \ t_2 \ t_1] \]

Clearly, the two approaches to incomplete category fronting in German (remnant movement vs. movement of a “small” verbal category) differ substantially, from a con-

²Huang (1993) and Bayer (1993) in addition assume that β also contains a trace of the subject, which follows under the Predicate-Internal Subject Hypothesis (cf. Kitagawa (1986), Sportiche (1988), Speas (1990), and Koopman & Sportiche (1991), among many others). Here and henceforth, I will mostly ignore possible VP-internal subject traces, unless this affects an issue under discussion; see in particular chapter 5.

³In (3), string-vacuous scrambling of NP₂ ends up in a VP-adjoined position, and remnant VP topicalization affects only the lower VP segment. Such an analysis might be problematic under several theories of projection and adjunction; see, e.g., Kayne (1994) and Kolb (1995). Alternatively, one might postulate (under the remnant movement approach) that NP₂ is adjoined to some functional XP between VP and IP. In what follows, I will abstract away from this issue, assuming adjunction to VP and topicalization of a VP-segment in (3), mainly for reasons of simplicity.

⁴This is only partially true in the case of van Riemsdijk (1989, 129), who suggests that after V- or V'-movement, the fronted category is subject to a regeneration operation that creates a full VP.
ceptual point of view as well as from an empirical one. In the next section, I first give a well-known conceptual argument supporting the hypothesis that incomplete category fronting involves remnant movement in the sense of (2) and (3), and then go on to explore several empirical predictions that arise under this approach and that will be shown to lend support to it.

2. The Remnant Movement Approach

2.1. A Conceptual Argument for Remnant Movement

Given the general nature of the rule Move α, it is necessary to impose severe restrictions on its application and output. One such restriction recognized in Chomsky (1986) is this:

(5) Only XPs and X^0 categories can undergo movement.

From (5), it follows that the fronted items β in (1-a) are either XPs or X^0s. Whereas (5) does not yet force a decision between the competing approaches on the basis of examples like (1-a), it does already pose a problem for the analysis proposed by Fanselow (1983) and van Riemsdijk (1989) on the basis of (6).

(6) \[_{\tau} \text{Ein Buch} \text{ gegeben } , \text{ hat} \text{ die} \text{ Claudia} \text{ dem} \text{ Peter} \text{ t1} \text{ a book} \text{acc} \text{ given} \text{ has} \text{ ART Claudia} \text{nom} \text{ ART Peter} \text{dat} \]

Here, one internal argument of the verb goes along with it under topicalization (viz., the accusative NP \text{ein Buch} (‘a book’)), and the other internal argument (the dative NP \text{dem Peter}) stays behind. Clearly, then, under Fanselow’s (1983) and van Riemsdijk’s (1989) proposal, what has undergone topicalization must be a V’ category (it cannot be a V0 category, and a VP would automatically contain a trace), in violation of (5). Next, consider the standard assumption of X-bar theory in (7), put forward in Chomsky (1981; 1986) and Stowell (1981).

(7) Every non-head is an XP.

Interestingly, work on incomplete category fronting in German which has been carried out within the framework of HPSG reflects more or less the same fundamental dichotomy. Extraction in HPSG is handled in terms of the creation and passing on of a SLASH feature; so, Hinrichs & Nakazawa’s (1994, 11ff) approach, which makes crucial use of a SLASH feature on an incomplete topicalized VP, is in many respects similar to the Principles and Parameters approach in terms of remnant movement. On the other hand, it is suggested by Nerbonne (1994, 112ff) and others that an incomplete topicalized VP does not bear a SLASH feature signalling the absence of one or more arguments of V; this approach is similar in certain respects to the Principles and Parameters approach that relies on the movement of “small” verbal categories.

For an attempt to derive both the assumptions in (5) and (7) from independently established principles of movement and projection, cf. Chomsky (1995).
Given (7), even the data in (1-a) cannot be derived under the analysis of Fanselow (1983) and van Riemsdijk (1989) anymore – the landing site of topicalization, being a non-head position, can only be filled by an XP. However, both (5) and (7) are compatible with the analysis developed by Frey & Tappe (1991) and Fanselow (1992), according to which an example like, e.g., (6) looks as in (8) before topicalization applies:

(8) – hat die Claudia dem Peter [VP ein Buch [VP gegeben]]
 has ART Claudia nom ART Peter dat a book acc given

It is assumed that the indirect object and the direct object are base-generated in VP-adjoined positions, and VP-topicalization can then affect either the smallest VP (giving a result comparable to the sentences in (1-a)), or the immediately dominating VP containing the direct object and the verb (as in (6)), or the next higher VP that also includes the indirect object, as in (9).

(9) [VP Dem Peter [VP ein Buch [VP gegeben]]] hat die Claudia
 ART Peter dat a book acc given has ART Claudia nom

Still, it seems that there are problems with Frey & Tappe’s (1991) and Fanselow’s (1992) approach. First, their approach necessitates a special assumption about the projection of verbs in German – it must be stipulated that arguments of V are never projected VP-internally, in contrast to what is the case in other languages. This special assumption conflicts with standard X-bar theory (see Stowell (1981), Chomsky (1981)) and with recent ideas developed in Chomsky (1995). Second and more importantly, it seems that this analysis has difficulty accounting for sentences like those in (10) in a straightforward way.

(10) a. [β Dem Peter gegeben] hat die Claudia [VP ein Buch [VP gegeben]]
 ART Peter dat given has ART Claudia nom a book acc given

b. [β Einem Mann geschenkt] hat sie die Kette [VP gegeben]
 ART Mann dat given has she nom chain acc given not

Here, the indirect object, bearing dative Case, undergoes topicalization along with the verb (and not the direct object, as in (6)). To derive examples like those in (10) based on the analysis in Frey & Tappe (1991) and Fanselow (1992), it appears that one either has to relax the laws governing projection in German (such that, as an alternative to (8), a direct object can be base-generated above a dative-bearing indirect object in double object constructions in German), or one has to acknowledge the existence of an unbound trace of the direct object in the fronted VP in (10) after all.7

7 Although there can be little doubt that the sentences in (10) are well formed from a purely grammatical point of view, markedness is also an issue here – sentences of the type in (10) (where the indirect object and the verb are fronted together, and the direct object remains in an IP-internal position) are generally perceived as more marked than sentences of the type in (6) (where the direct object and the verb are fronted together,
Similarly, the (relative) wellformedness of the examples in (11) poses a problem for the approach developed by Frey & Tappe (1991):

(11) a. \[VP \ t_1 \ Vermutet \ t_2 \] habe ich sie \[PP \ in \ Prague \] t_1 t_2

assumed have I her in Prague

‘I have assumed that she is in Prague.’

b. \[VP \ (t_2) \ t_1 \ Angestrichen \ t_3 \] hat er \[NP \ das Haus \ t_2 \ [AP \ blau \ t_3 \]
painted has he the house_{acc} blue

Under Frey & Tappe’s (1991, 9ff) assumptions, the non-argumental categories PP in (11-a) and (11-b), respectively, are base-generated VP-internally, in contrast to arguments (like NP in (11-b)). This implies that unbound traces show up in the fronted VPs, even under their assumptions – unless one is willing to adopt the view that neither arguments nor non-arguments (as in (11)) can show up VP-internally in German.8

Admittedly, these conceptual considerations are not yet compelling. If there is strong counter-evidence to the existence of unbound traces which the remnant movement approach developed by Thiersch and den Besten & Webelhuth presupposes, one might rightfully reconsider and call into question the overall framework which is embodied in assumptions like (5) and (7), and in the standard assumptions concerning lexical projection. Still, if such counter-evidence is absent, or can be explained away, it seems that there is every reason to adopt the remnant movement approach to incomplete category fronting, and not an approach along the lines of small category fronting, as envisaged by Fanselow, van Riemsdijk, and Frey & Tappe. Thus, in the remainder of this monograph, I will postulate that the remnant movement approach is in fact correct. In the following subsection, I address a welcome consequence of the remnant movement approach with respect to cross-linguistic variation.

2.2. Cross-linguistic Variation

As shown in (12), VP topicalization is an option in English:

(12) \[VP \ Kicked \ the \ dog \ t_2 \] John never has t_2

and the indirect object stays behind). One might hold that these markedness considerations somehow relate to the issue of whether VP fronting retains ‘normal’ or ‘unmarked’ word order; but, for lack of an articulated theory of markedness as opposed to (un-)grammaticality, I will not pursue the matter any further here.

8It should be noted that examples like these are considered ungrammatical by Frey & Tappe. Similarly, Sabel (1995, 67-72) gives analogous examples that he considers ill formed, and he concludes that non-argument traces may never occur unbound. I do not follow these judgements here (or, in the case of some of Sabel’s examples, I surmise that the illformedness has an independent reason), and assume that remnant movement may create both unbound argument traces and unbound non-argument traces, as long as no independent constraints are violated. That said, the issue of markedness as opposed to (un-)grammaticality that was brought up in the last footnote arises here, too.
However, unlike German, English does not exhibit incomplete category fronting as in (1-a); compare the ungrammatical English sentences in (13) to their German counterparts in (14) (= (1-a)).

(13)
 a. *[VP t2 Kicked] John [NP the dog] never has t1
 b. *[VP t2 Kicked] John never has [NP the dog] t1

(14)
 a. [VP t2 Gelesen] hat [IP das Buch] keiner t1
 read has the book acc no-one nom
 b. [VP t2 Gelesen] hat [IP keiner [NP das Buch] t2 t1]
 read has no-one nom the book acc

Thiersch (1985) and den Besten & Webelhuth (1987; 1990) have observed that, according to the remnant movement approach, this instance of cross-linguistic variation follows without any further assumptions from the fact that German has a scrambling rule and English does not. Recall that under this approach, VP topicalization in examples like (14-a) and (14-b) is necessarily preceded by a scrambling operation that moves NP2 (das Buch (‘the book’)) out of the VP. Clearly, one can predict that if a language does not exhibit scrambling, it will not exhibit remnant VP topicalization of this type either. English, in contrast to German, does not exhibit scrambling, and therefore the absence of constructions like those in (13) is explained straightforwardly: It is not remnant VP topicalization per se that is ungrammatical in (13); rather, the preceding scrambling operation which moves NP2 (the dog) out of the VP is not permitted. Thus, the ungrammaticality of, e.g., (13-a), is derived in exactly the same way as the ungrammaticality of (15).

(15)
*John has [NP the dog], never kicked t1

In contrast, according to an approach in which incomplete category fronting does not involve unbound traces, it is far from clear why the English examples in (13) are ungrammatical.

The remnant movement approach is further corroborated by the observation that although English lacks constructions of the type in (1-a), there is no general prohibition against incomplete VP topicalization in English. Consider the following sentence (see Thiersch (1985, 13), Barss (1986, 409), Browning (1987, 362ff), Saito (1989, 199), Höhle (1991, 170f), and Huang (1993, 105ff), among others, for extensive discussion of this type of construction):

(16)
[VP Criticized t2 by his boss], John2 has never been t1

2. The Remnant Movement Approach

In (16), a remnant VP has undergone topicalization, but in contrast to the examples in (13), ungrammaticality does not result. There is indeed a crucial difference between the ill-formed examples in (13-a) and (13-b), and the well-formed example in (16) – the topicalized VP headed by the passivized verb *criticized* in (16) contains a trace of Case-driven A-movement, rather than a trace left by scrambling. Given that A-movement to SpecI is available in English, the wellformedness of (16) is to be expected under the remnant movement approach.10

A look at other Germanic languages provides further evidence for reducing the contrast between the German examples in (14) and the English examples in (13) to the independently attested property of exhibiting or lacking a scrambling rule that generates structures with free word order. It appears that precisely those languages which lack scrambling fail to exhibit incomplete category fronting of the type in (1-a). This holds, e.g., for Swedish and Danish.11 Dutch, however, which has scrambling, permits incomplete category fronting of the type in (1-a).12

10 A certain type of construction is sometimes taken to show that remnant movement in English may in fact not “strand” antecedents in A-positions; cf. Saito (1989, 199), Lasnik & Saito (1992, 140ff), and literature cited there. A relevant example is (i), which is ungrammatical, in contrast to (ii):

(i) *[How likely t1 to be a riot] is there t1 ?
(ii) There t1 is likely [t1 to be a riot]

I will assume (following Höhle (1991), Huang (1993), and Takano (1993)) that examples like (i), and not examples of the kind in (16), represent the exception, so that we can ignore (i) for the present purposes.

11 While these languages do not exhibit scrambling, they do not lack IP-internal extraction from VP completely: If (and only if) the main verb has moved out of VP, weak object pronouns obligatorily undergo raising out of the VP (“object shift”) to a position following the finite verb (cf. Holmberg (1986) and Vikner (1994), among many others). Interestingly, at first sight it looks as though object shift can lead to remnant VP topicalization in Swedish, just as scrambling in German does (cf. Holmberg (1997)):

(i) [VP Kysst t1]2 har jag henne1 inte t2 (bara hållit henne i handen)

kissed have I her not (just held her by the hand)

However, Holmberg (1997) argues that (i) does not actually involve remnant VP movement (because the object pronoun *hennes* would have had to leave the VP without verb raising of *kysst* having taken place), but rather (exceptional) topicalization of a bare V0 category. I will remain uncommitted as to whether such a drastic step is indeed necessary for (i), or whether the remnant movement analysis could be maintained after all – this second approach would minimally require a view of the dependence of object shift on verb fronting that is based not on a structural notion (c-command) but on a linear notion (precedence).

12 Scrambling in Dutch is somewhat more restricted than its German counterpart; among other things, it normally may not change the D-structure order of arguments (cf. Neeleman (1994), among others). Interestingly, it turns out that Dutch incomplete category fronting is more restricted, too. For instance, examples like (1-bc) of the preface are not permitted in Dutch, in contrast to German (cf. Zwart (1993)). I will leave open the questions of how these two facts are to be accounted for, and whether the two phenomena could in fact be correlated, focussing on German throughout.
Constructions that are superficially similar to remnant topicalization in German can also be found in Celtic and Slavic languages, e.g., in Breton and Serbo-Croatian. A Breton example is given in (17) (cf. Borsley (1990, 82)):

(17) Lennet₁ en deus t₁ Tom al levr
 read have₃.Sing/Masc Tom the book
 ‘Tom has read the book.’

Under standard assumptions, VSO order in the Celtic languages is derived by raising of the finite verb out of the VP into a functional head position that precedes the subject position. Various kinds of categories can then be moved into a position in front of the finite verb, e.g., adverbs or objects. As shown in (17), what can also undergo fronting in this context is a participle, stranding its object in the VP. At first sight, this looks completely parallel to remnant topicalization of the German type, and this might constitute a problem given that Breton is a language that does not exhibit scrambling. However, as argued by Hendrick (1990, 128-131) and Schafer (1995, 12-13), there is reason to believe that (17) does not involve (remnant) VP movement, but rather movement of an X₀ category. I will confine myself to two pieces of evidence that immediately confirm this view: First, a construction that differs minimally from (17) in that it must involve fronting of a complete VP is in fact ungrammatical (see Borsley (1990, 82) and Hendrick (1990, 130)), which clearly suggests that participles can only be fronted via head movement in Breton; cf.:

(18) *[VP Al levr lennet]₁ en deus t₁
 the book read have₃.Sing/Masc Tom

And second, Borsley and Hendrick note that participle fronting of the type in (17) is always clause-bound in Breton. Again, this is a property of head movement, but not of XP movement (and indeed, remnant VP topicalization in German can apply long-distance, see subsection 3.3.3 of chapter 5 below).

Turning next to Serbo-Croatian, a relevant example that at first sight resembles remnant VP topicalization in German is given in (19) (see, e.g., Rivero (1991)):

(19) Čitao₁ sam t₁ knjigu
 read have₁.Sing/Cl book
 ‘I have read the book.’

Given that Serbo-Croatian has scrambling, a remnant movement analysis does not look impossible here. However, it seems that there is reason to believe that (19) does not have to involve a combination of scrambling and remnant topicalization, but can be analyzed in terms of X₀ movement that is phonologically triggered; cf. in particular Wilder & Čavar (1994, 61ff).

Summarizing, it seems that the remnant movement approach explains cross-linguistic variation with respect to the option of incomplete category fronting straightforwardly, which can thus be viewed as independent corroboration.
In the following three subsections, I will discuss an empirical consequence of the remnant movement approach: If there is an unbound trace in the fronted category that results from movement, the construction is expected to exhibit typical properties of movement. This prediction will be shown to be borne out by data involving extraction from NP (subsection 2.3), extraction from PP (subsection 2.4), and extraction from infinitives (subsection 2.5).

2.3. Remnant NPs

2.3.1. The Phenomenon

The following examples involve incomplete category topicalization with a nominal category (and not with a verbal category, as in the examples discussed up to now).

\(20\)
\[\text{[NP Ein Buch } \text{t}_1 \text{]_2 hat Antje [PP über die Liebe } \text{t}_1 \text{, t}_2 \text{ gelesen}}\]
\[\text{a book}_{\text{acc}} \text{ has Antje}_{\text{nom}} \text{ about the love read}\]
\[\text{b. [NP Ein Buch } \text{t}_1 \text{]_2 hat [PP über die Liebe } \text{t}_1 \text{ niemand } \text{t}_2 \text{ gelesen}}\]
\[\text{a book}_{\text{acc}} \text{ has the love no-one}_{\text{nom}} \text{ read}\]

In both (20-a) and (20-b), an NP-internal THEME argument (the PP \(\text{über die Liebe}\) (‘about love’)) fails to undergo fronting together with the noun it belongs to (\(\text{Buch}\) (‘book’)); this PP occurs after the subject in (20-a), and in front of the subject in (20-b). Under the remnant movement approach, an unbound scrambling trace of the THEME argument of the head noun is present in the fronted item in (20).

A similar situation appears in sentences like (21).

\(21\)
\[\text{[VP [NP Ein Buch } \text{t}_1 \text{ gelesen }]_1 \text{ hat [PP darüber }]_1 \text{ keiner } \text{t}_3 \text{ gelesen}}\]
\[\text{a book}_{\text{acc}} \text{ read has about that no-one}_{\text{nom}} \text{ read}\]

Here, a verb and its direct object undergo topicalization, leaving material behind, just as in (6) above. However, what is left behind in (21) is not another argument of the verb (as in (6), where the indirect object stays in the middle field), but rather the internal argument of the head noun of the direct object, as in (20-a) and (20-b). Again, the remnant movement approach predicts that a trace of this argument PP is present in the incomplete category that is topicalized. We are now led to expect that the construction in (20) and (21) will behave similarly to “regular” instances of extraction from NP in German; indeed, this seems to be the case, by and large. To illustrate this, I will first highlight some properties of extraction from NP in German, and argue that extraction from NP does indeed exist as a syntactic movement operation that leaves an NP-internal trace.

2.3.2. Extraction from NP

Consider some typical instances of extraction from NP in German, as in (22).
(22) a. Worüber\textsubscript{1} hat keiner \[\text{NP ein Buch t\textsubscript{1}}\text{] gelesen ?}
about what has no-one\textsubscript{nom} a book\textsubscript{acc} read
b. dass darüber keiner je \[\text{NP ein Buch t\textsubscript{1}}\text{] gelesen hat}
that about that no-one\textsubscript{nom} ever a book\textsubscript{acc} read has

At least at first sight, it looks as though (22-a) involves wh-extraction of the PP wor-
über (‘about what’) from the object NP and as though (22-b) is a case of scrambling
of the PP darüber (‘about that’) from the object NP. However, independently of the
issue of remnant movement in (20) and (21), the literature disagrees about whether or
not a trace t\textsubscript{1} is present in the examples in (22). Chomsky (1977) has proposed that
English examples which completely parallel those in (22) only superficially give the
impression of extraction from NP. Under this view, what looks like extraction from
NP is actually the result of a reanalysis process that allows the PP to optionally be
base-generated outside of the NP; see Fanselow (1987) (among others) for an account
of examples like those in (22) in German along these lines. The purported reanaly-
sis rule is then assumed to be subject to lexical variation, as shown in (23) (which is
structurally identical to (22-a) – only the governing verb differs).

(23) *Worüber\textsubscript{1} hat keiner \[\text{NP ein Buch t\textsubscript{1}}\text{] geklaut ?}
about what has no-one\textsubscript{nom} a book\textsubscript{acc} stolen

In contrast to that view, Webelhuth (1987; 1992), Fanselow (1991), and Müller (1995)
argue that extraction from NP in German has a number of properties that are proble-
matic for a reanalysis approach and that suggest the existence of an NP-internal trace.
I will briefly sketch some of these properties. First, extraction from NP never appears
with subjects (of transitive or unergative verbs); cf. (24).

(24) *Worüber\textsubscript{1} hat \[\text{NP ein Buch t\textsubscript{1}}\text{] Antje beeindruckt ?}
about what has a book\textsubscript{nom} Antje\textsubscript{acc} impressed

Second, it never occurs with indirect objects (cf. (25-a)), even if the verb as such
allows extraction from NP (cf. (25-b), where extraction from a direct object occurs).

(25) a. *[pp Worüber \textsubscript{1}] hat man \[\text{NP einem Buch t\textsubscript{1}}\text{] einen Preis}
about what has one\textsubscript{nom} a book\textsubscript{dat} an award\textsubscript{acc} given ?
b. [pp Worüber \textsubscript{1} hat man Antje \[\text{NP ein Buch t\textsubscript{1}}\text{] gegeben ?}
about what has one\textsubscript{nom} Antje\textsubscript{dat} a book\textsubscript{acc} given

Third, extraction from a definite NP exhibits a Specificity effect (see Chomsky (1981,
235), Mahajan (1992), and Webelhuth (1992, 170), among others); this is shown in
(26).

(26) *[[pp Worüber \textsubscript{1}], hat Antje \[\text{NP das Buch t\textsubscript{1}}\text{] gelesen ?}
about what has Antje\textsubscript{nom} the book\textsubscript{acc} read
Fourth, PP extraction is impossible if a pre-nominal possessor is present (a Specified Subject Condition (SSC) effect; see Chomsky (1973)):

\[(27) \text{ *[} \text{PP } \text{Worüber } \text{1} \text{, hat Antje } \text{[NP Karls Buch } \text{t}1 \text{]} \text{ gelesen ?} \]

about what has Antje \(_{nom}\) Karl's \(_{gen}\) book \(_{acc}\) read

And finally, Freezing effects occur if the direct object undergoes scrambling, in the sense that the scrambled object becomes opaque for extraction; compare (28-a) to (28-b) (= (22-a)):

\[(28) \text{a. *[} \text{PP } \text{Worüber } \text{1} \text{, hat [NP ein Buch } \text{t}1 \text{]} \text{ keiner } \text{t}2 \text{ gelesen ?} \]

about what has \text{book} \(_{acc}\) \text{no-one} \(_{nom}\) read

\n\text{b. [PP Worüber]1, hat keiner [NP ein Buch } \text{t}1 \text{]} \text{ gelesen ?} \]

about what has \text{no-one} \(_{nom}\) a \text{book} \(_{acc}\) read

All these island properties are indicative of movement, and given the presence of an NP-internal trace, they can be explained by invoking locality constraints (cf. chapter 2). On the other hand, under the reanalysis approach it is unclear how to account for the the data in (24) – (28).

Now, it is known that verbs like lesen (‘read’) in (28-b), in contrast to verbs like klauen (‘steal’) in (23), may occur in constructions in which the PP is present but the NP is either completely absent or realized only as a pronoun. This is generally taken to be the strongest argument in support of the base-generation approach to extraction from NP. Cf. (29-a) vs. (29-b).

\[(29) \text{a. dass Fritz (?es) [PP über die Liebe] gelesen hat} \]

that Fritz \(\text{it}\) about the love \(\text{read}\) has

\n\text{b. *dass Fritz (es) [PP über die Liebe] geklaut hat} \]

that Fritz \(\text{it}\) about the love \(\text{stolen}\) has

However, verbs like geben (‘give’) in German behave like lesen in that they permit extraction from NP (cf. (25-b)), but behave like klauen (‘steal’) in that they do not allow the NP to be pronominal or dropped (cf. (30)). Thus, the correlation breaks down, and with it goes the argument for reanalysis.

\[(30) \text{*dass man (es) Antje [PP über die Liebe] gegeben hat} \]

that one \(_{nom}\) \text{it} \(_{acc}\) Antje \(_{dat}\) about the love \(\text{given}\) has

All in all, the reanalysis approach to extraction from NP turns out to be highly problematic from an empirical point of view. Given that there are also a number of substantial conceptual problems connected with this analysis (such as the formal nature of the reanalysis rule involved; cf. Weibelhuth (1987), and also Baltin & Postal (1996, 135ff) for discussion), and given that the phenomenon of lexical variation with extraction from NP can be accounted for without (non-structure preserving) reanalysis processes (for instance, by invoking the structure-preserving notion of abstract incorporation; see Müller (1995, ch. 2)), I conclude that the examples in (22) involve genuine move-
ment out of NP.

2.3.3. Remnant NPs

With this in mind, let us return to the examples in (20) and (21) that involve incomplete category topicalization; these examples are repeated here.

(31) a. \[NP Ein a\text{\char102} Buch\text{\char127}Antje\text{\char127}PP über die Liebe\text{\char127}t_1, t_2 gelesen\] a book\text{\char127}Antje\text{\char127}PP about the love read
b. \[NP Ein Buch\text{\char127}t_1, t_2 gelesen\] a book\text{\char127}no-one\text{\char127}read

c. \[VP\text{\char127}NP Ein Buch\text{\char127}t_1, t_2 gelesen\] has about that no-one\text{\char127}read

If an NP-internal trace \(t_1\) is present in the examples in (31), the construction should exhibit the properties indicating movement that have just been discussed. This is indeed the case. Note first that (31-a) is ungrammatical if the governing verb \textit{lesen} is replaced by \textit{klauen} (cf. (23)):

(32) *\[NP Ein Buch\text{\char102}Antje\text{\char127}PP über die Liebe\text{\char127}t_1, t_2 geklaut\] a book\text{\char127}Antje\text{\char127}PP about the love stolen

Second, incomplete nominal categories that are subjects cannot be fronted (cf. (24)):

(33) a. *\[NP Ein Buch\text{\char127}Antje\text{\char127}PP über die Liebe\text{\char127}t_1, t_2 beeindruckt\] a book\text{\char127}Antje\text{\char127}PP about the love impressed
b. *\[NP Ein Buch\text{\char127}Antje\text{\char127}PP über die Liebe\text{\char127}Antje\text{\char127}t_1, t_2 beeindruckt\] a book\text{\char127}Antje\text{\char127}PP about the love Antje\text{\char127}impressed

Third, indirect object NPs cannot undergo topicalization if an internal argument of the head noun of the indirect object stays behind, even if the verb as such permits extraction from NP (with direct objects). This is just what one would expect under the remnant movement approach (cf. (25-a) and (25-b)):

(34) a. *\[NP Einem Buch\text{\char127}Antje\text{\char127}PP über die Liebe\text{\char127}t_1, t_2 gegeben\] a book\text{\char127}Antje\text{\char127}PP about that an award\text{\char127}given
b. *\[NP Ein Buch\text{\char127}Antje\text{\char127}PP über die Liebe\text{\char127}t_1, t_2 gegeben\] a book\text{\char127}Antje\text{\char127}PP about the love Antje\text{\char127}given

Fourth, a Specificity effect appears when an incomplete nominal category is fronted, again suggesting that this category contains a trace of movement (cf. (26)):

(35) *\[NP Das Buch\text{\char127}Antje\text{\char127}t_1, t_2 gelesen\] the book\text{\char127}Antje\text{\char127}read
2. The Remnant Movement Approach

And, finally, the construction is not immune to Specified Subject Condition (SSC) effects, which again is indicative of movement, i.e., of a trace in the fronted NP (cf. (27)):

(36) *[\text{NP} \text{Karls}\text{ Buch} t_1] \text{ hat } \text{Antje} [\text{PP über die Liebe } t_2 \text{ gelesen}]

Karl’s gen book acc has Antje nom about the love read

To sum up, the parallelism between cases of ordinary extraction from NP and cases involving fronting of an incomplete nominal category is explained directly under the remnant movement approach; remnant NP topicalization behaves just as we would expect it to.\(^{13}\)

2.4. Remnant PPs

PPs in German pattern with NPs rather than with VPs in that extraction from PP is possible only under certain circumstances. Hence, it does not come as a surprise that more or less the same conclusions can be drawn as in the preceding subsection.

As is well known (see, e.g., van Riemsdijk (1978)), extraction of an NP from a PP (i.e., P-stranding) in languages like Dutch and German is possible only if the NP is an R-pronoun (like \textit{wo} (\{+wh\}) and \textit{da} (\{–wh\}) in German) and not a full lexical NP. This is shown for German in (37-a) vs. (37-b):\(^{14}\)

(37) a. \[\text{Wo}_1 \text{ hat keiner } [\text{PP t}_1 \text{ mit }] \text{ gerechnet} \]
 where has no-one nom with counted

 b. *[\text{NP Dieser Sache} t_1] \text{ hat keiner } [\text{PP mit } t_1 \text{ gerechnet}]
 this thing dat has no-one nom with counted

At the moment, it is not important exactly how we account for the prohibition against extraction of full lexical NPs from PP in German (and Dutch) nor why PPs are not islands for extraction of R-pronouns in these languages. The only important thing in this context is that there is a condition on movement which is violated in (37-b) but met in (37-a) (following Bennis & Hoekstra (1984), Koster (1987), and Grewendorf (1989), one might assume that \textit{t}_1 is selected in the “wrong direction” in (37-b), but see the last footnote). With this in mind, consider the instances of incomplete category fronting in (38):

\(^{13}\)It should be noted, though, that the construction at hand does not seem to exhibit a Freezing effect, in striking contrast to ordinary instances of extraction from NP like (28-a). I will come back to this in section 3, and then discuss the issue at length in chapter 4.

\(^{14}\)Along with most of the literature on this topic, I assume here that extraction of an R-pronoun from a PP in German is an instance of postposition stranding, not preposition stranding, but see Müller (1995, 60-64 & 394:note 44) for arguments against this view. However, nothing hinges on this in the present context.
Chapter 1. Incomplete Category Fronting

(38)
\[\text{a. } \begin{array}{l}
\text{VP } \begin{array}{l}
\text{PP } t_1 \\
\text{Mit} \\
\text{gerechnet} \\
\text{hat} \\
\text{da_1 keiner} \\
\text{t_2}
\end{array} \\
\text{with counted has there no-one_{nom}}
\end{array} \\
\text{2}
\end{array} \]
\[\text{b. } \begin{array}{l}
\text{VP } \begin{array}{l}
\text{PP } t_1 \\
\text{Mit} \\
\text{gerechnet} \\
\text{hat [NP dieser Sache]} \\
\text{i keiner} \\
\text{t_2}
\end{array} \\
\text{with counted has this thing_{dat} no-one_{nom}}
\end{array} \\
\text{2}
\end{array} \]

In (38-a), the postposition mit (‘with’) undergoes topicalization together with the participle, leaving the R-pronoun da in the middle field, in front of the subject. The resulting sentence is well formed, or at least much better than its ungrammatical counterpart in (38-b), which differs minimally from (38-a) in that the R-pronoun da is replaced by the full lexical NP dieser Sache (‘this thing’).\(^{15}\) Thus, the sentences in (38) completely parallel those in (37). This state of affairs strongly suggests that the fronted VP in (38-a) contains a trace of the R-pronoun, just as (37-a) does. In conclusion, the very existence of constructions like the one in (38-a) again supports the remnant movement approach to incomplete category fronting.

So far, so good. It should be noted, however, that with extraction from PP there is an intervening factor that blurs the overall picture. In contrast to what was the case with NPs (cf. (31-a) and (31-b)), it does not appear to be possible to front just the PP, as in (39) (cf. den Besten & Webelhuth (1990, 82)):

(39)
\[\begin{array}{l}
\text{a. } \begin{array}{l}
\text{VP } \begin{array}{l}
\text{PP } t_1 \\
\text{Mit} \\
\text{gerechnet} \\
\text{hat da_1 keiner} \\
\text{t_2}
\end{array} \\
\text{with has there no-one_{nom} counted}
\end{array} \\
\text{2}
\end{array} \]
\[\text{b. } \begin{array}{l}
\text{gestern spie} \text{lt keiner } \begin{array}{l}
\text{PP } t_1 \\
\text{Mit} \\
\text{gerechnet} \\
\text{hat da_1 keiner} \\
\text{t_2}
\end{array} \\
\text{with has yesterday no-one_{nom} played}
\end{array} \\
\text{2}
\end{array} \]

Still, there is reason to believe that the illformedness of (39) does not have anything to do with the issue of remnant movement. To see this, consider (40):

(40)
\[\begin{array}{l}
\text{a. } \begin{array}{l}
\text{VP } \begin{array}{l}
\text{PP } t_1 \\
\text{Hat} \\
\text{gestern keiner} \\
\text{t_1 gespielt}
\end{array} \\
\text{with has yesterday no-one_{nom} played}
\end{array} \\
\text{2}
\end{array} \]
\[\text{b. } \begin{array}{l}
\text{Gestern spie} \text{lt keiner } \begin{array}{l}
\text{PP } t_1 \\
\text{Mit} \\
\text{gerechnet} \\
\text{hat da_1 keiner} \\
\text{t_2}
\end{array} \\
\text{with has yesterday no-one_{nom} played}
\end{array} \\
\text{2}
\end{array} \]

Assuming along with Emonds (1976), Kayne (1985), and others that separable prefixes like mit in mitspielen (cf. (40-b)) are base-generated as intransitive PPs, I see no a

\(^{15}\)Note that (38-a) is not judged grammatical in den Besten & Webelhuth (1990, 86). However, examples like (38-a) or (i-a)

(i)
\[\begin{array}{l}
\text{a. } \begin{array}{l}
\text{VP } \begin{array}{l}
\text{PP } t_1 \\
\text{Für} \\
\text{gekommen}
\end{array} \\
\text{for could}_{part} \\
\text{hat er da_1 wirklich nichts t_2}
\end{array} \\
\text{with has he there really nothing}
\end{array} \\
\text{2}
\end{array} \]
\[\begin{array}{l}
\text{c. } \begin{array}{l}
\text{für t_1 gekonnt}
\end{array} \\
\text{for could}_{part} \\
\text{hat er [NP diese Entwicklung]} \\
\text{wirklich nichts t_2}
\end{array} \\
\text{with has this development really nothing}
\end{array} \\
\text{2}
\end{array} \]

are at worst slightly marginal for many speakers (in particular, for those belonging to northern varieties of German), and occur regularly in colloquial speech. In any event, the contrast to examples like (38-b) or (i-b) should be evident for all speakers of German that permit postposition stranding at all.
priori reason why they should not be able to undergo topicalization, as in (40-a). But then, whatever eventually accounts for why P fronting is impossible in (40-a) is likely to also rule out incomplete category fronting in (39), so that we can conclude that the evidence to be gained from (39) does not bear on the issue of remnantness. That said, let me now turn to the third set of extraction data.

2.5. Coherent Infinitives

Whereas scrambling from finite clauses is strictly prohibited in German (cf. Ross (1967), Fanselow (1990), and Müller & Sternefeld (1993), among many others), the case is different with non-finite clauses. Certain kinds of infinitival clauses in German are transparent for scrambling (so-called “coherent” infinitives), whereas others are not (“incoherent” infinitives); cf. Bech (1955/57). The contrast between coherent and incoherent infinitives is shown in (41).

(41) a. dass [NP das Buch] \(\alpha\) zu lesen versucht that the book\textsubscript{acc} no-one\textsubscript{nom} to read tried has
b. *dass [NP das Buch] \(\alpha\) zu lesen abgelehnt has that the book\textsubscript{acc} no-one\textsubscript{nom} to read refused

Evidently, the only difference between (41-a) and (41-b) concerns the choice of the matrix verb – a verb like *versuchen* (‘try’) in German makes the infinitive transparent and thereby permits scrambling out of the embedded clause, whereas a verb like *ablehnen* (‘refuse’) does not create transparency. This systematic lexical variation in German has been accounted for in various ways (recent work includes Grewendorf (1987), Stechow & Sternefeld (1988), Sternefeld (1990), Fanselow (1991), Haider (1991; 1993), Sabel (1995), and Müller & Sternefeld (1995)). However, since a commitment to one of the competing theories of coherent infinitives in languages like German is – for the most part – not necessary for my present purposes, I will not take a firm stand on this issue here. Similarly, for the time being I will not commit myself with regard to the categorial status of coherent and incoherent infinitives in German (i.e., whether they are to be analyzed as CPs, IPs, VPs, or projections of some other functional head); the categorial status certainly bears on the issue of transparency. The only relevant thing in the present context is that scrambling from an infinitival clause

16Note also that the hypothesis that the illformedness of (39) is not due to a general constraint against remnant PP movement is reinforced by the fact that analogous constructions are possible in Italian; consider (i) (from Cinque (1990, 176));

(i) [pp *Addosso* \(t_1\)] \(t_2\) non gli \(\ell\) è caduta \(t_2\)
on not him\textsubscript{dat} (she) is fallen

The only relevant difference to the German example in (39) apparently is that the antecedent of the unbound trace has not undergone scrambling, but rather cliticization. I will return to this kind of construction in chapter 5 (section 5).
is subject to lexical variation; it is possible with certain embedding verbs, but not with others.

Interestingly now, lexical variation in extraction options as it appears in (41) is mirrored in cases of incomplete category fronting (cf. Fanselow (1989, 4), Grewendorf & Sabel (1994, 302) and Müller & Sternefeld (1995, 62)). Relevant examples are given in (42):

\[
\begin{align*}
(42) \ a. & \ [\alpha t_1 \text{Zu lesen }], \text{ hat } [\text{NP das Buch }], \text{ keiner } \ t_3 \text{ versucht} \\
& \text{to read has the book no-one tried} \\
& b. * [\alpha t_1 \text{Zu lesen }], \text{ hat } [\text{NP das Buch }], \text{ keiner } \ t_3 \text{ abgelehnt} \\
& \text{to read has the book no-one refused}
\end{align*}
\]

In both sentences, the object NP of the embedded infinitive shows up in front of the subject, in the matrix clause, and the infinitive itself has undergone topicalization. The result is well formed with the verb *versuchen* (‘try’) in (42-a), which permits a coherent construction, and ill formed with the verb *ablehnen* (‘refuse’) in (42-b), which is necessarily construed incoherently. Thus, the illformedness of (42-b) and the wellformedness of (42-a) correspond to expectations, given the remnant movement analysis.

Next, consider the examples in (43), which differ minimally from those in (42) in that the object NP of the infinitive shows up in a position following the matrix subject:

\[
\begin{align*}
(43) \ a. & \ [\alpha t_1 \text{Zu lesen }], \text{ hat keiner } [\text{NP das Buch }], \text{ t_3 versucht} \\
& \text{to read has no-one the book tried} \\
& b. * [\alpha t_1 \text{Zu lesen }], \text{ hat keiner } [\text{NP das Buch }], \text{ t_3 abgelehnt} \\
& \text{to read has no-one the book refused}
\end{align*}
\]

Again, the result is well formed with the embedding verb *versuchen* in (43-a), and ill formed with *ablehnen* in (43-b); and, again, it seems (at first sight at least) that this does not come as a surprise under the remnant movement approach.\(^{17}\)

\(^{17}\)There is, however, a complication, pointed out by Fanselow (1993, 28). In order to guarantee the ill-formedness of (43-b), one must ensure that the NP *das Buch* is indeed scrambled out of the embedded infinitival clause, and not simply scrambled within it. To see this, suppose that NP₁ in (43-b) is not actually moved out of α, but scrambled locally to α, creating a two-segment category, and the VP headed by the verb *zu lesen* (‘to read’) is then topicalized. This is shown in (i):

\[
\begin{align*}
(\text{i}) & \ *[\text{VP-t}_1 \text{Zu lesen }], \text{ hat keiner } [\text{NP das Buch }], \text{ t_3 abgelehnt} \\
& \text{to read has no-one the book refused}
\end{align*}
\]

If NP₁ is scrambled within the incoherent infinitive, the fact that the incoherent infinitive α does not permit scrambling out of it is irrelevant. One might hope, then, that topicalization of VP in (i) is still blocked by the presence of α. However, it is a fact that incoherent infinitives, although they block scrambling into the matrix clause, are not an obstacle for other movement operations, like topicalization and wh-movement. This is shown in (ii):
Consider next some cases of topicalization of an incomplete verbal category where the fronted item contains an infinitive of the type in (43):

\[(44)\]

\[
\begin{array}{l}
\text{a. } [VP [\alpha t_1 \text{ Zu lesen }]_3 \text{ versucht }]_2 \text{ hat keiner [NP das Buch]}_1 t_2 \\
\quad \text{to read } \text{ tried has no-one } \text{ the book}_{acc} \\
\text{b. } *[VP [\alpha t_1 \text{ Zu lesen }]_3 \text{ abgelehnt }]_2 \text{ hat keiner [NP das Buch]}_1 t_2 \\
\quad \text{to read } \text{ refused has no-one } \text{ the book}_{acc}
\end{array}
\]

Again, the same contrast shows up as between (42-a) and (42-b), or between (43-a) and (43-b). And again, this contrast follows under the remnant movement approach. Unlike what was the case with string-vacuous NP scrambling in a position following the subject in (43-b), no problem appears this time (cf. the previous footnote): NP$_1$ in (44-b) must be scrambled out of the incoherent infinitive α, thereby violating a locality constraint, because α-internal scrambling invariably would have meant that NP$_1$ undergoes fronting together with the two verbs *zu lesen* (‘to read’) and *abgelehnt* (‘refused’).

Finally, note that the coherence/incoherence distinction obtains with even more complex examples, as in (45):

\[(45)\]

\[
\begin{array}{l}
\text{a. } [VP [\alpha \text{ Dem Peter } t_1 \text{ zu geben }]_3 \text{ versucht }]_2 \text{ hat [NP das Buch]}_1 \\
\quad \text{Peter}_{dat} \text{ to give tried has the book}_{acc} \\
\quad \text{keiner } \text{ no-one}_{nom} \\
\text{b. } *[VP [\alpha \text{ Dem Peter } t_1 \text{ zu geben }]_3 \text{ abgelehnt }]_2 \text{ hat [NP das Buch]}_1 \\
\quad \text{Peter}_{dat} \text{ to give refused has the book}_{acc} \\
\quad \text{keiner } \text{ no-one}_{nom}
\end{array}
\]

For present purposes, it is immaterial why exactly incoherent infinitives do not block specifier movements like topicalization and *wh*-movement (cf. chapter 6); the only important thing in this context is that given this observation, (i) very much looks like a legitimate derivation and seems to be predicted to be well formed, contrary to fact. Thus, there must be some independent factor that guarantees that scrambling of NP$_1$ in (43-b) (and in (43-a), for that matter) must end up in a position external to the embedded non-finite clause, and cannot take place within the incoherent infinitive; this is indeed the conclusion arrived at in Grewendorf & Sabel (1994, 290-291), Müller & Sternefeld (1995, 65-73), and Zwart (1993, 108). I will not go into these analyses here, mainly because that would require a commitment to an articulated theory of the structure of coherent and incoherent infinitives. (Incidentally, the first two analyses build on Baker’s (1988) approach that crucially posits VP raising to an infinitive-internal specifier position.) It may suffice to bear in mind that (43-b) cannot be analyzed in terms of local scrambling of NP$_1$ under these analyses, and that, therefore, the only possibility that remains is long-distance scrambling of NP$_1$ into the matrix clause, an option that is not available here (for lexical reasons).
In (45), a VP comprising (a) the embedded infinitival verb, (b) its indirect object, and (c) the embedding participle is topicalized; the direct object NP of the embedded verb is scrambled to a position in front of the matrix subject. Such topicalization is legitimate if the fronted participle permits a coherent construction, as in (45-a), and illegitimate if the fronted participle does not, as in (45-b). Again, this follows under the remnant movement approach.

Summarizing the last three subsections, there are typical restrictions on extraction from NP, PP, and infinitivals, and these restrictions can be taken to be indicative of movement, i.e., of the presence of traces. The fact that basically all of these restrictions (with the exception of Freezing effects, see note 13) are preserved under incomplete category fronting is just what we would expect under the remnant movement approach, and can therefore be viewed as corroborating it.

3. Peculiar Properties

In the last section, I have shown that there is evidence suggesting that something like remnant movement does exist – fronted “incomplete categories” behave as though they contain (unbound) traces in many respects. However, closer scrutiny reveals that remnant movement has a number of striking properties that set it apart (at first sight at least) from other, well-established cases of movement. In what follows, I would like to highlight four such properties of remnant movement, concerning (a) the Proper Binding Condition, (b) the absence of Freezing effects, (c) unexpected asymmetries between types of movement, and (d) an otherwise undocumented restriction on the kind of trace that may show up in remnant categories.

3.1. Proper Binding

Maybe the most obvious peculiarity of remnant movement constructions is that they violate the Proper Binding Condition (PBC). Various versions of the PBC have been proposed (see, among others, Fiengo (1977), May (1977), Barss (1986), Saito (1989), Lasnik & Saito (1992), and chapter 3 below). A simple version looks as follows.

(46) The Proper Binding Condition (PBC):
Traces must be bound.

Among other things, the PBC precludes syntactic lowering, as in (47) (assuming for the time being that the PBC applies at S-structure and at LF).

(47) *John asked t₁ [CP who₁ Mary saw Bill]

The matrix verb ask selects a wh-clause, and this selection requirement is met in (47) by S-structure lowering of the matrix object who into the embedded SpecC position. Such cases of downward wh-movement in the syntax are correctly excluded by the PBC.
Similarly, the PBC makes some non-trivial empirical predictions for topicalization options. Consider, e.g., an example like (48) in German.\footnote{I assume here, in line with the standard view (see, e.g., den Besten (1989), Vikner (1995)), that topicalization in German is movement to SpecC and that V/2 movement ends up in C. See, however, chapter 2 for a different view.}

\[(48) \text{*dass Fritz t₁ sagte [CP dem Peter₁ habe [IP keiner die Claudia gesehen]]}\]

A requirement that holds in V/2 languages like German is that a V/2 head needs a filled specifier (which can be a lexical category or a trace). This requirement is fulfilled in (48) by downward topicalization of the matrix object \textit{dem Peter} into the embedded SpecV/2 position. To rule out such lowering, the PBC can successfully be invoked – from this condition, it follows that SpecV/2 in (48) must be occupied either by some XP that originates in the embedded CP (as in (49-a)), or by an expletive pronoun \textit{es} (as in (49-b)):

\[(49) \begin{align*}
\text{a. dass Fritz dem Peter₁ sagte [CP die Claudia₂ habe [IP keiner die Claudia₂ acc gesehen]]} \\
\text{b. dass Fritz dem Peter₁ sagte [CP es habe [IP keiner die Claudia₂ acc gesehen]]} \\
\end{align*}\]

Turning now to a typical remnant movement construction such as (2) (repeated here as (50)), it is obvious that given the PBC in (46), we would expect ungrammaticality to arise (just as it does in (47) and (48)), contrary to fact: (50) is grammatical even though \(t₂\) is not bound by \(NP₂\).

\[(50) \begin{align*}
\text{VP t₂ Gelesen], hat [IP [NP das Buch acc]₁ [IP keiner } t₁]]
\end{align*}\]

Thus, the fact that remnant movement creates traces which are unbound at S-structure and may thereby systematically violate the PBC calls for an explanation.

3.2. Freezing

In general, extraction of one XP \(\alpha\) from another XP \(\beta\) is possible only if \(\beta\) occurs in situ, as is depicted schematically in (51-a), and has not undergone movement itself, as shown in (51-b).
(51) a. ... α₁ ... [β ... t₁ ...]₂
 b. * ... α₁ ... [β ... t₁ ...]₂ ... t₂

More generally, the following generalization seems to be descriptively adequate, by and large (cf. Ross (1967/1986, 173) and Wexler & Culicover (1980, 119)):

(52) **Freezing:**
 At S-structure, a trace t may not be included in a moved XP (i.e., an XP that binds a trace) if the antecedent of t is excluded by XP.

Henceforth, I will refer to this as the Freezing generalization, leaving the question of how it can be derived from independent principles open for the time being (see chapter 4). In the last section, we already encountered one instance of Freezing – an object NP that is transparent for extraction in situ invariably blocks extraction in a derived scrambling position; recall the examples in (28), repeated here:

(53) a. *[PP Worüber]₁ hat [NP ein Buch t₁]₂ keiner t₂ gelesen ?
 about what has a book a no-one read
 b. [PP Worüber]₁ hat keiner [NP ein Buch t₁]₂ gelesen ?
 about what has no-one a book a read

Similarly, whereas a VP in situ is not an island for extraction out of it, it turns into an island if it is moved. This is shown for topicalization in German in (54). Thus, (54-a) indicates that topicalization of a complete VP in German is possible; (54-b) indicates that a VP is transparent for extraction in situ; finally, (54-c) exhibits the Freezing effect with VP topicalization – there is no extraction from a topicalized VP.

(54) a. Ich denke [CP [VP das Buch gelesen]₁ hat keiner t₂]
 I think the book read has no-one
 b. [NP Was]₁ denkst du [CP tₙ₁ hat keiner [VP t₁ gelesen]₂]?
 what you has no-one read
 c. *[NP Was]₁ denkst du [CP [VP t₁ gelesen]₂ hat keiner t₂]?
 what you gelesen has no-one

The illformedness of examples like (53-a) and (54-c) corresponds exactly to what one would expect, given the Freezing generalization in (52); in these cases, a trace t₁ shows up in the fronted items (a scrambled NP and a topicalized VP, respectively), and the antecedent of this trace (PP₁/NP₁) is excluded by the moved XP.

However, typical remnant movement constructions like those in (55) (= (50) and (31-a)) contradict the otherwise well-established Freezing generalization.

(55) a. [VP t₂ Gelesen]₁ hat [IP [NP das Buch]₁ [IP keiner t₁]]
 read has the book a no-one
 b. [NP Ein Buch t₁]₂ hat Antje [PP über die Liebe]₁ t₂ gelesen
 a book a has Antje about the love read
3. Peculiar Properties

Here, an unbound trace (t_2 in (55-a), t_1 in (55-b)) shows up in a moved item (a topicalized VP and a topicalized NP, respectively), and the antecedent of this unbound trace is excluded by the moved item in both cases. Still, a Freezing effect fails to appear. Thus, as with the PBC, remnant movement behaves differently from other, standard instances of movement, in that it demands a systematic exception to the Freezing generalization (52). Hence, whatever eventually derives the effects of the Freezing generalization must not simultaneously rule out remnant movement as in (55).

3.3. Movement Type Asymmetries

A third peculiar property of remnant movement is that asymmetries between movement types seem to arise that do not show up with regular instances of movement. Thus, whereas the movement type topicalization seems to be able to affect remnant XPs (in fact, all the examples of remnant movement discussed so far are instances of remnant topicalization), the movement type scrambling generally may not affect remnant XPs (cf. Fanselow (1991, 133; 1992), Grewendorf & Sabel (1994, 284ff), Frank, Lee & Rambow (1992, 152), Stechow (1992, 222ff), and Haider (1993, 234ff)). To see this, recall from subsection 2.5 that topicalization of a coherent (i.e., remnant) infinitive is permitted in German (cf. (42-a), repeated here as (56)):

(56) [$_\alpha$]$_1$ zu lesen t_3 hat [NP das Buch t_1], keiner t_3 versucht
to read has the book$_{acc}$ no-one tried

In striking contrast to this, scrambling of a coherent infinitive is strictly ruled out; cf.:

(57) *dass [$_\alpha$]$_1$ zu lesen t_3 [NP das Buch t_1], keiner t_3 versucht hat
that to read the book$_{acc}$ no-one tried has

As shown in (58-a) (with topicalization) and (58-b) (with scrambling), such an asymmetry does not arise in the case of movement of complete infinitival clauses that do not contain unbound traces: 19

(58) a. [$_\alpha$] Das Buch zu lesen t_3 hat keiner t_3 versucht
the book$_{acc}$ to read has no-one tried
b. dass [$_\alpha$] das Buch zu lesen t_3 keiner t_3 versucht hat
that the book$_{acc}$ to read no-one tried has

Other movement types pattern either with topicalization, in that they permit remnant movement, or with scrambling, in that they do not.

19I think that the contrast between (57) and (58-b) eventually provides an additional argument in favour of the remnant movement approach to incomplete category fronting. The reason is that it is highly unclear how to derive the illformedness of (57) if α is the same kind of constituent in (57) as in (58-b), i.e., does not contain a trace in either of the examples.
Thus, *wh*-movement can successfully apply to remnant XPs, just as it can apply to full XPs. This is shown for remnant NP *wh*-movement in German in (59-a) (compare *wh*-movement of a complete NP in (59-b)):

(59) a. [NP Was für ein Buch t_1 hast du [PP über die Liebe t_2 gelesen?]
 what for a book_{acc} have you about the love read

b. [NP Was für ein Buch über die Liebe t_2 hast du t_2 gelesen?]
 what for a book_{acc} about the love have you read

On the other hand, it appears that remnant XPs cannot undergo left dislocation in German, in contrast to complete XPs (cf. Truckenbrodt (1992)). This is shown in (60-a) (with remnant VP left dislocation) vs. (60-b) (with left dislocation of a complete VP).

(60) a. *[VP t_1 Gelesen], das hat das Buch$_1$ keiner t
 read that has the book no-one

b. [VP Das Buch gelesen], das hat keiner t
 the book read that has no-one

Thus, it appears that certain movement types (like topicalization and *wh*-movement) permit remnant movement, whereas others (like scrambling and left dislocation) do not. These movement type asymmetries in the case of remnant XPs are a priori unexpected; as in the cases of the PBC and the Freezing generalization, remnant movement behaves differently from regular instances of movement, and this fact needs to be explained.

3.4. Unbound Intermediate Traces

Finally, den Besten & Webelhuth (1990, 86), Fanselow (1993, 10), Grewendorf (1994, 31ff), and Bayer (1996, 242) have observed that remnant movement differs from other kinds of movement in that it imposes restrictions on the kinds of traces contained in the moved category. One particularly interesting restriction is this: Whereas standard instances of movement may of course give rise to configurations containing intermediate traces, intermediate traces that become unbound as a result of remnant movement appear to be illicit. To see this, consider first (61), which exemplifies a typical instance of successive-cyclic extraction in German:

(61) (Ich weiß nicht) wen$_1$ sie gesagt hat $[CP$ t'_1 dass Fritz t_1 liebt $]$
 I know not who$_{acc}$ she$_{nom}$ said has that Fritz$_{nom}$ loves

For reasons of locality, an intermediate trace t'_1 is created in the embedded SpecC position, and evidently, this trace does not pose any problem. Next, (62) shows that a finite CP argument that does not contain any unbound traces may undergo long-distance topicalization across a *wh*-island in German, with only weak (Subjacency-
3. Peculiar Properties

like) ungrammaticality arising (see Fanselow (1987)): 20

(62) ??[CP Daß Fritz Caroline liebt]_2 weiß ich nicht [CP ob er t_2
that Fritz_{nom} Caroline_{acc} loves know I_{nom} not whether he_{nom}
zuzeigen würde]

admit would

However, such long-distance CP topicalization across a wh-island becomes complete-
ly impossible if the CP contains an unbound trace, as in (63):

(63) *[CP t'_1 Daß Fritz t_1 liebt]_2 weiß ich nicht [CP wen_1 er t_2 gesagt
that Fritz_{nom} loves know I_{nom} not who_{acc} he_{nom} said
hat]

has

It is not a priori clear why (63) is much worse than (62), i.e., much worse than we
would expect if only a weak Subjacency violation were involved. As shown in (64-a),
the ill-formedness of (63) cannot possibly be due to a general prohibition against rem-
nant movement across a wh-island (created by the antecedent of the unbound trace)
– in (64-a), a remnant VP undergoes long-distance topicalization across a wh-island,
and the result is no worse than the analogous case with topicalization of a complete
VP (as in (64-b)):

(64) a. ??[VP t_1 Auf den Mund geküßt]_2 weiß ich nicht [CP wen_1 sie t_2
on the mouth kissed know I_{nom} not who_{acc} she_{nom}
hat]

has

b. ??[VP Den Fritz auf den Mund geküßt]_2 weiß ich nicht [CP ob
ART Fritz_{acc} on the mouth kissed know I_{nom} not whether
sie t_2 hat
she_{nom} has

The crucial difference between (63) and (64-a) seems to be that the remnant CP in (63)
contains an intermediate unbound trace t'_1 in the SpecC position, whereas the remnant
VP in (64-a) only contains the initial trace in object position. Thus, it appears that
movement may not apply to a remnant XP if, as a result of this movement, this XP
contains an unbound intermediate trace. 21

20 I assume here that finite CP arguments are base-generated to the left of the verb in German and then
(normally) undergo extraposition. In the present context, this assumption is not important; see chapter 4
below for extensive discussion.

21 Note that if an intermediate trace t'_1 were not present in (63), strong ungrammaticality would be ex-
pected regardless of the issue of remnant movement, due to a strong violation of locality requirements; see
This hypothesis is further corroborated by the illformedness of examples like (65-a) (compare (65-b)), in which a VP has undergone long-distance topicalization across a \textit{wh}-island; here, the VP contains a CP from which successive-cyclic \textit{wh}-movement has applied (see Fanselow (1993, 10)).

(65) a. *[VP Gesagt [CP t'_1 dass Fritz t_1 liebt]]_3 weiß ich nicht [CP wen]_1

\hspace{1cm} \text{said that Fritz}_{nomin} \text{ loves know I}_{nomin} \text{ not who}_{acc}

\hspace{1cm} \text{er t}_3 \text{ hat]}

\hspace{1cm} \text{he}_{nom} \hspace{.5cm} \text{has}

b. ??[VP Gesagt [CP dass Fritz Caroline liebt]]_3 weiß ich nicht [CP

\hspace{1cm} \text{said that Fritz}_{nomin} \text{ Caroline}_{acc} \text{ loves know I}_{nomin} \text{ not}

\hspace{1cm} \text{ob er t}_3 \text{ hat]}

\hspace{1cm} \text{whether he}_{nom} \hspace{.5cm} \text{has}

In conclusion, it appears that there is a prohibition against unbound intermediate traces created by remnant movement which is responsible for the ungrammaticality of the sentences in (63) and (65-a). However, to the extent that this generalization is correct, it is an open question how it can be derived.

4. Conclusion

In section 2, I have given a number of (conceptual and empirical) arguments in support of the idea that incomplete category fronting in German involves remnant movement, an operation that creates an unbound trace in the moved item:

1. The postulation of remnant movement seems inevitable according to well-established restrictions on movement and projection (subsection 2.1).

2. The remnant movement hypothesis offers a straightforward account of cross-linguistic variation (subsection 2.2).

3. Constructions involving fronting of incomplete NPs (and VPs containing incomplete NPs) mirror the properties of constructions involving extraction from NP (subsection 2.3).

4. Constructions involving fronting of VPs containing incomplete PPs mirror the properties of constructions involving extraction from PP (subsection 2.4).

5. Constructions involving fronting of incomplete infinitives (and VPs containing incomplete infinitives) mirror the properties of constructions involving scrambling from infinitives (subsection 2.5).

Ideally, one would hope that nothing more has to be said, i.e., that remnant movement behaves in all respects like regular, standard instances of movement. However, as shown in section 3, this is not the case. Remnant movement exhibits a number of
peculiar properties that at first sight set it apart from ordinary extraction, and that are unexpected within a standard theory of movement. Most notably, remnant movement constructions raise the following questions:

1. Why can remnant movement violate the Proper Binding Condition? (subsection 3.1)
2. Why is remnant movement an exception to the Freezing generalization? (subsection 3.2)
3. Why does remnant movement show movement type asymmetries? (subsection 3.3)
4. Why can remnant movement not create unbound intermediate traces? (subsection 3.4)

The main goal in the remainder of this monograph will be to provide answers to these questions that do not rest on construction-specific assumptions. In particular, I want to show that a strictly derivational approach to movement along the lines of the minimalist program that has developed out of the Principles and Parameters approach (cf. Chomsky (1991; 1993; 1995)) can successfully account for the a priori surprising properties of remnant movement. Thus, before I tackle the problems posed by the four questions (in chapters 3 – 6), I will leave the issue of remnant movement aside for a while and turn to a derivational theory of movement based on minimalist assumptions in the following chapter; this theory will then be the basis for analyzing remnant movement.

22This does not mean that every specific proposal of Chomsky’s minimalist program can be adopted. For instance, in a context that is unrelated to remnant movement constructions of the type I am interested in here, Chomsky (1995, 365) introduces a constraint that strictly blocks movement of any category that contains a trace (his ex. (200)). As observed by Fanselow (1997), adherence to this constraint implies giving up the remnant movement approach to incomplete category fronting. However, independently of the issue of remnant movement, it seems that such a constraint is untenable – among other things, it incorrectly rules out topicalization of a complex NP that dominates a clause in which some other movement operation (topicalization, V/2, etc.) has applied, or topicalization of a clause in which wh-movement has taken place.
Chapter 1. Incomplete Category Fronting
Chapter 2

Movement Theory

1. Introduction

Movement in the minimalist program (Chomsky (1991; 1993; 1995); Chomsky & Lasnik (1993)) can be viewed as being constrained by various interacting factors. First, movement theory comprises locality constraints. These constraints ensure that movement operations of any kind must be sufficiently “local.” Second, minimalist movement theory crucially makes use of economy constraints; these constraints require that movement operations be “economical,” in a sense that will be clarified in what follows. And third, I will assume that there is a third type of constraint, viz., cyclicity conditions. These constraints regulate the interaction of different movement operations.

One typical locality constraint is the prohibition against crossing a barrier (see Chomsky (1986), Chomsky & Lasnik (1993)); another is Rizzi’s (1990) Relativized Minimality, which shows up in a slightly different form in the minimalist program as Minimize Chain Links; cf. Chomsky (1993; 1995), Chomsky & Lasnik (1993)). Relativized Minimality turns out not to be immediately relevant to the issue of remnant movement, and therefore I will not explicitly discuss it in what follows, leaving open the question of whether its effects can be fully derived by other constraints, or whether

1Note that what follows is one specific version of minimalist movement theory. Moreover, this version will turn out to be fairly conservative in several respects and to differ from the “standard” approach(es) in others (particularly in sections 4–6 below). Two general differences are particularly obvious but, I think, not crucial for what will be said about remnant movement in chapters 3–6. First, I do not adopt the assumption (put forward in Chomsky (1993; 1995)) that structure-building (Merge) and movement (Move) operations may systematically alternate during a derivation (cf. subsection 4.1.5 below), but rather adhere to the more traditional view according to which movement can take place only after all structure-building operations have been completed (with the standard exception of those instances of movement that involve adjunction, which is structure-building by itself). And second, I do not take over Chomsky’s (1995) suggestion that movement operations actually apply to features (and not to categories, as was standardly assumed), with pied piping of other material giving the impression of X0 or XP movement.
it is indeed required as a genuine principle of grammar (all claims of this study are in principle compatible with the existence of such a constraint).

Finally, as far as cyclicity is concerned, the relevant constraints which will be discussed are the Strict Cycle Condition (which was introduced in Chomsky (1973)) and a prohibition against improper movement (cf. Chomsky (1981), Fukui (1993a), Müller & Sternefeld (1993; 1996), and Takahashi (1994)).

In what follows (sections 2–4), I will introduce locality, economy, and cyclicity constraints in turn, focusing on their interaction; in doing so, I will concentrate on constructions involving A-bar movement (wh-movement, topicalization, scrambling). After that, I will suggest several extensions of the system that has emerged by then (sections 5 & 6).

2. Locality Constraints: The Barriers Condition

The crucial locality constraint to be discussed here is the prohibition against crossing a barrier (cf. Chomsky (1986)). This prohibition used to be part of the ECP and the Subjacency condition, but since these two conditions are absent in the minimalist framework, it seems as though the prohibition must be stated as such (cf. Chomsky & Lasnik (1993, 540ff) and Chomsky (1995, 264)). It can be formulated as in (1):

(1) **Barriers Condition:**

Movement must not cross a barrier.

As far as the central notion of barrier is concerned, I will assume that it is defined as follows (cf. Chomsky (1986), Baker (1988), Sportiche (1989), Cinque (1990), and Müller & Sternefeld (1990; 1993), among many others):

(2) **Barrier:**

XP is a barrier for α iff there is an X^n (0 ≤ n ≤ P) such that (a), (b), and (c) hold:

a. X^n includes α.

2 Minimize Chain Links (Relativized Minimality) is not to be confused with the Minimal Link Condition (MLC) of Chomsky (1995), which is basically a local version of the transderivational economy constraint Shortest Path Condition; see below. The MLC will become relevant for remnant movement in chapter 5, and I will address it then.

3 This specific formulation is the one adopted in Müller & Sternefeld (1993), where further consequences of this notion of barrier are discussed. In order to serve as the basis of a comprehensive theory of locality, this definition might have to be slightly modified and extended. However, it may suffice for present purposes.
2. Locality Constraints: The Barriers Condition

b. X^π is not a complement.

c. X^0 is distinct from Y^0, where XP is the complement of Y^0.

According to (2), any XP is a barrier if its head is distinct from the next higher head. Non-distinctness of heads resolves barrierhood; I will assume, essentially following Baker (1988), that non-distinctness can be achieved by overt (i.e., S-structure) or abstract (i.e., LF) incorporation; the latter is overtly signalled by co-indexing. However, given (2-b), such incorporation is confined to complements. Thus, XP is invariably a barrier (for something it includes) if it is a specifier or an adjunct, but not if it shows up in a complement position – in the latter case, barrierhood can be cancelled by non-distinctness of heads. Suppose now that V and the heads of its extended projection (AGR^{O_P}, T, AGR^S, etc., plus C) are always non-distinct, due to either overt incorporation or co-indexing at S-structure (i.e., abstract incorporation). Then, it follows that VP and the functional projections that are part of the extended projection of V (AGR^{O_P}, TP, AGR^S_P, etc.) are never barriers for overt movement (if they occur in situ). As for C, suppose that C is distinct from the embedding, governing head (normally V), at least when C is finite and in languages like German or English. Under these assumptions, a CP in complement position will be a barrier for anything included in C', but not for an item that appears in SpecC, given (2). If some category is included in C', CP is a barrier for it because C' is not a complement; however, if some category is included in CP, but not in C' (i.e., if it is in SpecC), then a complement CP is not a barrier for this category because in this case there is no projection of C that is a non-complement and that includes it (C' is a non-complement, but does not include it, and CP includes it, but is a complement, by assumption).

Along these lines, violations of the Wh-Island Condition are derived by the Barriers Condition, in more or less the same way as in Chomsky’s (1986) theory of barriers; cf. (3):

(3) *How$_1$ did John tell you [CP when$_2$ to fix the car t$_2$ t$_1$] ?

Turning next to CPs in specifier positions, it follows from (2) that such items are always barriers and therefore block extraction, due to the Barriers Condition (1). This is shown for extraction from a finite subject CP in German in (4).4,5

4I assume here that the subject clause CP occupies the SpecI position at the point where extraction takes place, despite the fact that it ends up in an extraposed position. I will address this issue in some detail in chapter 4.

5A well-known caveat is that subject infinitives in German do not block wh-extraction (or topicalization; they do block scrambling, though): cf. e.g., Hauder (1983, sect. 2, 1993, 158-160), Sternefeld (1985a, sect. 3.3), and Grewendorf (1989, ch. 2.9) for discussion. An example that shows this is (i):

(i) Was$_1$ hat [CP t$_1'$ t' PRO t$_1$ zu beanstanden] sich nicht gehört ?

what$_{ace}$ has to object to not been proper
Similarly, a CP in an adjoined position is a barrier, and wh-extraction from such a CP invariably violates the Barriers Condition. Thus, the illformedness of examples like (5-a) in English and (5-b) in German is accounted for.

(5) a. *How did you leave [CP before fixing the car t₁] ?
 b. *Wie bist du eingeschlafen [CP nachdem du das Auto t₁ repariert hast] ?

Next, it follows that NP is a barrier in a specifier position (subject NPs), whereas it is not a barrier in a complement position (object NPs), assuming that non-distinctness of heads can be achieved via abstract incorporation. This is shown for German in (6).

(6) a. *[PP Über wen] [NP ein Buch t₁] den Karl beeindruckt ?
 b. *[PP Über wen] [NP ein Buch t₁] geschrieben ?

Since there can be no movement to complement position (cf. Chomsky (1981; 1995)), it also follows that movement of an XP invariably turns XP into a barrier according to the notion in (2) (this will become important in the discussion of Freezing and Anti-Freezing effects in chapter 4).

Given the overall framework, the question that has to be asked is this: Is the Barriers Condition ‘minimalist’ in spirit? Arguably, it is not, and ideally, one would hope that its effects can be derived from some deeper assumptions in one way or another. In fact, a derivation of (1) from more minimalist principles does not seem to be impos-

Note that many further restrictions on extraction from NP are still unaccounted for under these assumptions. Thus, we have seen in chapter 1 that extraction from NP also depends on certain lexical properties of the governing verb, is subject to the Specified Subject Condition, etc. Ideally, all these further restrictions should fall out of the theory of barriers assumed here (and I think they do), but I will not go into that; cf. Müller (1995, ch. 2).
3. Economy Constraints

Formally, there are two types of economy constraints. On the one hand, there are transderivational (or global) economy constraints like Procrastinate, the Fewest Steps condition, and the Shortest Path Condition; on the other hand, there is the simple derivational (or local) economy constraint Last Resort. The basic difference between these two types of economy constraints is this: In order to determine whether or not a transderivational constraint is fulfilled by a derivation (or the resulting pair of LF and PF representations), one has to compare several derivations. In contrast, in order to determine whether or not a derivational constraint is fulfilled by a derivation (or the sentence it produces), one only has to look at single steps in this derivation. Let me start with the transderivational constraint Procrastinate.

3.1. Procrastinate

In addition to the classic notion of (un-)grammaticality, Chomsky (1993) introduces the notion of convergence (and the complementary notion of crash), which can be defined as in (7).

(7) Convergence:
A derivation converges at LF (PF) iff it contains only legitimate LF (PF) objects (otherwise it crashes).

I will assume that a derivation that does not converge (i.e., crashes) at, say, LF always creates an LF representation that is “ill formed” or “ungrammatical.” Nevertheless, the notions of “non-convergence” and “ungrammaticality” are not equivalent. The reason is that ungrammaticality may arise despite the fact that the derivation converges. In other words, even if a derivation creates two representations (at PF and LF) that contain only legitimate (PF and LF) objects, this derivation may lead to illformedness (ungrammaticality) – either because a local derivational constraint is violated or because a representational constraint applying at PF or LF is violated.

Clearly, then, the question arises as to what legitimate LF and PF objects are. Chomsky (1993; 1995) proposes various requirements for LF objects. For example, an NP is a legitimate LF object only if its Case is checked. Another assumption that I will make here (deviating somewhat from Chomsky (1995)) is that a wh-phrase is a legitimate LF object only if it binds a variable, for reasons of semantic interpretation (see Karttunen (1977), among many others):

(8) Wh-Legitimacy:
A wh-phrase is a legitimate LF object only if it binds a variable.
Chapter 2. Movement Theory

This implies that all \textit{wh}-phrases that are in situ at S-structure are raised at LF. As far as PF is concerned, Chomsky (1993) suggests that one of the conditions regulating the legitimacy of PF objects is the following:

(9) \textbf{Strong features are not legitimate PF objects.}

Therefore, all strong features that appear on lexical items must be removed before S-structure (Spell-Out).\footnote{Chomsky (1993; 1995) suggests that the level of S-structure should be dispensed with and replaced by the operation Spell-Out that creates the branching of the derivation to PF and LF in the traditional T-model. Henceforth, I will often use the notions of “S-structure” and “Spell-Out” interchangeably – i.e., the use of the notion “S-structure” should not be taken to imply that there is such a level of representation.} Removal of a feature that shows up on a lexical item X is accomplished by movement – either of X (or, by percolation, XP) to a target head with matching features, or, if X itself is the target head, by movement of Y or YP with matching features. Thus, feature checking is a two-place relation.\footnote{The “matching” features that participate in checking must be similar, but strictly speaking they cannot be identical. For instance, \textit{wh}-movement to SpecC involves checking of the feature \{+\textit{wh}\} that must show up on both C and the \textit{wh}-phrase. However, neither does a feature \{+\textit{wh}\} on C turn CP into a \textit{wh}-phrase that can undergo syntactic \textit{wh}-movement, nor does a feature \{+\textit{wh}\} on a \textit{wh}-phrase turn this \textit{wh}-phrase into a possible landing site for \textit{wh}-movement. More generally, we have to distinguish between a “target” feature F_T and a “movement” feature F_M. In what follows, I will implicitly presuppose this distinction.} Features that are checked disappear, by assumption.\footnote{In Chomsky (1995), this idea appears in a slightly modified form. There, it is assumed that certain kinds of features (those that are \{+\textit{Interpretable}\}) are not actually removed by checking, whereas other kinds of features (those that are \{-\textit{Interpretable}\}) are. I will come back to this issue.} Furthermore, suppose that it is often not an inherent property of features to be strong or weak. For the sake of concreteness, I will assume that the feature \{+\textit{wh}\} of C is strong in languages that exhibit overt \textit{wh}-movement, like English and German, and weak in \textit{wh}-in situ languages like Korean and Japanese (but see Watanabe (1992) for a different view):

(10) \textbf{Strength of \{+\textit{wh}\}:}

The \{+\textit{wh}\} feature of C is strong in English and German, and weak in Korean and Japanese.

The assumptions in (9) and (10) then suffice to explain why overt \textit{wh}-movement is obligatory in \textit{wh}-clauses in English:

(11) a. *I wonder [CP – C [+\textit{wh}] you saw who]_1

b. I wonder [CP who_1 C you saw t]_1

In the derivation that generates the surface structure representation (11-a), the strong \{+\textit{wh}\} feature on the embedded C node has not been removed by syntactic movement before Spell-Out. Hence, it remains in the derivation until PF and thereby causes the derivation to crash, yielding illformedness. In contrast, in the derivation generating
(11-b), the strong [+wh] feature on C has been removed by overt wh-movement; consequently, the derivation converges at PF, and the sentence is well formed.

Furthermore, the assumptions in (9) and (10) explain why the wh-phrase wae (‘why’) may stay in situ in the Korean example (12-a). However, it is not yet clear why it has to stay in situ and cannot undergo wh-movement to the specifier of the [+wh] SpecC position before Spell-Out, as in (12-b).10

\begin{equation}
\begin{array}{c}
(12) \text{a. } [\text{CP } \text{Nô-nunn } [\text{CP Ch’olsu-ka } \text{wae} \text{ o-ass-ta-ko }] \text{saengkakha-ni }] \\
\text{you-top Ch’olsu-nom why come-IMP-DECL-C believe-Q} \\
\text{‘Why do you think Ch’olsu came t?’}
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{b. } *[\text{CP Wae } \text{nô-nunn } [\text{CP t’ Ch’olsu-ka } \text{t} \text{ o-ass-ta-ko }] \\
\text{why you-top Ch’olsu-nom come-IMP-DECL-C} \\
\text{saengkakha-ni }] \\
\text{believe-Q}
\end{array}
\end{equation}

What happened in (12-b) is that the weak [+wh] feature on the matrix C node has been checked and removed before Spell-Out by wh-movement of wae. This derivation converges, just like the one generating (12-a) does, so the illformedness of (12-b) cannot possibly follow from the presence of some illegitimate object. However, the illformedness follows from Procrastinate. Informally, Procrastinate can be stated as follows (cf. Chomsky (1993, 30)):

\begin{equation}
\begin{array}{c}
(13) \text{Procrastinate (informal version):} \\
\text{LF movement is “cheaper” than overt movement.}
\end{array}
\end{equation}

A more precise statement of Procrastinate immediately reveals that it is a transderivational constraint (see, e.g., Marantz (1995, 357)):

\begin{equation}
\begin{array}{c}
(14) \text{Procrastinate:} \\
\text{If two derivations D}_1 \text{ and } \text{D}_2 \text{ are in the same reference set, and } \text{D}_1 \text{ differs from } \text{D}_2 \text{ in that an item } \alpha \text{ is moved covertly (after Spell-Out) in } \text{D}_1 \text{ and overtly (before Spell-Out) in } \text{D}_2, \text{ then } \text{D}_1 \text{ is to be preferred over } \text{D}_2.
\end{array}
\end{equation}

The reference set determines which derivations compete with respect to transderivational economy constraints. For present purposes, it can be defined as follows:

10I have chosen examples involving long-distance wh-dependencies in Korean to make sure that the evidence is not blurred by the phenomenon of wh-scrambling, which at first sight could pass as overt wh-movement. However, wh-scrambling of adjuncts, like all adjunct scrambling in Korean (and unlike wh-movement in general), is clause-bound. Hence, (12-b) cannot be generated by scrambling, and the illformedness of the example shows that it cannot be generated by overt wh-movement either, which is the point that this sentence is supposed to make.
Chapter 2. Movement Theory

(15) **Reference Set** (Chomsky (1995, 227)):

Two derivations D_1 and D_2 are in the same reference set iff they start with the same numeration and converge at LF and PF.

All the lexical items that are used in a derivation are drawn from the lexicon before computation starts; this array of lexical items (which includes n occurrences of an item X if X is to be used n times in the derivation) is called the *numeration*.

The two derivations D_1 and D_2, associated with the two Korean sentences in (12-a) and (12-b) respectively, are in the same reference set; hence, Procrastinate prefers D_1 to D_2. In contrast, the two derivations D_1 and D_2, associated with the two English sentences in (11-a) and (11-b) are not in the same reference set – D_1, with the S-structure representation in (11-a), does not converge (it contains a strong [+wh] feature as an illegitimate PF object), and therefore does not compete with D_2 (which generates the S-structure representation (11-b)). Hence, (11-b) in English is not blocked by (11-a), whereas (12-b) in Korean is blocked by (12-a).

Several other applications of the Procrastinate principle have been suggested in the literature, but for the time being, I will leave it at that and turn to the Fewest Steps condition.

3.2. Fewest Steps

The Fewest Steps condition was first proposed in Chomsky (1991) and can, in a way, be viewed as the most basic economy constraint. Like Procrastinate, it is transderivational. It can be defined as in (16) (cf. Chomsky (1991; 1993; 1995)):

(16) **Fewest Steps**:

If two derivations D_1 and D_2 are in the same reference set and D_1 involves fewer operations than D_2, then D_1 is to be preferred over D_2.

Thus, the Fewest Steps condition requires that of two competing derivations, the one that involves fewer syntactic operations (like movement) must be chosen. Since the formulations of Procrastinate in (14) and of the Fewest Steps condition in (16) are similar, one might hope that the former constraint can in fact be derived from the latter (apparently more general) one. However, as it stands, Procrastinate cannot be derived from Fewest Steps. To see this, let us consider again the ill-formed Korean example in (12-b) and try to figure out whether it (more precisely, the derivation that generates it) is also excluded by the Fewest Steps condition. The answer is no: Whether the *wh*-adjunct *wa*e moves before or after Spell-Out does not appear to have any consequences with regard to the number of movement operations involved. Thus, from the point of view of Fewest Steps, the derivation D_1 generating (12-b) is just as costly as the derivation D_2 generating (12-a). Therefore, Fewest Steps does not discriminate between the two derivations – in order to block D_1 by D_2, it seems that an appeal to (something like) Procrastinate is necessary. More generally, then, unless one can find an independent reason why one and the same movement operation involves more
steps before Spell-Out than after Spell-Out, we have to conclude that the effects of Procrastinate cannot be derived from the Fewest Steps condition.\footnote{11} That said, let me now illustrate the Fewest Steps condition by discussing five of its consequences.

3.2.1. Illicit Wh-Topicalization in English

Languages like English exhibit a strict prohibition against topicalization of \textit{wh-}phrases (cf. Lasnik & Uriagereka (1988), Lasnik & Saito (1992), and Rizzi (1996), among others, and subsection 5.2.1 below for evidence from German). Consider the following examples:

\begin{align*}
(17) & \text{a. Who}_1 \text{ said } [\text{CP that } [\text{IP John likes } \text{who}_2]] ? \\
& \text{b. Who}_1 \text{ said } [\text{CP that Mary}_2 [\text{IP John likes } t_2]] ? \\
& \text{c. } ^*\text{Who}_1 \text{ said } [\text{CP that who}_2 [\text{IP John likes } t_2]] ? \\
\end{align*}

First, note that the embedded CP in (17-a) is a [\textit{–wh}] clause. Therefore, the sentence must be interpreted as a multiple question, with \textit{who}_2 in situ at S-structure but (by assumption) in the matrix SpecC position at LF; the example is well-formed. Turning next to (17-b), it is evident that there is no general prohibition against topicalization in an embedded CP with a matrix verb like \textit{say} and in the presence of overt \textit{wh}-movement in the matrix clause; the topicalized item here is the [\textit{–wh}] phrase \textit{Mary}_2. The interesting thing now is that such a topicalization operation apparently is not permitted if the moved item is a \textit{wh-}phrase, as in (17-c). At first sight, this ban on \textit{wh-}topicalization is surprising. However, as noted by Epstein (1992), it is explained directly by the Fewest Steps condition in (16), given that \textit{wh-}in situ phrases undergo LF raising. The basic idea is that (17-c) is blocked by (17-a) because the derivations generating the two S-structure representations compete and the derivation that yields (17-a) is more economical (i.e., it involves fewer operations). More precisely, the argument goes as follows.

Given that all \textit{wh-}phrases must occupy a SpecC (substitution or adjoined) position at LF, (17-a) and (17-c) both end up with the following LF representation:\footnote{12}

\begin{align*}
(18) & \text{LF representation of (17-a) and (17-c)}: \\
& [\text{Spec } [\text{Spec who}_1] \text{ who}_2] \text{ said } [\text{CP that } [\text{IP John likes } t_2]] ? \\
\end{align*}

\footnote{11}Obviously, if such an independent reason is contrived, things might look different. Thus, Kitahara (1995, 67-74) suggests that LF movement of some category \(\alpha \) to some position \(\beta \) may involve one operation fewer than syntactic movement of \(\alpha \) to \(\beta \) does. Along these lines, the effects of Procrastinate can indeed be derived from the Fewest Steps condition, and the Procrastinate principle can be dispensed with.

\footnote{12}For the time being, I assume, following Rudin (1988), that adjunction to SpecC must be to the right, but nothings depends on this assumption in the present context. See, however, chapter 4 for a modification of this view.
Moreover, suppose that both derivations converge (this implies, in particular, that neither derivation results in a PF representation that contains strong features). Being equipped with the same numeration, the derivations D_1 (with the S-structure representation in (17-a) and the LF representation in (18)) and D_2 (with the S-structure representation in (17-c) and the LF representation in (18)) are then in the same reference set and compete with respect to transderivational economy constraints. However, D_1 involves one movement operation applying to \textit{who}_2 (only wh-movement at LF), whereas D_2 involves two movement operations applying to \textit{who}_2 (topicalization at S-structure followed by wh-movement at LF). Hence, D_1 is preferred over D_2, and (17-c) is ruled out by Fewest Steps.

3.2.2. Illicit Wh-Scrambling in German

The well-known prohibition against wh-scrambling in German (see Fanselow (1990), Stechow & Sternefeld (1988), Rizzi (1996), and Müller & Sternefeld (1993; 1996)) can be derived along the same lines. The sentence in (19-a) is a well-formed multiple question with a direct wh-object \textit{was} (‘what’) in situ. (19-b) shows that direct objects can be scrambled in front of the subject in wh-clauses without inducing ungrammaticality. However, such scrambling is not possible if the moved item is not a $[-wh]$ phrase (as in (19-b)), but a $[+wh]$ phrase (as in (19-c)).

(19) a. Wie hat [IP der Fritz \textit{t}_1 was$_{2}$ repariert]?
 $\begin{array}{ll}
 \text{how} & \text{ART Fritz} \\
 \text{what}_{\text{acc}} & \text{fixed}
 \end{array}$

b. Wie hat [IP [das Auto \textit{t}_2 [IP der Fritz \textit{t}_1 repariert]]]?
 $\begin{array}{llll}
 \text{how} & \text{the car}_{\text{acc}} & \text{ART Fritz} & \text{fixed}
 \end{array}$

c. *Wie hat [IP was$_{2}$ [IP der Fritz \textit{t}_1 repariert]]?
 $\begin{array}{llll}
 \text{how} & \text{what}_{\text{acc}} & \text{ART Fritz} & \text{fixed}
 \end{array}$

Again, the illformedness of (19-c) follows from the Fewest Steps condition. The reason is that both (19-a) and (19-c) have an LF representation like (20).

(20) $[\text{specC} \ [\text{spec wie$_{1}$}] \ was$_{2}$] \ [IP der Fritz \textit{t}_1 \textit{t}_2 repariert hat]$

Given that the derivations D_1 (generating (19-a)) and D_2 (generating (19-c)) have the same numeration and converge, it follows that D_1 and D_2 are in the same reference set. This, in turn, means that D_1 blocks D_2: D_1 involves one application of movement to the wh-phrase \textit{was} (‘what’) (viz., only LF raising to SpecC), whereas D_2 reaches the LF representation in (20) by two applications of movement to \textit{was} (viz., scrambling before Spell-Out followed by LF movement to SpecC).\[13\]

\[13\]It appears that wh-scrambling in German is not completely impossible under certain circumstances. For one thing, there is a clear connectedness effect (in the sense of Kayne (1984)), i.e., by adding more wh-phrases in a clause, scrambling of a wh-phrase tends to become more tolerable. In addition, wh-scrambling leads to better results if the wh-phrase is D-linked (cf. Pesetsky (1987)), as has been noted by Fanselow.
3. Economy Constraints

Intuitively, the Fewest Steps condition rules out wh-topicalization and wh-scrambling because these movements are superfluous – the resulting LF representations can be achieved in a simpler way, without optional topicalization and optional scrambling. Although this result is clearly desirable in cases of ill-formed examples like (17-c) and (19-c), it raises an important question: Why is optional movement ever permitted under Fewest Steps? I address this issue in the following subsection.

3.2.3. Optional Movement

The following examples show that (embedded) topicalization is optional in English:

\[(21)\]
\[
\begin{align*}
&\text{a. I think [CP that John likes Mary]} \\
&\text{b. I think [CP that Mary likes John]}
\end{align*}
\]

At first sight, this might come as a surprise, given the Fewest Steps condition, because a derivation \(D_1\) via overt topicalization (as in (21-b)) involves one more movement operation than a derivation \(D_2\) without topicalization (as in (21-a)).

The same problem is posed by scrambling. (22) exhibits the optionality of scrambling in German, and (23) shows the same for Korean.

\[(22)\]
\[
\begin{align*}
&\text{a. dass [IP keiner den Fritz geschen hat]} \\
&\quad \text{that no-one nom ART Fritz acc seen has} \\
&\text{b. dass [IP den Fritz [IP keiner t₁ geschen hat]]} \\
&\quad \text{that ART Fritz acc no-one nom seen has}
\end{align*}
\]

\[(23)\]
\[
\begin{align*}
&\text{a. Ch’òlsu-ka [VP Sunhi-eke i ch’aek-úl chu-óss-ta]} \\
&\quad \text{Ch’òlsu nom Sunhi dat this book acc gave} \\
&\text{b. Ch’òlsu-ka [VP i ch’aek-úl [VP Sunhi-eke t₁ chu-óss-ta]} \\
&\quad \text{Ch’òlsu nom this book acc Sunhi dat gave}
\end{align*}
\]

The potential problem for the Fewest Steps condition which is posed by apparently optional types of movement has often been noted in the literature. One possible solution that Fukui (1993) has proposed for scrambling (also see Epstein (1992) for relevant remarks) is to assume that movement operations which are sufficiently “local” simply do not count as an operation for the purposes of Fewest Steps. Fewest Steps, according to this view, “overlooks” small movements like scrambling and pays attention only to “more visible” movements like wh-movement. But this view is problematic – we have just seen that in order to rule out wh-topicalization as in (17-c) and wh-scrambling as (1992). Whereas the nature of the connectedness effect must be left open here, it can be noted that the D-linking effect would follow under Pesetsky’s assumption that D-linked wh-phrases are not operators (i.e., lack the relevant feature), and hence, do not have to undergo LF raising to SpecC: Given that subsequent LF raising does not have to take place, wh-phrases are predicted to behave like [–wh] phrases with respect to the issue of scrambling – an issue to which I will turn in the next subsection.
in (19-c) by Fewest Steps, even “small” movements like embedded topicalization in English and scrambling in German must count as syntactic operations for the purposes of Fewest Steps.

For that reason, I would like to pursue another approach to the optionality of certain movement operations and contend that this optionality is indeed only apparent. Thus, suppose that topicalization in English and scrambling in German and Korean are in fact not optional movement types. Rather, in these cases, a strong feature is present that must be checked and thereby eliminated by movement before Spell-Out. On this view, what is optional about these movement types is not the movement operation per se, but rather the presence of the triggering feature.

For the sake of concreteness, I will make the following assumptions about the movement types wh-movement, topicalization, and scrambling. First, *wh*-movement is movement to SpecC – either substitution or, if SpecC is already filled (as in many cases of LF *wh*-movement), adjunction; overt *wh*-movement is triggered by a strong feature [+wh] on C. Second, topicalization is substitution in SpecTop (Sternefeld (1991), Müller & Sternefeld (1993; 1996), Müller (1995), Zwart (1993)), where TopP intervenes between CP and IP, and Top is the landing site of V/2 movement in the Germanic languages; topicalization is triggered by a strong [top] feature on Top.

Under this view, typical instances of (embedded) topicalization in the Germanic languages look as (24-a) in English, (24-b) in Danish (cf. Vikner (1995)), and (24-c) in German:

\[
\begin{align*}
\text{(24) a. } & \text{I think } [CP - [C that] [TopP [NP Mary] [Top -] [IP John likes t1]]] \\
\text{b. } & \text{Hun sagde } [CP - [C at] [TopP [NP denne bog] [Top har] [IP Bo ikke she said that this book has Bo not last t1]]] \\
\text{c. } & \text{Sie sagte } [CP - [C -] [TopP [NP dieses Buch] [Top habe] [IP sie she said this book [acc has subj she [nom nie] never] gelesen [t1 read]]]]]
\end{align*}
\]

Finally, I assume that scrambling in German and Korean is left-adjunction to some XP in the middle field (Fanselow (1990), Webelhuth (1992), Saito (1985)), where X

14 Given that topicalization in English, Danish, and German is viewed as the same kind of phenomenon and analyzed in terms of substitution in SpecTop, something has to be said about the obvious differences between the topicalization operations in these languages. Thus, embedded topicalization in English regularly occurs with a complementizer *that* present (cf. Grimshaw (1994), but also Rochemont (1989) for a qualification), but (usually) without V/2 movement (Subject-Aux Inversion) (see Rizzi (1996)); embedded topicalization in Danish systematically exhibits a co-occurrence of complementizer and V/2; embedded topicalization in German, in contrast, requires V/2 movement, but a complementizer is not permitted. See Müller & Sternefeld (1993) for an approach to these differences within the unified analysis of topicalization as substitution in SpecTop.
3. Economy Constraints

This movement is triggered by a strong [scr] feature on X, as is shown schematically in (25) (note that this implies that lexical categories like V can be the target of movement and check off features of the moved item).

(25) \[\ldots [\text{XP } \alpha_1 \ldots \text{XP } \ldots t_1 \ldots] \ldots \]

Given the well-known semantic and functional heterogeneity of topicalization in German (cf., e.g., Grewendorf (1989)) and in English (cf., e.g., Culicover (1991)), and given that there is no unique semantic operation that could be attributed to scrambling in German, [scr] and [top] are, to my mind, best viewed as purely formal features without any inherent semantic or functional content. Accordingly, concepts like “LF scrambling” and “LF topicalization” appear poorly motivated. Hence, I will assume that [scr] and [top], being semantically empty, are always strong, in the sense that they induce overt movement; cf. Chomsky (1995, 349-355). Notice that this view does not rule out the possibility that, e.g., scrambling may have semantic effects, as has often been argued (cf. Diesing (1992), de Hoop (1992), Büring (1993), and Meinunger (1995), among others). Rather, what is presupposed here is that in cases where scrambled and non-scrambled orders differ in truth conditions, this is not due to a specific semantic contribution of some feature triggering scrambling, but rather to the relative surface order of quantified items – a factor that is known to be relevant for semantic interpretation independently of movement. To sum up: My view is that [scr] and [top] are semantically empty (or [–Interpretable], see subsection 3.4.2 below) features, but the topicalization and scrambling operations triggered by these features may or may not have semantic effects, depending on the nature of the moved item (e.g., quantificational or not) and the nature of the material that is crossed by the movement operation.

Do these assumptions suffice to permit topicalization in English and scrambling in German and Korean, in accordance with the transderivational Fewest Steps condition in (16)? The answer depends on specific assumptions about numerations. Recall first the notion of reference set adopted so far (cf. (15)).

(26) Reference Set:

Two derivations D_1 and D_2 are in the same reference set iff they start with the same numeration and converge at LF and PF.

Now, if we assume that two numerations are not identical if they differ in the feature specification on some head (like Top), the Fewest Steps condition predicts that derivations involving topicalization or scrambling are not blocked by (otherwise identical)

15Here and henceforth, I will assume a phrase structure for German sentences that does without the articulated structure that is postulated under the split INFL hypothesis (see Pollock (1989), Chomsky (1991; 1993; 1995)); i.e., I postulate that AGR_O, T, and AGR_S are merged into a single I node. At present, this is mainly to simplify exposition; however, I will present independent (though theory-internal) evidence for this move in chapters 4 and 5. Also cf. the pertinent remarks in Chomsky (1995, sect. 10).
derivations where these movements have not occurred, as intended. However, if we were to assume that two numerations are identical if they differ only in the feature specification on some head (like Top), the Fewest Steps condition still rules out “optional” movement like topicalization and scrambling. Thus, initially there appears to be reason to adopt the first hypothesis over the second – only under the first hypothesis does it follow that a derivation D_1 with embedded topicalization in English, as in (21-b) (= (24-a)), is not in the same reference set as the derivation D_2 generating the in situ counterpart (21-a), because a strong [top] feature is present on Top in D_1’s numeration, but not in D_2’s numeration. (A similar reasoning applies in the case of scrambling.)

But if this is so, Fewest Steps does not rule out (17-c) anymore, because the two derivations generating (27-a) (= (17-a)) and (27-b) (= (17-c)) then also have different numerations.

(27) a. Who$_1$ t$_1$ said [CP that [TopP [IP John likes who$_2$]]]?
 b. *Who$_1$ t$_1$ said [CP that [TopP who$_2$ [IP John likes t$_2$]]]?

For this reason, I will adopt the second hypothesis concerning the identity of numerations for the time being (but see section 5 below). This hypothesis can be formulated as in (28):

(28) **Identity of Numerations:**

Two numerations are identical if they differ only in the feature specification on some head.

This implies that illicit wh-topicalization as in (17-c) and illicit wh-scrambling as in (19-c) can still be ruled out by Fewest Steps; but it also implies that the notion of reference set must be modified so as to permit topicalization and scrambling at all. Following ideas of Kitahara (1993, 113), Fox (1994, 32), Reinhart (1994, 17), and Grimshaw (1994, 3), I would like to suggest the notion of reference set in (29); here, the requirement is added that competing derivations must yield identical LF representations.

(29) **Reference Set (revised):**

Two derivations D_1 and D_2 are in the same reference set iff they start with the same numeration, converge at LF and PF, and yield the same LF representation.

This revised notion of reference set still suffices to rule out illicit wh-topicalization and wh-scrambling, as discussed in the preceding subsection; for instance, the derivations D_1 (generating (27-a)) and D_2 (generating (27-b)) yield identical LF representations and are therefore in the same reference set, so that Fewest Steps chooses D_1 over D_2, as desired. However, assuming that movement operations like scrambling and topicalization are not undone at LF, it follows that a derivation generating a scrambling structure as in the German example (22-b) is not in the same reference set as a derivation in which scrambling has not occurred, as in the German example (22-a); hence,
(22-b) is not blocked by the ‘more economical’ (22-a). The same goes for topicalization, as in the English examples in (21-a) and (21-b): (21-b) is not blocked by (21-a) because the derivations generating these S-structure representations do not yield identical LF representations and are therefore not in the same reference set.\footnote{Three remarks are in order here concerning the notion of “identical LF representation.” First, I assume that intermediate traces do not induce LF-distinctness. That is, even though the LF representation of a sentence like (27-b) might contain an intermediate trace t'_2 in the embedded SpecTop position (but see subsection 3.2.5 below) while the LF representation of a sentence like (27-a) does not contain such an intermediate trace, the two LF representations still count as identical, in the sense of (29). Second, if string-vacuous scrambling of, e.g., an object NP to VP does not generate a different LF representation in this technical sense, this operation will be blocked by Fewest Steps, which is arguably a welcome result (cf. Ross (1967)). (Note that this would not rule out scrambling that is locally string-vacuous but does eventually result in a different LF representation, as in (3) from chapter 1.) Finally, it is worth keeping in mind that the notion of “identical LF representation” is not the same as the notion of “identical interpretation” (here I differ from, e.g., Fox (1994) and Reinhart (1994), who postulate that “identical interpretation” is the relevant notion for defining reference sets). Thus, although I presuppose here that scrambling as in (22-b) in German and (23-b) in Korean is not undone at LF and is therefore not blocked by the in situ variants in (22-a) and (23-a) (because they have a different LF representation), this does not necessarily imply that sentences like (22-a) and (22-b) actually differ in interpretation. More generally, whereas cases that exhibit an interpretational difference between a scrambled and a non-scrambled order are compatible with both the notions “identical interpretation” and “identical LF representation” in the present system, other cases that show a lack of interpretational difference between a scrambled and a non-scrambled order (as is arguably the case in, e.g., (22-a)/(22-b) are compatible only with the latter notion. Similar considerations apply with respect to topicalization in languages like English, Danish, and German (cf. (24)). Assuming the concept of λ-conversion as a means of reconstruction (cf., for instance, Heycock & Kcho (1997) and Sternefeld (1997a) for articulated proposals), or assuming the copy theory (see chapter 3), sentences involving scrambling and topicalization structures at LF can still receive the same interpretation as their in situ versions.}

In conclusion, Fewest Steps now rules out “optional” overt movement (conceived of as obligatory movement triggered by optional features) only if this movement is undone by further LF movement, but not if the effects of this movement persist at LF.

3.2.4. Form Chain vs. Move α

A fourth consequence of the Fewest Steps condition relates to the issue of successive cyclicity. The Barriers Condition forces successive-cyclic movement, as in (30):

\begin{equation}
\text{Why} \, \text{do you think } \left[\text{CP} \, t'_1 \right] \text{ that Mary came } t_1? \end{equation}

If the embedded SpecC position were skipped over in the course of long-distance movement, a locality violation should be expected, on a par with typical wh-island violations. Therefore, it was commonly postulated that an S-structure representation like (30) is derived by two applications of Move α – first to the embedded SpecC position, and then to the matrix SpecC position.

In contrast, it seems that Fewest Steps requires long-distance movement to apply in one fell swoop, in violation of the Barriers Condition, as in (31):
Chapter 2. Movement Theory

(31) *Why₁ do you think [CP – that Mary came t₁] ?

The reason is that a derivation D₁ that generates the S-structure representation in (30) involves two applications of Move α to the wh-phrase, as opposed to a derivation D₂ generating (31) that involves only one application of Move α to the wh-phrase. Since the fact that (31) does, and (30) does not, violate the Barriers Condition does not play a role for the question of whether D₁ and D₂ are in the same reference set and since, furthermore, both D₁ and D₂ converge (at LF and PF) and yield identical LF representations (in the sense explained in the last footnote), it seems that the Fewest Steps condition forces the choice of derivation D₂ generating (31), and the string should be ungrammatical, contrary to fact.

In order to solve this problem induced by the Fewest Steps condition, Chomsky (1991; 1993) proposes that successive-cyclic applications of Move α are to be viewed as parts of a single syntactic operation Form Chain. Form Chain can be defined as in (32):

(32) **Form Chain:**
Move α to its target position and insert intermediate traces in positions required by locality conditions.

Thus, (30) is not ruled out by Fewest Steps in favour of (31) anymore. Both derivations involve only one application of Form Chain to the wh-phrase why – the insertion of intermediate traces is costless.

3.2.5. Argument/Adjunct Asymmetries

Finally, a fifth interesting consequence of the Fewest Steps condition is that it contributes significantly to the derivation of argument/adjunct asymmetries with long-distance movement (cf. Chomsky & Lasnik (1993), on which the following subsection is based).

Locality violations are typically strong with adjuncts and more variable with arguments (see Lasnik & Saito (1984; 1992), Chomsky (1986), Rizzi (1990), Cinque (1990), and Manzini (1992), among others).¹⁷ For example, if the Barriers Condition is violated in the course of adjunct movement, strong ungrammaticality arises (cf. (33-a)), but a locality violation with arguments is typically much weaker (cf. (33-b)).

(33) a. *How₃ do you wonder [CP₁ whether John said [CP₂ t₃' C Mary solved the problem t₃]] ?

¹⁷In what one might call the “standard approach,” Lasnik & Saito (1984) account for this asymmetry by assuming that adjunct traces cannot be deleted on the way to LF, which eventually follows from the stipulation that proper government of these traces (encoded in the assignment of a feature γ) is checked only at LF.
b. Who do you wonder [\(CP_1\) whether John said \([CP_2\ t'_3\ C\ t_3\) solved the problem]?

In both (33-a) and (33-b), \(t'_3\) is marked as ungrammatical, due to a \(wh\)-island effect which is reducible to the Barriers Condition (\(whether\) making Spec\(C\) inaccessible as an escape hatch, cf. Chomsky (1986)). Chomsky & Lasnik (1993) suggest that the “offending” trace, i.e., the trace that is responsible for the locality violation, is marked by a star: *\(t\). Next, it is assumed that a starred trace that appears in the derivation induces weak (Subjacency-like) ungrammaticality of a sentence and that a starred trace that is present at LF induces strong (ECP-like) ungrammaticality. The idea is then that the offending intermediate trace \(t'_3\) is deleted on the way to LF in (33-b) but not in (33-a), so that (33-a) turns out to be strongly (ECP-like) ungrammatical and (33-b) to be weakly (Subjacency-like) ungrammatical. To accomplish this result, something has to be said about the conditions under which traces that are generated during the derivation can or must be deleted. To this end, Chomsky & Lasnik (1993, 546) postulate that ‘legitimate LF objects’ must be of the type (34-a) or (34-b).\(^{18}\)

\[
(34) \text{Legitimate LF objects:}
\]

a. Uniform chains of the type \(C = \langle \alpha_1, \ldots, \alpha_n \rangle\), where all members are either in an A-bar position or in an A-position.

b. Operator-variable constructions of the type \(\langle \alpha, \beta \rangle\), where \(\alpha\) is in an A-bar position and \(\beta\) heads a uniform chain.

The argument chain in (33-b) \(C_1 = \langle who, t'_3, t_3 \rangle\) is not a uniform chain (the initial trace \(t_3\) is in an A-position, and the other members of \(C_1\) are in A-bar positions), nor is it an operator-variable construction (the operator who is in an A-bar position, but \(t'_3\) does not head a uniform chain). Hence, assuming that every legitimate LF object must meet at least one of the two conditions of (34), syntactic operations must apply on the way to LF in order to turn \(C_1\) into a legitimate LF object. Deletion of \(t'_3\) produces a legitimate operator-variable construction, with who in an A-bar operator position and \(t_3\) heading a uniform (trivial) A-chain. Is this additional deletion operation permitted by Fewest Steps? It is: If deletion of the intermediate trace \(t'_3\) does not apply on the way to LF in (33-b), the derivation does not converge at LF (yielding an illegitimate LF object). Given the notion of reference set in (29), a derivation \(D_1\) in which \(t'_3\) is deleted after Spell-Out in (33-b) is not blocked by the Fewest Steps condition in favour of a more economical derivation \(D_2\) in which \(t'_3\) remains undeleted (leading to non-convergence at LF), because only converging derivations can compete. Along these lines, the “standard” stipulation put forward in Lasnik & Saito (1984; 1992) and Chomsky (1986) concerning the deletability of intermediate argument traces can be derived.

\(^{18}\)As noted above, there are additional conditions for LF legitimacy (NPs must have their Case features checked, \(wh\)-phrases must bind variables, etc.), but these are not relevant in the present context.
Turning now to adjunct movement in (33-a), it emerges that the adjunct chain \(C_2 = \langle \text{how}_3, t'_3, t_3 \rangle \) already is a uniform chain (all chain members occupy A-bar positions) and hence a legitimate LF object. Therefore, deletion of \(t'_3 \) does not have to apply in order for convergence at LF to result. What is more, given Fewest Steps, deletion of the intermediate trace \(t'_3 \) must not apply: A derivation \(D_1 \) without deletion of \(t'_3 \) in (33-a) is in the same reference set as a derivation \(D_2 \) that differs from \(D_1 \) only in that \(t'_3 \) is LF-deleted; hence, Fewest Steps forces the choice of \(D_1 \) over \(D_2 \), even though \(D_1 \) contains an “offending” trace creating ungrammaticality while \(D_2 \) does not.\(^{19}\)

Summarizing the last five subsections, the transderivational constraint Fewest Steps produces interesting and welcome consequences in some domains (concerning illicit wh-topicalization and wh-scrambling, and the LF-deletability of intermediate traces), and consequences that at first sight look somewhat less appealing in other domains (concerning the very existence of optional movement and the concept of Form Chain).

3.3. The Shortest Path Condition

The third (and final) transderivational economy constraint to be discussed here is the Shortest Path Condition (see Chomsky (1993; 1995), Kitahara (1993), Collins (1994), and Ackema & Neeleman (1995)). It can be formulated as follows (cf. Collins (1994, 56)):

\[
\text{(35) Shortest Path Condition:} \\
\text{If two derivations } D_1 \text{ and } D_2 \text{ are in the same reference set and the movement paths of } D_1 \text{ are shorter than the movement paths of } D_2, \text{ then } D_1 \text{ is to be preferred over } D_2.
\]

Stated informally, the Shortest Path Condition says that if two derivations are in competition, then the one whose movement paths are shorter must be chosen. Length of movement paths can readily be defined in terms of dominating (Collins (1994, 56)) or c-commanding (Sternefeld (1997, 84)) intervening nodes crossed. Here, I will confine

\(^{19}\)Note that under this assumption, there must be an intermediate object trace \(t'_1 \) in an A-bar position between \(\text{which car}_1 \) and \(t_1 \) in (i-a) – otherwise, there would be an initial trace \(*t_1 \) at LF \(\langle \text{which car}_1 \rangle \) would be a legitimate LF object, according to clause (b) of (34)), and (i-a) should be as ill formed as (i-b):

(i) a. ??Which car\(_1\) did John tell you \(\text{CP} \text{ how}_2 (t'_1) \) to fix \(t_1 \) ?
 b. *How\(_1\) did John tell you \(\text{CP} \text{ when}_2 \) to fix the car \(t_2 \)?

It is not quite clear where \(t'_1 \) can be located in (i-a), especially in the light of what will be said about improper movement in section 4 below. For the time being, I will assume, essentially following Müller & Sternefeld (1990; 1993), that \(t'_1 \) in (i-a) is in the SpecTop position of the embedded clause, an option that is confined to infinitival clauses (where SpecTop is underspecified and Top does not project inherent features). Alternatively, one might postulate that the projection of T(ense) provides another specifier as an escape hatch for A-bar movement; cf. Sabel (1995, ch. 2). See below.
myself to an intuitive understanding of the length of movement paths (see section 7 of chapter 3 for a definition) and will highlight two applications of the Shortest Path Condition.

3.3.1. The Shortest Path Condition and Yo-Yo Movement

A first consequence of the Shortest Path Condition, pointed out by Collins (1994, 53ff), is that it explains why lowering followed by raising before Spell-Out (so-called Yo-Yo movement; cf. Lasnik & Saito (1992)) is not possible. Several languages exhibit a diagnostic for the successive-cyclic nature of A-bar movement; i.e., they provide clear overt evidence for intermediate traces in SpecC. Among these languages are Irish (see McCloskey (1979)), Spanish (see Torrego (1984)), and Ewe, as discussed in Collins (1993; 1994). Relevant data from Ewe are given in (36).

(36) Kofi e me gble [CP t₁ be é/wo fo t₁]
Kofi FOC I said that he hit
‘It was Kofi that I said that he hit.’

Here the NP Kofi has undergone long-distance focus movement; optionally, the subject pronoun ‘he’ may change its form from the regular é to wo. This optional morphological alternation is triggered by successive-cyclic movement through SpecC (i.e., by an intermediate trace in that position). Why exactly the complementizer be (‘that’) tolerates the form wo of the subject pronoun in SpecC only if its specifier position SpecC is filled, and why this change is optional and not obligatory, will not concern me here (see Collins (1993, ch. 4) for some discussion). What is relevant in the present context is simply the fact as such: Only if the specifier of the complementizer be is filled can wo show up in SpecC.

Not surprisingly, from a pre-theoretic point of view at least, focus movement that originates in the matrix clause and targets a higher position does not trigger this morphological change in the subject position of the embedded clause. This is shown by the contrast between (37-a) (with the regular subject pronoun é) and (37-b) (with the form wo).

(37) a. Kofi₁ e me gble na t₁ [CP be é fo Kosi]
Kofi FOC I said to that he hit Kosi
‘It was Kofi that I told that he hit Kosi.’

b. *Kofi₁ e me gble na t₁ [CP be wo fo Kosi]
Kofi FOC I said to that he hit Kosi
‘It was Kofi that I told that he hit Kosi.’

However, upon closer inspection, things are not that simple. A derivation of (37-b) must be ruled out in which Kofi moves to its ultimate position in the matrix clause via an intermediate step of lowering into the embedded SpecC position, where it triggers the morphological change. Various conditions come to mind that might rule out such
a derivation, but it is at least worth noting that a derivation in which Kofi undergoes Yo-Yo movement, as in (38), is excluded by the Shortest Path Condition.

(38) *Kofi₁ e me gble na t₁ [CP t₁' be wo fo Kosi]

The movement path of Kofi₁ is longer in derivation D₂ via (38) than in derivation D₁ via (37-b). Hence, D₁ is to be preferred over D₂, according to the Shortest Path Condition (35); but in this derivation, the requirement that wo appears only if the local SpecC position is filled is violated. More generally, the Shortest Path Condition accounts for the fact that an XP generated in a higher clause can never induce a reflex of successive-cyclic movement in a lower clause.

3.3.2. The Shortest Path Condition and Superiority Effects

A second consequence of the Shortest Path Condition concerns Superiority effects (cf. Chomsky (1973)). A typical pair of examples exemplifying the Superiority effect in English is given in (39).

(39) a. I wonder [CP who₁ C [IP t₁ bought what₂]]
 b. *I wonder [CP what₂ C [IP who₁ bought t₂]]

According to the classic Superiority condition, (39-b) is ungrammatical because the highest wh-phrase in the clause (the subject who) has failed to undergo overt movement to SpecC; rather, the lower wh-object what is moved to SpecC. Basically the same holds for the examples in (40), with the difference that in this case, two wh-objects are involved (rather than a subject and an object).

(40) a. Whom₁ did John persuade t₁ [CP to visit whom₂] ?
 b. *Whom₂ did John persuade whom₁ [CP t₂′ to visit t₂] ?

Again, the Superiority condition blocks overt movement of the lower wh-phrase whom₂, as in (40-b), in favour of overt movement of the higher wh-phrase whom₁, as in (40-a).

The basic idea behind the Superiority condition is maintained under an approach in terms of the Shortest Path Condition, as suggested in Chomsky (1993, 14) and developed in full in Kitahara (1993, 113ff). According to the Shortest Path Condition...

20 See chapter 3 below for discussion.

21 Two remarks concerning the presentation of this argument are in order. First, it must be ensured that D₁ and D₂ are in the same reference set even though the embedded subject pronoun takes a different form; cf. Collins (1994) for relevant remarks. And second, Collins (1994, 54) actually assumes that lowering in (38) is preceded by adjunction of Kofi₁ to the matrix VP, for reasons of locality. Assuming that locality constraints are not violated by lowering from t₁ to t₁’ in (38), this additional step does not seem to be necessary. I will briefly return to this issue in subsection 4.2.1 of chapter 3.
in (35), the (a)-examples are preferred over the (b)-examples because the movement path with index 1 is shorter than the movement path with index 2.

So far, so good. However, it is clear that this solution rests on the assumption that wh-in situ phrases do not undergo wh-movement at LF. If they undergo LF movement, the two wh-movement paths of, e.g., (40-b) and (40-a) will have the same length. But the assumption that wh-movement at LF does not exist is incompatible with the Fewest Steps account of illicit wh-topicalization and illicit wh-scrambling discussed above (see subsection 3.2). Moreover, given the notion of reference set in (29), repeated here as (41), one would have to make sure that the LF representations of (40-b) and (40-a) are sufficiently “similar,” so that the two derivations compete with respect to the Shortest Path Condition – under the assumption that wh-in situ phrases do not undergo LF movement, this result cannot be achieved straightforwardly (see Kitahara (1993), Grimshaw (1994), and Sternefeld (1997) for discussion of this issue).

\[(41)\] Reference Set (\(\approx (29)\)):
Two derivations \(D_1\) and \(D_2\) are in the same reference set iff they start with the same numeration, converge at LF and PF, and yield the same LF representation.

For these reasons, I conclude that accounting for Superiority effects in terms of the Shortest Path Condition is problematic. I will return to this issue (and will eventually adopt a local version of this constraint, the Minimal Link Condition (MLC), in chapter 5); for now, though, I will leave it at that and turn from transderivational economy constraints to the derivational economy constraint Last Resort.

3.4. Last Resort

3.4.1. The Constraint

Thus far, we have seen that if certain features are present on a lexical item, movement must apply so as to check them. As it stands, this leaves open the possibility that some instances of movement could also be triggered by some factors that are unrelated to feature checking, or, indeed, could occur without being triggered at all. This possibility is excluded by Last Resort. According to Last Resort, movement may apply only if it is triggered by morphological features. Thus, just like Fewest Steps, Last Resort prohibits truly optional, unforced movement. For the time being, I will assume the following version of Last Resort, which is based on Chomsky (1995, 280) (for predecessors, cf. Chomsky (1993, 33), Collins (1994a), Lasnik (1993, 12f; 1995, 620)), and Wilder & Čavar (1994, 60), among many others).

\[(42)\] Last Resort:
\(\alpha\) is raised to a position \(\beta\) only if \(\beta\) is in the minimal residue of \(\gamma\), and \(\alpha\) enters into a checking relation with \(\gamma\).

Thus, according to Last Resort, movement can apply only if it results in feature checking; given Procrastinate, it follows that overt movement (pre-Spell-Out) can take...
Chapter 2. Movement Theory

place only if either a feature of the moved item or a feature of the target head is strong
and is checked by this movement. The **minimal residue or checking domain**, i.e., the
domain in which a feature of the moved item can be checked with the target head, can
be defined as follows (cf. Chomsky (1993, 11ff)).

\[(43) \textbf{Minimal Residue (\textquoteleft Checking Domain\textquoteright):} \]

\>

\>

Thus, the minimal residue of some head comprises adjuncts to that head, its specifier,
adjuncts to its maximal projection, anything adjoined to one of these positions, and so on.

In contrast to Procrastinate and Fewest Steps, Last Resort is not a global, trans-
derivational principle. Rather, it is a local, derivational principle – at each step in the
derivation, one can determine whether or not Last Resort is satisfied. In what follows, I
will discuss some consequences of Last Resort for the movement types \textit{wh}-movement,
topicalization, and scrambling, and after that I will address the interaction between
Last Resort and the Fewest Steps condition.

3.4.2. \textit{Wh}-Movement, Topicalization, and Scrambling

Given Last Resort as defined in (42), overt \textit{wh}-movement, topicalization, and scramb-
ling must be triggered by strong features ([+\textit{wh}], [top], and [scr], respectively). Following Chomsky (1995), I assume that the class of features that triggers movement is
further divided into (a) features that are semantically interpretable (henceforth [+Inter-
pretable]), like, e.g., the features [+\textit{N}] and [+\textit{Plural}] on a noun, and (b) features
that are not semantically interpretable ([–Interpretable]), like, e.g., the feature [Case]
on a noun. A crucial difference between these two classes of features is that only [–Inter-
pretable] features are deleted by checking; [+Interpretable] features persist after
checking and are accessible for further operations.

Given that the features [top] and [scr] cannot be held responsible for a unique se-
matic effect (recall that this does not imply that topicalization and scrambling struc-
tures cannot differ from the respective in situ versions with respect to semantic inter-
pretation), we can conclude that [top] and [scr] are both [–Interpretable]. In addition,
since the concepts of LF topicalization or LF scrambling appear poorly motivated,
these features are best assumed to be either strong on both the target head (Top, V or I)
and the item that undergoes movement, or not present at all. Finally, the presence
of [top] and [scr] on the target and on the moved item can be assumed to be optional
throughout.

\[^{22} \text{This recursive definition is actually not the one given in Chomsky (1993), but it is equivalent to it.} \]
Given that topicalization can only occur once per clause in languages like English and German, there can be only one [top] feature per Top head, and if the number of [top] features on lexical items does not match the number of [top] features on Top nodes in a given numeration, the derivation will invariably crash. The question arises of whether (and if so, how) [top] feature insertion on Top is related to V/2 movement to Top. Chomsky (1993, 32) suggests that there might indeed be a correlation that should be captured, so that [top] feature insertion becomes obligatory in V/2 contexts (“Raising of I to C may automatically make the relevant feature of C strong (the V/2 phenomenon”)). This view might be adequate for languages like German that do indeed show a tight relation of V/2 movement and topicalization; 23 however, it is arguably less adequate for topicalization in English (that generally occurs without V/2 movement, unless a negative operator is preposed), and for the derivation of VSO structures in the Celtic languages (assuming that they involve I-to-C (I-to-Top) movement). I will have to leave this issue open; cf. Watanabe (1993) for extensive discussion.

In contrast to topicalization, scrambling can apply multiply in a single checking domain, and given that [scr] is [–Interpretable], this implies that there is no restriction on the number of [scr] features that a target node (V or I in German) can bear. 24

Turning next to wh-movement, I will make two assumptions, both of which deviate from what is proposed in Chomsky (1995). First, [+wh] features, in contrast to [top] or [scr], are not inherently [-Interpretable] or [+Interpretable]. Rather, the [+wh] feature of the target C is [+Interpretable], whereas the [+wh] feature of wh-phrases is [-Interpretable]. 25 Second, in languages like English and German, the [+wh] fea-

23 The question arises of whether subject-initial V/2 clauses in German also involve [top] feature checking in SpecTop, with the finite verb in Top (which essentially corresponds to the standard view; cf. Gärtner & Steinbach (1994) and Schwartz & Vikner (1996)), or whether subject and finite verb are in SpecI and (a left-peripheral) I, respectively (as argued for by Travis (1984; 1991) and Zwart (1993)). Although this question is strictly speaking orthogonal to most of the issues that concern me in this study, I will adopt the former view here. This view is reinforced by the fact that wh-subjects behave like wh-objects in that they cannot be topicalized in German. Under the approach developed in subsection 5.2.1 below, this implies that wh-subjects have participated in [top] feature checking in SpecTop.

24 An empirically adequate way to account for the fact that English does not exhibit scrambling would simply be to state that the insertion of [scr] on any target node is blocked in this language. Similarly, the fact that Russian seems to have a larger set of landing sites for scrambling than German – it also permits scrambling to NP and CP (cf. Müller (1995, ch. 3)) – can be accounted for by assuming that N and C can check [scr] features, in addition to V and I (more generally, the heads of the extended V projection). Of course, this, by itself, does not yet explain cross-linguistic variability with respect to scrambling options; it is merely a way of implementing whatever explanation ultimately proves correct in the present framework. See the literature cited in footnote 9 of chapter 1 for some relevant proposals.

25 Evidence for this classification of the [+wh] features of a wh-phrase and of C is provided by semantic considerations. Based on Karttunen’s (1977) semantics of questions, Heim (1992), Beck (1996), and Stechow (1996) argue for LF representations where the wh-phrase is viewed as an ordinary, existentially quantified XP (i.e., the [+wh] feature of the wh-phrase is ignored for interpretation), whereas the [+wh] feature of C systematically contributes to interpretation – it introduces what Heim (1992) calls the “interro-
tures of *wh*-phrases are always weak. The [+wh] feature that triggers movement here is that on C, even though this feature is [+Interpretable]. Of course, given that the [+wh] feature of C is initially both [+Interpretable] and strong in the languages under discussion, we have to make the auxiliary assumption that after checking, this feature becomes weak; otherwise, PF convergence could never be attained. Thus, if the [+wh] feature of a *wh*-phrase is checked by movement, it disappears (being [–Interpretable]). But if the [+wh] feature of C is checked in an English-type language, it does not disappear (being [+Interpretable]). Rather, it remains in the derivation and is accessible for further checking of [+wh] features on *wh*-phrases, but, having turned weak, only via LF *wh*-movement (given Procrastinate).

From these assumptions, it follows that only one *wh*-phrase can undergo overt movement to SpecC in a multiple question in languages like English and German; all remaining *wh*-phrases undergo raising to the checking domain of C at LF:26

(44)
 a. (I wonder) [CP – C] [+wh] [IP John gave what [+wh] to whom [+wh]] (D-structure)
 b. (I wonder) [CP what C] [+wh] John gave t to whom [+wh]] (S-structure)
 c. (I wonder) [CP what to whom C] [+wh] [IP John gave t t] (LF)

Next, consider an example that is ambiguous between a reading as a multiple matrix question and a multiple embedded question (see Baker (1970)):

(45)
 Who1 C t1 wonders [CP where2 C we bought what3 t2]?

In this sentence, there are three *wh*-phrases, two of which have undergone overt movement, and one of which remains in situ at S-structure (raising to either the embedded or the matrix SpecC position at LF, cf. Lasnik & Saito (1984; 1992), among others). Both C heads bear a strong [+wh] feature in the numeration. These strong [+wh] features are checked by the two instances of overt *wh*-movement; as a result, the [+wh] features on the C nodes turn weak, but (being [+Interpretable]) remain accessible for further checking at LF. Subsequent LF raising of the in situ *wh*-phrase *what3* is then free to target either the matrix or the embedded C node, thereby producing the two possible readings.

Finally, it remains to be shown how language-specific variation with respect to *wh*-movement (the “Wh-Movement Parameter”) can be accounted for. Assuming both the [+wh] feature of C and the [+wh] features of *wh*-phrases to be weak produces the
gativizer,” and it is ultimately responsible for the fact that questions are interpreted as sets of propositions (and not as propositions, as declarative clauses are).

26At this point, the advantage of locating strength of [+wh] in C in languages of the English type, rather than in the *wh*-phrase, becomes apparent. If overt *wh*-movement were triggered by a strong feature on the *wh*-phrase, we would have to ensure by resort to an ad hoc assumption to the effect that exactly *n* *wh*-phrases bear a strong [+wh] feature if there are *n* [+wh] C heads in a numeration; cf. Lasnik (1995, 621).
right consequences for \(wh\)-in situ languages of the Korean/Japanese type; here, all \(wh\)-movement is postponed to the covert component. In languages that exhibit multiple S-structure \(wh\)-movement to the checking domain of C (like Bulgarian; see Rudin (1988)), we can assume that the [+\(wh\)] features of \(wh\)-phrases are inherently strong; it will then be irrelevant whether the [+\(wh\)] feature of C is (initially) strong, as in English, or weak, as in Korean and Japanese.

To sum up, the following system has emerged for German: The features [top] and [scr] are [-Interpretable] and strong on both the target head and the item that undergoes movement. The feature [+\(wh\)] is [+Interpretable] and strong on the target head C and [-Interpretable] and weak on the \(wh\)-phrase.

3.4.3. The Interaction of Last Resort and Fewest Steps

The derivational Last Resort condition (repeated here in (46)) and the transderivational Fewest Steps condition (repeated in (47)) are formally very different.

\[(46)\] \textit{Last Resort:} \[\alpha\] is raised to a position \(\beta\) only if \(\beta\) is in the minimal residue of \(\gamma\), and \(\alpha\) enters into a checking relation with \(\gamma\).

\[(47)\] \textit{Fewest Steps:} If two derivations \(D_1\) and \(D_2\) are in the same reference set and \(D_1\) involves fewer operations than \(D_2\), then \(D_1\) is to be preferred over \(D_2\).

Nevertheless, they bear a certain resemblance to each other in that they both prohibit truly optional, unforced movement. Therefore, the question arises of whether one of the two constraints could be dispensed with. Now, a well-known fact about global, transderivational constraints is that they raise the problem of computational complexity – comparing a very large (possibly infinite) number of derivations is not an easy task. Hence, global constraints like Fewest Steps are arguably inferior to local constraints like Last Resort from a conceptual point of view. Given this state of affairs, we have to ask whether the effects of Fewest Steps can be derived from the Last Resort condition. In what follows, I would like to show that this is not the case.

Consider first the case of illicit \(wh\)-topicalization in English, discussed in subsection 3.2.1 above. The relevant example is repeated here in (48) (where (48-a) is the S-structure representation, and (48-b) is the representation of the sentence at LF):

\[(48)\]

a. *\(\text{Who}_1\) said [\(\text{CP that [Top[who_2\ Top[IP John likes t_2]]]}\) ? (S-structure)

b. [\(\text{SpecC [SpecC \text{who}_1] who_2] t_1\) said [\(\text{CP that [IP John likes t_2]}\) ? (LF)

27See especially Collins (1997) and Frampton & Gutmann (1997), but also Chomsky (1995) for some pertinent remarks.
As shown above, this derivation is ruled out by Fewest Steps (because there is another derivation in the same reference set which does not involve overt topicalization of the \textit{wh}-phrase \textit{who}2). But Last Resort is not violated in this derivation: Suppose that the \textit{wh}-phrase \textit{who}2 has both a (strong) [\textit{top}] feature and a (weak) [\textit{+wh}] feature, and that there is a strong [\textit{top}] feature on the embedded Top node and a strong [\textit{+wh}] feature on the matrix C node (that becomes weak after checking with the \textit{wh}-phrase \textit{who}1). Under these assumptions, the \textit{wh}-phrase \textit{who}2 may perfectly well undergo topicalization before Spell-out and subsequent LF raising to the matrix SpecC position, as Last Resort requires – the overt movement step of the \textit{wh}-phrase is licensed by its entering into a checking relation with the embedded Top node and the covert movement step by its entering into a checking relation with the matrix C node. Thus, it seems that Last Resort could rule out a derivation like (48) only under an assumption like (49):\footnote{(49) is a feature co-occurrence restriction of exactly the type that played an important role in work carried out within the GPSG framework; see, e.g., Gazdar et al. (1985, 27ff). I will later (in chapter 6) return to restrictions of this kind.}

(49) The features [\textit{top}] and [\textit{+wh}] cannot co-occur on a lexical item.

But it would clearly be preferable to derive such a condition rather than just state it as such. The Fewest Steps condition does just that – in contrast to Last Resort, it explains why (49) seems to be descriptively correct. An identical reasoning applies in the case of illicit \textit{wh}-scrambling; without Fewest Steps, we would have to resort to an explicit statement to the effect that the features [\textit{scr}] and [\textit{+wh}] cannot co-occur on a lexical item.

As a second example illustrating that the effects of Fewest Steps cannot be derived by Last Resort, consider again the case of argument/adjunct asymmetries in \textit{wh}-movement, as discussed in subsection 3.2.5. A relevant sentence is repeated in (50):

(50) *How do you wonder \[CP _1 \] whether John said \[CP _2 _3 \] C Mary solved the problem _3 _3 ?

In order to ensure that (50) is strongly (ECP-like) ungrammatical, LF deletion of the “offending” trace _3 must be precluded. As noted above, such a deletion operation is in fact ruled out by Fewest Steps (because the chain \langle how _3 , t _3 , t _3 \rangle is already a legitimate LF object), but Last Resort does not say anything about this case.

Summarizing, it turns out that the transderivational economy constraint Fewest Steps cannot be reduced to the derivational economy constraint Last Resort, notwithstanding the general conceptual problem that might be involved in the postulation of global constraints.
4. Cyclicity Constraints

So far, I have discussed locality constraints and economy constraints. Now I will turn to a third type of constraint, viz., cyclicity constraints. Under this label I will subsume constraints that say something about legitimate and illegitimate interactions of movement operations. In particular, I will be concerned with two central notions, viz. (a) \textit{strict cyclicity} and (b) \textit{successive cyclicity}. The constraints corresponding to these notions will be the \textit{Strict Cycle Condition} and the \textit{Principle of Unambiguous Binding} (PUB). I will turn first to strict cyclicity and will address successive cyclicity and the related concept of improper movement later.

4.1. Strict Cyclicity

The notion of strict cyclicity will be important in the remainder of this monograph and will be shown to play a crucial role in deriving certain peculiarities of remnant movement. For this reason, I would like to examine this concept in somewhat more detail. I will start with a brief history of the Strict Cycle Condition, beginning with the situation in the early seventies, i.e., in a framework in which traces had not yet been discovered.

4.1.1. The Strict Cycle Condition before Trace Theory

As a point of departure, consider again typical violations of the \textit{Wh}-Island Condition, as discussed in subsections 2.1 and 3.2.5 above.

\begin{equation}
(51) \begin{array}{ll}
a. & \text{*How}_1 \text{ do } [_{\text{IP}} \text{ you wonder } [_{\text{CP}} \text{ which}_2 \text{ [IP to fix } t_2 \ t_1]]] \ ? \\
b. & \text{?Which}_2 \text{ do } [_{\text{IP}} \text{ you wonder } [_{\text{CP}} \text{ how}_1 \text{ [IP to fix } t_2 \ t_1]]] \ ?
\end{array}
\end{equation}

According to standard reasoning (cf. Chomsky (1973; 1977)), (51-a) and (51-b) violate the Subjacency Condition that blocks a crossing of more than one bounding node: The embedded SpecC position is occupied, and therefore \textit{how} in (51-a) and \textit{which car} in (51-b) must undergo long-distance movement in one fell swoop. This movement step crosses two IPs. IP is a bounding node (in English), and Subjacency is violated.

However, the following derivation of a sentence like (51-b) is not ruled out by Subjacency:

29 The discussion will be confined to the interaction of the Strict Cycle Condition and locality. See Pullum (1979; 1992) for a comprehensive critical discussion of (strict) cyclicity in syntax that also touches many other relevant issues, and for some speculations as to the conceptual foundations of the notion of cyclicity, which also seems to play a role in non-linguistic systems. Considerations along these lines may ultimately prove to be illuminating, but they are outside the scope of the present study.

30 I have inserted traces in the initial positions here, but this is only for convenience, in order to indicate that \textit{how} and \textit{which car} originate in the embedded clause.
a. **D-structure**:
 \[CP \rightarrow IP \] (you wonder \[CP \rightarrow IP \text{ PRO to fix which car}_2 how}_1]]]) ?

b. **Wh-Movement of ‘which car’ to the embedded SpecC position**:
 \[CP \rightarrow IP \] (you wonder \[CP \rightarrow IP \text{ which car}_2 [IP \text{ PRO to fix how}_1]]]) ?

c. **Wh-Movement of ‘which car’ to the matrix SpecC position**:
 \[CP \text{ which car}_2 \rightarrow IP \] you wonder \[CP \rightarrow IP \text{ PRO to fix how}_1]]]) ?

d. **Wh-Movement of ‘how’ to the embedded SpecC position**:
 \[CP \text{ which car}_2 \rightarrow IP \] you wonder \[CP \rightarrow IP \text{ how}_1 [IP \text{ PRO to fix }]]]) ?

The reason is that at no point in the derivation are two bounding nodes (IPs) crossed; each movement operation crosses only one IP. In a nutshell, the Subjacency condition is rendered vacuous in this derivation because the *wh*-island erected by the *wh*-phrase in the embedded SpecC position is created only after long-distance movement has applied. What, then, excludes the derivation in (52)?

In order to rule out a derivation of examples involving a *wh*-island effect as in (52), Chomsky (1973, 243) introduces the **Strict Cycle Condition**, which is given in (53) in its original form:

(53) **Strict Cycle Condition**:
No rule can apply to a domain dominated by a cyclic node \(\alpha \) in such a way as to affect solely a proper subdomain of \(\alpha \) dominated by a node \(\beta \) which is also a cyclic node.

Given (53), it is necessary to define what cyclic nodes are. For now, it may suffice to assume, basically following Chomsky (1973), that CP and NP are cyclic nodes in English. With respect to the derivation in (52), the Strict Cycle Condition then seems to make the correct prediction: *Wh-movement of how* in the last step applies to the domain dominated by the matrix CP (a cyclic node), but since it ends up in a position dominated by the embedded CP (which is a cyclic node too), it affects only a proper subdomain of the matrix CP dominated by the embedded CP – and this is prohibited by the Strict Cycle Condition.

Still, there is more to be said. Consider the following sentence, where *wh*-movement takes place in an embedded CP.

(54) \[CP \text{ I know } [CP \text{ what}_2 \text{ John did } t_3]] \]

Again, the matrix CP and the embedded CP are cyclic nodes. However, with exactly the same reasoning as in the case of the illicit derivation in (52), it seems that we have to conclude that *wh*-movement to the embedded SpecC position in (54) also violates the Strict Cycle Condition. To avoid this unwelcome conclusion, we must clarify under which conditions a rule “applies to a domain dominated by a cyclic node” in the sense of the Strict Cycle Condition (53). More generally, it seems that the
4. Cyclicity Constraints

Strict Cycle Condition must be amended by adding a notion of the *cycle*.\(^{31}\) Basically, the cycle says that movement operations apply from bottom to top. Ignoring NPs, this means that in a structure of the form in (55), all movement applies first to the most deeply embedded cyclic node (the CP\(_3\) cycle), next to the CP\(_2\) cycle, and finally to the CP\(_1\) cycle.

\[(55) \ [CP_1 \ldots [CP_2 \ldots [CP_3 \ldots] \ldots] \ldots] \]

With this in mind, let us consider again the problematic example in (54) and try to determine whether or not the Strict Cycle Condition still rules out this example. Given that rule application applies cyclically, from bottom to top, *wh*-movement in (54) may apply on the CP\(_2\) cycle, i.e., at a point in the derivation at which the CP\(_1\) cycle has not yet been reached. Hence, *wh*-movement of *what* in (54) does not "apply to a domain dominated by a cyclic node," although the matrix CP\(_1\) *is* in principle a cyclic node.

To illustrate this, consider a sentence that differs minimally from (54) in that the matrix subject is not in situ, but itself undergoes *wh*-movement:\(^{32}\)

\[(56) \ [CP_1 \ who \ knows \ [CP_2 \ what \ John \ did]] \]

Given that there are two instances of *wh*-movement in (56), there are two derivations that are possible a priori. In derivation D\(_1\), movement of *who* precedes movement of *what*, and in derivation D\(_2\), movement of *what* precedes movement of *who*. Derivation D\(_1\) is given in (57):

\[(57) \ a. \ D\text{-structure}: \]
\[[CP_1 - [IP \ who_{t4} \ knows \ [CP_2 - [IP \ John \ did \ what_{t3}]]]] \]

\[b. \ Wh\text{-Movement applies to 'who' -- CP\(_1\) cycle}: \]
\[[CP_1 \ who_{t4} \ [IP \ t_{4} \ knows \ [CP_2 \ - \ [IP \ John \ did \ what_{t3}]]]] \]

\[c. \ Wh\text{-Movement applies to 'what' -- CP\(_1\) cycle}: \]
\[[CP_1 \ who_{t4} \ [IP \ t_{4} \ knows \ [CP_2 \ \ what_{t3} \ [IP \ John \ did \ t_{3}]]]] \]

Since *wh*-movement in the matrix clause CP\(_1\) implies that all subsequent movement operations occur on the CP\(_1\) cycle, subsequent *wh*-movement in the embedded clause violates the Strict Cycle Condition. Thus, D\(_1\) in (57) is not a possible derivation of (56). However, D\(_2\) in (58) is:

\[(58) \ a. \ D\text{-structure}: \]
\[[CP_1 - [IP \ who_{t4} \ knows \ [CP_2 - [IP \ John \ did \ what_{t3}]]]] \]

\(^{31}\) See Perlmutter & Soames (1979), where this problem is discussed in some detail.

\(^{32}\) The same point could be made on the basis of (54) under the Predicate-Internal Subject Hypothesis, i.e., under the assumption that the subject NP *I* in (54) is base-generated VP-internally and then raised to SpecI.
b. *Wh-Movement applies to ‘what’ – CP*₂ cycle:
 \[\text{CP}_2 - [\text{IP} \text{ who}_4 \text{ knows } [\text{CP}_2 \text{ what}_3 [\text{IP} \text{ John} \text{ did} \text{ t}_3]]] \]

c. *Wh-Movement applies to ‘who’ – CP*₁ cycle:
 \[\text{CP}_1 \text{ who}_4 [\text{IP} \text{ t}_4 \text{ knows } [\text{CP}_2 \text{ what}_3 [\text{IP} \text{ John} \text{ did} \text{ t}_3]]] \]

Here, *wh*-movement in the embedded clause applies first. Since it does not affect a position in the matrix clause, we can assume that this movement still applies exclusively on the CP*₂* cycle, in accordance with the Strict Cycle Condition. Subsequent *wh*-movement in the matrix clause then applies on the CP*₁* cycle but obviously does not violate the Strict Cycle Condition.

Thus, given these assumptions, the Strict Cycle Condition in (53) can be reformulated in a slightly more transparent way as in (59) (cf. Freidin (1992, 107)):

\[
\text{(59) Strict Cycle Condition (revised version):}
\]

No rule may apply solely within a cyclic subdomain of the current cycle.

With this in mind, let us return to (52), which gives the illicit derivation of a typical example involving a violation of the Wh-Island Condition. This derivation is repeated in (60):

\[
\text{(60) a. D-structure:}
\]

\[\text{CP} - \text{do } [\text{IP} \text{ you wonder } [\text{CP} - [\text{IP} \text{ PRO to fix which car}_2 \text{ how}_1]]]] ? \]

b. *Wh-Movement of ‘which car’ to the embedded SpecC position:*
 \[\text{CP} - \text{do } [\text{IP} \text{ you wonder } [\text{CP which car}_2 \text{ [IP PRO to fix how}_1]]]] ? \]

c. *Wh-Movement of ‘which car’ to the matrix SpecC position:*
 \[\text{CP which car}_2 \text{ do } [\text{IP you wonder } [\text{CP [IP PRO to fix how}_1]]]] \]

d. *Wh-Movement of ‘how’ to the embedded SpecC position:*
 \[\text{CP which car}_2 \text{ do } [\text{IP you wonder } [\text{CP how}_1 \text{ [IP PRO to fix]]]] \]

Note that the second movement operation (*wh*-movement of *which car* to the matrix SpecC position) applies on the matrix CP cycle. Given the notion of the cycle, all subsequent movement operations apply on this very same cycle. But then, it follows that *wh*-movement of *how* to the embedded SpecC position in the last step applies on the matrix cycle, but affects only a proper cyclic subdomain, viz., the embedded cycle, in violation of the Strict Cycle Condition.

4.1.2. The Strict Cycle Condition and Trace Theory

Thus far, I have shown that the Strict Cycle Condition appears to be necessary, in interaction with a locality constraint like Subjacency, in order to rule out examples which exhibit a Wh-Island Condition violation. However, with the emergence of trace theory and S-structure filters, this conclusion does not appear to be valid anymore. Thus, Freidin (1978) shows that given (a) trace theory and/or (b) a representational view of Subjacency, the Strict Cycle Condition is superfluous, as far as the derivation of wh-island effects is concerned. Let me first reconsider the derivation in (52) under
the assumption that all movement leaves traces. (52) then looks as in (61):

(61)
\[\text{D-structure:} \]
\[\{CP \text{– do [IP you wonder [CP – [IP PRO to fix which car₂ how₁]]]] ?} \]

\[\text{Wh-Movement of ‘which car’ to the embedded SpecC position:} \]
\[\{CP \text{– do [IP you wonder [CP which car₂ [IP PRO to fix t₂ how₁]]]} ?} \]

\[\text{Wh-Movement of ‘which car’ to the matrix SpecC position:} \]
\[\{CP \text{ which car₂ do [IP you wonder [CP t₂ [IP PRO to fix t₂ how₁]]]} ?} \]

\[\text{Wh-Movement of ‘how’ to the embedded SpecC position is impossible:} \]
\[\{CP \text{ which car₂ do [IP you wonder [CP (t₂ [IP PRO to fix t₂ t₁])]]} ?} \]

As indicated, \textit{wh}-movement of \textit{how} to the embedded SpecC position in the last step is not possible anymore; the reason is that this position is already occupied by an intermediate trace of the preceding movement operation which applied to \textit{which car}. Hence, an appeal to the Strict Cycle Condition is no longer necessary in order to rule out the derivation in (61).

Next, suppose that movement does not (have to) leave traces in intermediate positions or that such traces can freely be overwritten by later operations. Suppose, however, that the Subjacency condition is formulated not derivationally, but rather as an S-structure filter. Reconsider the derivation in (52) with this assumption in mind:

(62)
\[\text{D-structure:} \]
\[\{CP \text{– do [IP you wonder [CP – [IP PRO to fix which car₂ how₁]]]} ?} \]

\[\text{Wh-Movement of ‘which car’ to the embedded SpecC position:} \]
\[\{CP \text{– do [IP you wonder [CP which car₂ [IP PRO to fix t₂ how₁]]]} ?} \]

\[\text{Wh-Movement of ‘which car’ to the matrix SpecC position:} \]
\[\{CP \text{ which car₂ do [IP you wonder [CP t₂ [IP PRO to fix t₂ how₁]]]} ?} \]

\[\text{Wh-Movement of ‘how’ to the embedded SpecC position is impossible:} \]
\[\{CP \text{ which car₂ do [IP you wonder [CP (t₂ [IP PRO to fix t₂ t₁])]]} ?} \]

If Subjacency applies at S-structure, i.e., after all overt movement operations have taken place, it can apply only to the output of the last operation in (62). But, clearly, the resulting representation violates Subjacency, with \textit{which car} being separated from its trace t₂ by two bounding nodes (IPs). Thus, again, an appeal to the Strict Cycle Condition appears to be unnecessary. Summarizing, assuming that all movement must leave a trace (that cannot be deleted subsequently), \textit{or} that the Subjacency condition applies at S-structure, makes the Strict Cycle Condition superfluous (at least as far as \textit{wh}-island effects are concerned).

4.1.3. \textit{The Strict Cycle Condition and Principles-\&-Parameters Theory}

Interestingly, both these assumptions are dropped in the versions of movement theory that were later developed by Lasnik & Saito (1984; 1992) and Chomsky (1986), among many others. In these approaches, it is postulated (a) that movement (of arguments) does not have to leave intermediate traces (and that, moreover, intermediate
argument traces can be deleted systematically) and (b) that Subjacency is a derivational constraint applying between \(D\)-structure and S-structure. Evidently, according to this view, the Strict Cycle Condition is indispensable for an account of the Wh-Island Condition, at least in cases where the \(wh\)-phrase undergoing long-distance movement is an argument.

4.1.4. The Strict Cycle Condition and the Minimalist Program

Finally, let me turn to the fate of the Strict Cycle Condition in the minimalist program. As shown in (63), it emerges that the Strict Cycle Condition is necessary in the minimalist program in order to derive the effects of the Wh-Island Condition.

\[(63)\]

a. \textit{D-structure}:

\[
\text{\(CP\,–\,\text{do}\,\text{\(IP\,\text{you}\,\text{wonder}\,\text{\(CP\,–\,\text{\(IP\,\text{PRO}\,\text{to\,fix\,\text{car}_2\,\text{how}_1\,}}\)]]\)}}
\]

b. \textit{Form Chain applies long-distance to ‘which car’}:

\[
\text{\(CP\,\text{which\,car}_2\,\text{do}\,\text{\(IP\,\text{you}\,\text{wonder}\,\text{\(CP\,t'_2\,\text{IP\,PRO}\,\text{to\,fix\,\text{t}_2\,\text{\text{how}_1\,}})]]\)}}
\]

c. \textit{Form Chain applies to ‘how’}:

\[
\text{\(CP\,\text{which\,car}_2\,\text{do}\,\text{\(IP\,\text{you}\,\text{wonder}\,\text{\(CP\,\text{how}_1\,\text{IP\,PRO}\,\text{to\,fix\,\text{t}_2\,\text{\text{t}_1\,}})]]\)}}
\]

The step in (63-c) must be ruled out by the Strict Cycle Condition because (a) Subjacency cannot exist as an S-structure filter (there is no S-structure level anymore in the minimalist program) and (b) embedded Form Chain in (63-c) can overwrite and thereby delete the intermediate argument trace. Note that this trace \(t'_2\) must be deleted anyway, since otherwise an illegitimate LF-object (a non-uniform chain, cf. subsection 3.2.5) would result (Chomsky & Lasnik (1993)).

Furthermore, it turns out that unlike what is the case in Principles-&-Parameters Theory, the Strict Cycle Condition is necessary even for cases of adjunct movement across a \(wh\)-island, as in (51-a), which is repeated here as (64).

\[(64)\] *\(\text{How}_1\,\text{do}\,\text{\(IP\,\text{you}\,\text{wonder}\,\text{\(CP\,\text{which\,car}_2\,\text{IP\,to\,fix\,\text{t}_2\,\text{\text{t}_1\,}})]]\)}

The relevant derivation is given in (65).

\[(65)\]

a. \textit{D-structure}:

\[
\text{\(CP\,–\,\text{do}\,\text{\(IP\,\text{you}\,\text{wonder}\,\text{\(CP\,\text{to\,fix\,\text{car}_2\,\text{how}_1\,}})]]\)}}
\]

b. \textit{Form Chain applies long-distance to ‘how’}:

\[
\text{\(CP\,\text{how}_1\,\text{do}\,\text{\(IP\,\text{you}\,\text{wonder}\,\text{\(CP\,t'_1\,\text{IP\,to\,fix\,\text{car}_2\,\text{t}_1\,}})]]\)}}
\]

c. \textit{Form Chain applies to ‘which car’}:

\[
\text{\(CP\,\text{how}_1\,\text{do}\,\text{\(IP\,\text{you}\,\text{wonder}\,\text{\(CP\,\text{which\,car}_2\,\text{IP\,to\,fix\,\text{t}_2\,\text{\text{t}_1\,}})]]\)}}
\]

Again, without the Strict Cycle Condition, nothing prevents \(\text{which\,car}\) from moving to the embedded SpecC position in the last step. The moved \(wh\)-phrase overwrites and thereby deletes the intermediate adjunct trace \(t'_1\). This is not possible under standard assumptions in Principles-&-Parameters Theory (see footnote 17), but it is under the guiding assumptions of the minimalist program. Recall that the deletion of intermediate adjunct traces is not blocked by stipulations concerning the level of \(\gamma\)-marking.
4. Cyclicity Constraints

anymore, but rather ruled out by the Fewest Steps condition (cf. subsection 3.2.5 above). The Fewest Steps condition, however, does not preclude the operation in (65-b), where adjunct trace deletion comes at no cost as a result of a single operation Form Chain applying to the argument \textit{wh}-phrase \textit{which car}_2.

Thus, given that something like the Strict Cycle Condition seems to be called for in the minimalist program, the question arises of whether its effects can be derived from independent, more basic assumptions. The question is answered in the affirmative in Chomsky (1993); in the following subsection, I summarize that proposal.

4.1.5. Deriving the Strict Cycle Condition from the Extension Condition

Chomsky (1993, 22ff) assumes that syntactic trees are built by successive applications of generalized transformations; this operation is called “Merge” in Chomsky (1995) (where some differing properties are attributed to it, which do not concern me here). Movement is viewed as an instance of Merge. The structure-building operation Merge can be defined as follows:

\begin{equation}
\text{(66) Generalized Transformation (Merge):}
\end{equation}

Merge is a binary operation. Given two trees \(\alpha, \beta \), Merge targets \(\beta \), adds an empty element \(\phi \), and replaces \(\phi \) by \(\alpha \), thereby creating a new tree \(\gamma \), with \(\beta \) as a proper subpart.

On the basis of (66), movement (Move \(\alpha \)) can be understood as Merge with the additional requirement that \(\alpha \) is a proper subpart of \(\beta \).

In addition to that, Chomsky (1993) assumes that Merge (hence, movement) is further restricted by an Extension Condition, as in (67).

\begin{equation}
\text{(67) Extension Condition for Merge:}
\phi \text{ in (66) must be external, unless}
\begin{enumerate}
 \item the result of Merge is an adjunction structure (head movement, XP adjunc-
 \item or
 \item Merge is a movement operation after Spell-Out (LF movement)
\end{enumerate}
\end{equation}

From (67) it follows that substitution operations have to extend the phrase marker (this, of course, presupposes that movement and pure structure-building operations may alternate, cf. footnote 1 above). This derives the effect of the Strict Cycle Condition (53) (or (59)), as far as the \textit{Wh}-Island Condition is concerned. To see this, consider again the relevant step of an acyclic derivation of a sentence exhibiting a violation of the \textit{Wh}-Island Condition, as in (63), repeated here.

\begin{equation}
\text{(68) a. [CP which car}_2 \text{ do [IP you wonder [CP t}_2^\prime \text{ [IP PRO to fix t}_2 \text{ how}_1]]]) ?}
\end{equation}

The movement operation in (68-b) which puts the \textit{wh}-adjunct \textit{how} into the embedded SpecC position, overwriting the intermediate trace of \textit{which car}, does not meet
the requirement imposed by the Extension Condition on Merge. The reason is that embedded wh-movement of *how* in (68-b) neither is an LF operation nor creates an adjunction structure – it is S-structure substitution in SpecC, and as such illegitimately fails to extend the tree built up so far.

Thus, the Extension Condition on generalized transformations (therefore, on movement) put forward in Chomsky (1993) at first sight seems to derive the effects of the Strict Cycle Condition. However, note that it rests on two assumptions that will turn out to be problematic – first, head movement (and XP adjunction) must be exempted from the Extension requirement; and second, LF movement is an exception to this condition on Merge. In the following subsection, I will show why these two exceptions must be made, and I will argue that they are empirically problematic.

4.1.6. Against Deriving the Strict Cycle Condition from the Extension Condition

Head Movement The two exceptions in the Extension Condition (67) with respect to adjunction operations and LF operations are unavoidable. This is quite obvious for the case of head movement (analyzed as adjunction to some \(X^0 \) category): It is impossible that adjunction of one head to some other head extends the tree built up so far. This is shown in (69).

33This is the typical structure in which head movement is legitimate, see Travis (1984), Chomsky (1986), Baker (1988).

34As noted by Bobaljik & Brown (1997), this exception to the Extension Condition can be dispensed with if one is willing to make the assumption that head movement of an item \(\alpha \) that is included in a tree \(\beta \) may target a distinct tree \(\gamma \) that is unrelated to \(\beta \) at the time when movement of \(\alpha \) applies (an “interarboreal” operation). I will not adopt this assumption here.
4. Cyclicity Constraints

LF Movement
LF movement usually does not extend the phrase marker. This is evident for Case-driven LF movement of an object NP in English (assuming for the purpose of the discussion that there is such a thing) and also for *wh*-movement at LF. I will show this on the basis of the *wh*-island effect with LF movement that occurs in *wh*-in situ languages like Chinese, Japanese, and Korean (cf. Huang (1982), Lasnik & Saito (1984; 1992, 30ff), and Koster (1987, 216ff), among many others). For concreteness, consider the following example from Korean (Shin-Sook Kim, p.c.):

(70)
\[
\]
\[
you,op\quad \text{Suna}_{nom}\text{ what}_{acc} \quad \text{why buy-PAST-Q want-to-know-Q}
\]

Here, the matrix C node and the embedded C node bear [+wh] features (as evidenced by the presence of the Q-morpheme in both clauses), and there are two *wh*-phrases in situ in the embedded clause. One option is to interpret (70) as a matrix yes/no question with an embedded multiple question. This reading corresponds to an LF representation in which both *wh*-phrases undergo local movement within the embedded clause at LF, and it is not relevant in the present context. The two interesting LF representations to be considered here involve LF movement of one *wh*-phrase to the embedded SpecC position and LF movement of the other *wh*-phrase to the matrix SpecC position. As shown in (71), only the LF representation in which the *wh*-argument *muōs-ūl* (‘what’) has undergone long movement and the *wh*-adjunct *wae* (‘why’) has undergone short movement corresponds to an available reading.

(71)
a.
\[
\text{[CP muōs-ūl₂ nō-nūn [CP wae₁ Suna-ka t₂ t₁ sa-ss-nūnchi] alko-sip-ni] ?}
\]
\[
\text{‘What do you want to know why Suna bought?’}
\]

b.
\[
\text{[CP wae₁ nō-nūn [CP muōs-ūl₂ Suna-ka t₂ t₁ sa-ss-nūnchi] alko-sip-ni] ?}
\]
\[
\text{‘What is the reason such that you want to know what Suna bought for that reason?’}
\]

It seems that in order to rule out the LF representation in (71-b), two derivations must be excluded, as in the case of *wh*-island effects with movement before Spell-Out.\(^{35}\)

Consider first the derivation in (72).

(72)
a.
\[
\text{S-structure:}
\]
\[
\]

b.
\[
\text{*Form Chain applies to ‘muōs-ūl₂’:}
\]
\[
\text{[CP – nō-nūn [CP muōs-ūl₂ Suna-ka t₂ wae₁ sa-ss-nūnchi] alko-sip-ni] ?}
\]

\[\text{c. Form Chain applies long-distance to ‘wae₁’:}
\]
\[
\text{[CP wae₁ nō-nūn [CP muōs-ūl₂ Suna-ka t₂ t₁ sa-ss-nūnchi] alko-sip-ni] ?}
\]

\(^{35}\)What is said about the Korean example (70) in what follows carries over directly to analogous examples in Chinese and Japanese. Note in passing that the wellformedness of the LF representation in (71-a) is accounted for if we assume, following Huang (1982), Lasnik & Saito (1984; 1992), and Chomsky (1986), among others, that LF movement of arguments is immune to intervening *wh*-islands.
The last step of this derivation is in conflict with locality requirements, more precisely, with the Barriers Condition (see (1)). Next, consider a derivation where movement of mu ōs-ūl and movement of wae apply in reverse order:

(73)

a. **S-structure:**

\[
\text{[CP – nō-nūn [CP – Suna-ka muōs-ūl\textsubscript{2} wae\textsubscript{1} sa-ss-nūnchi] alko-sip-ni] ?}
\]

b. **Form Chain applies long-distance to ‘wae\textsubscript{1}’:**

\[
\text{[CP wae\textsubscript{1} nō-nūn [CP t\textsubscript{1}′ Suna-ka muōs-ūl\textsubscript{2} t\textsubscript{1} sa-ss-nūnchi] alko-sip-ni] ?}
\]

c. **Form Chain applies to ‘muōs-ūl\textsubscript{2}’:**

\[
\text{[CP wae\textsubscript{1} nō-nūn [CP muōs-ūl\textsubscript{2} Suna-ka t\textsubscript{2} t\textsubscript{1} sa-ss-nūnchi] alko-sip-ni] ?}
\]

This derivation does not violate locality constraints, since LF movement of wae applies successive-cyclically, via the embedded SpecC position. As before, the intermediate trace of the wh-adjunct t\textsubscript{1}′ can be overwritten in the last step of the derivation by the wh-argument muōs-ūl\textsubscript{2}. Given that LF movement does not have to meet the Extension Condition (67), it seems that this derivation does not violate any principle and that, therefore, (71-b) should be an admissible LF representation, contrary to fact. However, the last step in the derivation (73) can be excluded if LF movement obeys the Strict Cycle Condition, in analogy to what has been argued for above with regard to overt wh-movement across a wh-island.

For these reasons, I conclude that the Strict Cycle Condition is necessary for all kinds of movement (substitution and adjunction, movement before and after Spell-Out) in the minimalist program and that its effects cannot be derived from something like the Extension Condition on generalized transformations.36

4.1.7. Formulating the Strict Cycle Condition in the Minimalist Program

Given this state of affairs, it remains to formulate the Strict Cycle Condition in minimalist terms. Henceforth, I will assume the following version of the Strict Cycle Condition, which incorporates the main features of all the predecessors discussed in the previous subsections and at the same time evades the objections that have been raised (but see chapter 3 below for a slight modification).

(74) **Strict Cycle Condition** (second revision):

No rule can target a position that is dominated by a cyclic node and does not belong to the minimal residue of the head of this cyclic node.

The notion of minimal residue has already played a role in the definition of Last Resort in subsection 3.4 (recall (43)); it is repeated here in (75):

36 Note that more or less the same kinds of problems arise under alternative derivations of the Strict Cycle Condition in the minimalist program; see, e.g., Kitahara (1995, 52-63), Zwart (1993, 26; 1994, 286), and, in particular, Chomsky’s (1995, 234) requirement that strong features must be checked at the root. I will return to this latter condition in subsection 7.1 of chapter 3.
4. Cyclicity Constraints

(75) **Minimal Residue** (‘Checking Domain’):

The minimal residue of a head X is the smallest set M of categories \(\alpha \) such that:

- a. X-Adj, SpecX, and XP-Adj is in M.
- b. If \(\alpha \) is in M, then \(\alpha \)-Adj is in M.

The notion of cyclic node in (74) still has to be defined. Here I will assume that no XP is per se a cyclic node; rather, an XP becomes a cyclic node if movement into its minimal residue (checking domain) takes place. This is the gist of the cycle:

(76) **Cycle**:

An XP becomes a cyclic node in the derivation iff movement to the minimal residue of its head takes place.

Given the notions of minimal residue and cyclic node in (75) and (76), respectively, it follows from the Strict Cycle Condition that after movement into the minimal residue of some XP \(\alpha \) has taken place, any subsequent movement must end up either in the minimal residue of \(\alpha \) again or in a higher position. Clearly, the Strict Cycle Condition in (74) straightforwardly rules out acyclic derivations of sentences involving \(\text{wh} \)-island effects at S-structure. Furthermore, (74) now makes it possible to subsume head movement under the Strict Cycle Condition. Head movement does not have to “extend” the tree built up so far anymore; the only requirement that the Strict Cycle Condition imposes on head movement is that it may not adjoin a head W to some head X if X is dominated by a cyclic node YP (\(Y \neq X \)) – but if W is adjoined to X and XP is already a cyclic node, this does not violate strict cyclicity per se. More generally, given (74), head movement to X, substitution in SpecX, and adjunction to XP can co-occur because they all target the minimal residue of the same head.

Turning now to the interaction of strict cyclicity and LF movement, we must distinguish between a pre-Spell-Out (S-structure) cycle and a post-Spell-Out (LF) cycle. That is, after Spell-Out, the characterization of cyclic nodes that results from overt movement is forgotten, and everything starts anew. With respect to the illegitimate derivation (73) (repeated here as (77)) of the Korean example (71-b), this means that at the point where the first LF operation (i.e., long-distance movement of \(\text{wae} \)) takes place, there are no cyclic nodes present anymore. Form Chain applying to \(\text{wae} \) then turns the matrix CP into a cyclic node, and subsequent raising of the \(\text{wh} \)-argument \(\text{mu\-o\-s-al} \) to the embedded SpecC position violates the Strict Cycle Condition (74), as desired (the embedded SpecC position is not part of the matrix C node’s minimal residue).

(77) **S-structure**:

\[
\text{[CP – nô-nûn [CP – Suna-ka muôs-ûl \(wae_1 \) sa-ss-nûnchi] alko-sip-ni] ?}
\]

b. **Form Chain applies long-distance to ‘\(wae_1 \)’**:

\[
\text{[CP wae_1 nô-nûn [CP t_1 Suna-ka muôs-ûl \(t_1 \) sa-ss-nûnchi] alko-sip-ni] ?}
\]

c. **Form Chain applies to ‘\(muôs-ûl \)’**:

\[
\text{[CP wae_1 nô-nûn [CP muôs-ûl Suna-ka t_2 t_1 sa-ss-nûnchi] alko-sip-ni] ?}
\]
4.2. Successive Cyclicity

In this section, I will present evidence that in addition to the Strict Cycle Condition, yet another constraint on rule interaction seems to be necessary, one that restricts successive-cyclic application of rules to a single item. The constraint I will argue for is the Principle of Unambiguous Binding (PUB), which rules out cases of improper movement.

4.2.1. Super-Raising in English

Consider a standard case of super-raising in English, like (78).

(78) *John seems \([_{CP} [_{IP} \text{it is likely} [_{IP} t_1 \text{to win}]]] \)

Here, the NP *John has undergone Case-driven movement out of its non-Case position in the most deeply embedded IP to the matrix SpecI position. To ensure the illformedness of super-raising constructions like the one at hand, various derivations must be excluded. One derivation looks as indicated in (78); it involves movement of NP \(_1\) to the matrix SpecI position in one fell swoop. This derivation violates the Barriers Condition: CP is a barrier for \(t_1 \) because \(t_1 \) is dominated by \(C' \), and the antecedent of \(t_1 \) is outside of CP. A second relevant derivation of (78) involves successive-cyclic A-movement of NP \(_1\) via the embedded SpecI position, with subsequent insertion of the expletive pronoun *it. Since the insertion operation targets a position that is dominated by a cyclic node – the matrix IP – without belonging to the matrix I’s minimal residue, this derivation violates the Strict Cycle Condition, in addition to the Barriers Condition. But what about a third derivation of (78) in which *John undergoes movement to the embedded SpecC position prior to undergoing raising to the matrix SpecI position, as in (79)?

(79) *John seems \([_{CP} t_1' [_{IP} \text{it is likely} [_{IP} t_1 \text{to win}]]] \)

Here, locality requirements for both the first (A-bar movement) and the second (A-movement) step are respected (see, however, Branigan (1992, 16-17) for a different view, based on a more complicated formulation of locality theory); and so is the Strict Cycle Condition. Hence, it seems that the illformedness of a derivation of the kind in (79) is not yet guaranteed by the standard constraints adopted in the minimalist program that have been discussed up to now, and additional assumptions are called for (cf. Takahashi (1994, 109-114)).

37Of course, given the concept of Form Chain, this terminology must be understood metaphorically. According to this view, what happens in (79) is not a combination of two movement operations, but rather one operation of Form Chain that consists of moving *John to the matrix SpecI position and inserting an intermediate trace in the embedded SpecC position.
One strategy for ruling out a derivation like (79) is based on the idea that two distinct movement types interact in an illicit manner in this case, thereby creating an “improper movement” effect. The prohibition against such improper movement is derived by invoking principles of the binding theory in May (1979) and Chomsky (1981): Assuming that traces which are locally A-bound qualify as anaphors (i.e., they obey principle A of the binding theory) and that traces which are locally A-bar bound count as variables (subject to principle C), it emerges that t_1 in (79) is a variable and t'_1 an anaphor. Whereas nothing is wrong with the binding of the anaphoric trace t'_1 in (79), the variable t_1 violates principle C: it is bound by John, which occupies an A-position.

Note that this approach correctly predicts that the reverse application of A- and A-bar movement operations is legitimate. Thus, sentences like (80) do not involve improper movement under this analysis because t_1 is an anaphoric trace (being locally A-bound) that fulfills principle A, and t'_1 and t''_1 are variables (being locally A-bar bound) that fulfill principle C:

(80) Who do you think [CP t''_1 [IP t'_1 was kissed t_1]] ?

Although invoking binding-theoretic principles for traces successfully accounts for improper movement effects with super-raising, closer inspection suggests that the phenomenon might be more general, i.e., that there are cases of improper movement that do not easily lend themselves to an analysis in terms of principles of binding theory. One such case, which is discussed at length in Sternefeld (1990) and Müller & Sternefeld (1990; 1993), concerns the prohibition against long-distance scrambling from finite clauses in German.

4.2.2. Long-Distance Scrambling in German

As observed by Ross (1967), scrambling in languages like German is strictly local in the sense that a finite clause cannot be crossed by this movement operation (see also subsection 2.5 of chapter 1). A relevant pair of examples that shows the clause-boundedness of scrambling in German is given in (81):

(81) a. dass Antje sagt [CP dass Hygrometer$_1$ niemand$_1$ mag]
 that Antje says that hygrometers no-one likes

b. *dass Antje Hygrometer$_1$ sagt [CP t'_1 dass niemand$_1$ t_1 mag]
 that Antje hygrometers says that no-one likes

Clearly, an analysis that treats the construction in (81-b) as an instance of improper movement, on a par with the super-raising construction in (79), suggests itself. And indeed, if one assumes that scrambling in German is an instance of A-movement, the illformedness of (81-b) follows in the same way as that of the super-raising derivation in (79) (see Fanselow (1990)). However, it has often been argued in the literature that scrambling in German is to be analyzed as an instance of A-bar movement, not A-movement (cf. Stechow & Sternefeld (1988), Vikner (1990; 1994), Wilder (1989),
Webelhuth (1987), Sternefeld (1990; 1991), Müller & Sternefeld (1990; 1994), Frank, Lee & Rambow (1992), Grewendorf (1995), and Müller (1995)). Assuming this to be correct, a problem arises: The initial trace t_1 in (81-b), contextually classified as a variable because it is locally A-bar bound (by the intermediate trace t'_1 in SpecC), does not violate principle C because its chain antecedent *Hygrometer* (‘hygrometers’) occupies an A-bar, rather than an A-position. Thus, the binding-theoretic approach to improper movement in super-raising constructions does not carry over to apparently similar cases of improper movement in long-distance scrambling constructions in German.

In light of this, it is suggested in Müller & Sternefeld (1990; 1993) that a more unified approach to improper movement is called for, one that does not rely on binding theory conditions but at the same time capitalizes on the insight behind May’s (1979) and Chomsky’s (1981) approach to super-raising – that in these cases it is the intermediate trace in the embedded SpecC position that is illegitimate; it must be absent, thereby producing an effect akin to a Wh-Island Condition violation (i.e., SpecC is “inaccessible” in these contexts). The approach to improper movement developed in Müller & Sternefeld (1990; 1993) (see also Sternefeld (1991) and Müller (1995)) centers around the Principle of Unambiguous Binding, or PUB.

4.2.3. Unambiguous Binding

The Principle of Unambiguous Binding (PUB) is formulated in Müller & Sternefeld (1993, 461) as a filter that applies at S-structure and at LF:

\[
\text{PUB: A variable that is } \alpha \text{-bound must be } \beta \text{-free in the domain of the head of its chain (where } \alpha \text{ and } \beta \text{ refer to different types of positions).}
\]

Suppose, as before, that variables – i.e., the kinds of traces that must be bound unambiguously – are defined as locally A-bar bound traces; suppose furthermore, again as before, that among the different types of positions recognized by (82) are SpecI (the landing site of A-movement), SpecC (the landing site of wh-movement), SpecTop (the landing site of topicalization), and left-adjunction sites of VP (IP) (the landing sites of scrambling).

38Evidently, this is not compatible with the view that S-structure does not exist as a syntactic level. As shown in Müller & Sternefeld (1996), the PUB can equally well be formulated as a derivational constraint, as in (i):

(i) **PUB** (derivational version):

There is no movement from a position of type α to a position of type β (where α is a derived A-bar position).

Although there are some subtle differences between the two formulations, I will abstract away from this issue in what follows, sticking to the representational version, mainly for reasons of simplicity.
4. Cyclicality Constraints

Under these assumptions, the PUB in (82) predicts that A-bar movement to a certain kind of position (say, to SpecC) cannot be followed by another movement step that ends up in a different kind of position (say, SpecI or XP-Adj). Thus, improper movement effects as they show up in super-raising and long-distance scrambling constructions like (79) and (81-b) are derived as violations of the unambiguous binding requirement in (82).

In (79), w-h-movement to SpecC is followed by A-movement to SpecI; such a mixing of movement types counts as improper:

(83) *John$_1$ seems [CP t'_1 that [IP it is likely [IP t_1 to win]]]

Note that the reverse combination of raising to SpecI and movement to SpecC as in (84) (or (80)) does not violate the PUB because t_1 is not a variable (it is locally A-bound) and t'_1 is bound unambiguously:

(84) [CP Who$_1$ [IP t'_1 was kissed t_1]] ?

However, a combination of w-h-movement to SpecC followed by scrambling to VP, as in (81-b), does violate the PUB because it induces an ambiguous binding configuration with the variable t_1:

(85) *dass Antje Hygrometer$_1$ sagt [CP t'_1 dass niemand t_1 mag]

4.2.4. Complications

Thus, the PUB correctly rules out derivations of super-raising in English and long-distance scrambling in German that involve improper movement via the embedded SpecC position. However, in order to fully derive the impossibility of the respective constructions, more must be said. For instance, it is not a priori clear why certain derivations in which super-raising and long-distance scrambling constructions do not involve improper movement are completely ungrammatical, in contrast to, e.g., argument extractions from w-h-islands in English, as in (i-a) of footnote 19 (cf. subsection 3.2.5), which is repeated here:

(86) ??Which car$_1$ did John tell you [CP how$_2$ (t'_1) to fix t_1 t_2] ?

As a case in point, consider the following, more intricate (but nonetheless ungrammatical) example involving super-raising:

(87) *John$_1$ seems [CP (t'_1) that [IP it is likely [IP t'_1 to have been kissed t_1]]]

(87) differs minimally from the kind of super-raising construction discussed so far in that the most deeply embedded verb is passivized, so that an additional trace in the direct object position of kissed in present. Again, if movement proceeds via SpecC, establishing an intermediate trace t''_1 in that position, it counts as improper due to the PUB (t'_1 being a variable that is bound from two different types of position, viz. SpecC and SpecI). If, on the other hand, the embedded SpecC position is skipped over, strong
Chapter 2. Movement Theory

ungrammaticality can be derived only if the trace in SpecI (t′ 1) is not deleted on the way to LF – for this is the only “offending” trace that violates locality (the Barriers Condition). Thus, it seems that this intermediate trace of A-movement behaves like an adjunct trace and not like other argument traces (with antecedents in A-bar position) in that respect. Indeed, something along these lines is explicitly assumed by Chomsky (1986), Cinque (1990), Rizzi (1990), and Manzini (1992), among others. In contrast, in the framework adopted here, it follows automatically that t′ 1 in (87) cannot be deleted on the way to LF, just like adjunct traces. Recall the notion of legitimate LF objects from Chomsky & Lasnik (1993, 546) that we already encountered in the course of the discussion of argument/adjunct asymmetries in subsection 3.2.5:

(88) Legitimate LF objects:
 a. Uniform chains of the type C = <α 1,...,α n>, where all members are either
 in an A-bar position or in an A-position.
 b. Operator-variable constructions of the type <α,β>, where α is in an A-bar
 position and β heads a uniform chain.

Evidently, the chain <John 1,t′ 1,t 1> in (87) contains only members in A-position; hence, it qualifies as a uniform chain in the sense of (88-a). Therefore, LF deletion of t′ 1 (which would eliminate the violation of locality principles at LF and thereby produce a derivation that has the status of a Subjacency effect) is not required for convergence and is consequently blocked by the Fewest Steps condition. In sum, the illformedness of super-raising constructions follows from the interaction of the PUB, the Barriers Condition, and the Fewest Steps condition.39

The question arises of whether this account of illegitimate super-raising carries over to illicit long-distance scrambling from finite clauses in German. We have seen that a derivation via SpecC, as in (85), counts as improper because it causes a PUB violation. But what about a derivation like (89), where no intermediate trace is generated?

(89) *dass Antje Hygrometer 1 sagt [CP – dass niemand t 1 mag]
 that Antje hygrometers says that no-one likes

This derivation clearly violates the Barriers Condition: Any CP is a barrier for an item that is included in C’. Thus, movement from t 1 to a VP-adjoined position in the matrix clause illegitimately crosses a barrier.

Consider finally a derivation of long-distance scrambling in German where intermediate traces are generated in scrambling positions (and SpecC is still left unused), as in (90):

(90) *dass Antje Hygrometer 1 sagt [CP – dass t′ 1 niemand t 1 t 1 mag]

39Note that if t′ 1 is not generated in the first place, t 1 will be the “offending” trace, violating locality and producing strong ungrammaticality at LF.
4. Cyclicity Constraints

that Antje hygrometers says that no-one likes

This derivation does not violate the PUB because all traces are unambiguously bound by items in scrambling positions. As before, the Barriers Condition is violated: The intermediate trace t'_1, adjoined to the embedded IP, is separated from its chain antecedent by the intervening CP barrier. Therefore, this trace is marked * in the step of the derivation that generates it. This suffices to explain a Subjacency-like effect. However, in order to derive full ungrammaticality in the framework of Chomsky & Lasnik (1993), it must be guaranteed that t''_1 is not deleted on the way to LF; and, in contrast to what is the case in parallel constructions involving successive-cyclic super-raising, this does not yet follow under present assumptions – deletion of intermediate traces seems to be required here, so as to turn the scrambling chain into a legitimate LF object in the sense of (88).

This problem is solved by the principle of Full Representation that is proposed in Müller & Sternefeld (1993, 478). From this principle it follows (among other things) that traces of scrambling chains must be present at LF, i.e., cannot be deleted. For the time being, I will leave it at that, noting that scrambling chains as they arise due to Full Representation necessitate a revision of Chomsky & Lasnik’s (1993) requirements for legitimate LF objects. That said, let me now turn to a third illustration of how the PUB constrains successive-cyclic movement.

4.2.5. Wh-Movement vs. Topicalization

As noted by Fanselow (1987), Bayer (1990a), Müller & Sternefeld (1993), and d’Avis (1996), among others, there is a striking asymmetry between wh-movement and topicalization from a wh-island in German. Topicalization of an argument from a wh-island typically induces weak (Subjacency-like) ungrammaticality (cf. (91-a)), and topicalization of an adjunct in the same context is strictly prohibited (cf. (91-b)):

(91) a. ??[CP – C [TopP Radios₁ weiß ich nicht [CP wie₂ [TopP t'_1 man t_2 t_1 repariert]]]
 radios₁ know I not how one fixes

b. *.[CP – C [TopP Deswegen₂ weiß ich nicht [CP was₁ [TopP t'_2 der Fritz t_2 therefore know I not what₂ ART Fritz t_1 repariert hat]]]
 fixed has

Thus, this movement type behaves more or less as one would expect it to under standard approaches to wh-islands. In contrast, wh-movement from a wh-island is strictly prohibited in German not only with adjuncts (cf. (92-b)), but also with arguments; as shown in (92-a), argument extraction is much worse than the corresponding topicalization case in (91-a).
Chapter 2. Movement Theory

(92) a. \(\text{Was} \ [\text{TopP} - \text{weißt du nicht} \ [\text{CP wie} \text{CP} - \text{man t}_2 \text{t}_1 \text{repariert}]] \)?

 b. \(\text{Wie} \ [\text{TopP} - \text{weißt du nicht} \ [\text{CP was} \text{CP} - \text{man t}_2 \text{t}_1 \text{repariert}]] \)?

Note first that if the examples in (91) and (92) are derived in such a way that embedded \textit{wh}-movement follows long-distance movement, the Strict Cycle Condition is violated as shown above, yielding strong ungrammaticality, by assumption. Thus, suppose that these sentences are derived in a cyclic fashion, with embedded \textit{wh}-movement preceding long-distance extraction. In this case, the embedded \text{SpecC} position is filled by the \textit{wh}-phrase, and extraction violates the Barriers Condition (1) in the derivation. This suffices to predict strong ungrammaticality in the cases of adjunct extraction in (91-b) and (92-b). The intermediate status of the example involving argument topicalization in (91-a) is also accounted for – due to a Barriers Condition violation, the trace \(t'_1 \) is marked * in the derivation, thereby inducing weak ungrammaticality, but \(t'_1 \) is deleted on the way to LF, so that strong ungrammaticality is avoided. However, the clear contrast between topicalization of an argument from a \textit{wh}-island as in (91-a) and \textit{wh}-movement of an argument from a \textit{wh}-island as in (92-a) is not yet predicted.

The idea pursued in Müller & Sternefeld (1993) in light of this evidence is the following: Obviously, \text{SpecC} in (91) and (92) is not accessible for long-distance movement because it is filled and thus creates a violation of the Barriers Condition. However, similar conclusions can be drawn in the case of \text{SpecTop} – if this position is skipped, too, then yet another violation of the Barriers Condition will occur. It is reasonable to postulate that such an additional violation can be held responsible for the more degraded status of examples involving argument extraction across a \textit{wh}-island.

Thus, the task is to ensure that \text{SpecTop} can qualify as an escape hatch for long-distance movement in (91-a), but not in (92-a), resulting in a weak violation in the former and a stronger violation in the latter.

This result is achieved by the PUB. As shown in (93-a) vs. (93-b), \textit{wh}-movement via \text{SpecTop} is classified as improper by the PUB, whereas successive-cyclic topicalization via \text{SpecTop} is not.

(93) a. \(\text{Was} \ [\text{TopP} - \cdots [\text{CP wie} \text{CP} - \text{man t}_2 \text{t}_1 \text{repariert}]] \)?

 b. \(\text{CP - C [TopP - Radios} \cdots [\text{CP wie} \text{CP} - \text{man t}_2 \text{t}_1 \text{repariert}]] \)

Of course, this analysis also raises a number of problems. For one thing, the partition of the clausal periphery into \text{CP} and \text{TopP}, together with the PUB, requires special assumptions for ordinary cases of successive-cyclic \textit{wh}-movement and topicalization, as in (94):
4. Cyclicity Constraints

(94) a. \[CP \text{ Wie} _1 C \left[\text{TopP} - \text{Top} \right] \text{meinst du dass } \left[\text{TopP} - \text{Top} \right] t_1 \text{ dass } \left[\text{TopP} - \text{Top} \right] t_1 \text{ passiert ist }]]] \]

b. \[CP - C \left[\text{TopP} \right] \text{Dieses Buch} _1 \text{ denke ich dass } \left[\text{TopP} \right] t_1 \text{ ich } t_1 \text{ kaufen sollte }]]] \]

The only derivations of (94-a) and (94-b) that are compatible with the PUB are those that have intermediate traces in the positions indicated here, i.e., in the embedded SpecC position in the wh-movement example in (94-a) and in the embedded SpecTop position in the topicalization example in (94-b). If nothing more is said, we would therefore expect violations of the Barriers Condition in these sentences, resulting in strong illformedness with adjunct movement in (94-a) and weak illformedness with argument movement in (94-b), contrary to fact (in (94-a), both the embedded TopP and the matrix TopP should qualify as barriers, and in (94-b), the embedded CP should be a barrier).

Faced with this problem, Müller & Sternefeld (1990; 1993) suggest that CP and TopP count as “matching projections” (cf. Haider (1988) for a related concept) in (94) in the sense that they behave like a single XP for the purposes of locality constraints in these examples. The matching of two projections is, according to this view, possible only if one specifier is radically empty (i.e., does not contain lexical material or traces) – this ensures that matching is not an option in the examples in (91) and (92), where both CP and TopP must be visible for the Barriers Condition, as seen above.

The PUB has many more consequences for successive-cyclic extraction from clauses under the CP/TopP hypothesis.\(^{40}\) However, I will not dwell on this issue any further here (see Müller & Sternefeld (1990; 1993; 1996) for more discussion) and turn now to the question of how the cyclicity constraint PUB and the economy constraints Fewest Steps and Last Resort interact with each other.

\(^{40}\)To name just one, wh-movement of an argument across a wh-island in English should have the same status as German examples of the type (92-a); i.e., it should involve two violations of the Barriers Condition, yielding a severely degraded result (that is, however, still somewhat better than the corresponding case of adjunct extraction). Indeed, it is argued in Müller & Sternefeld (1990; 1993) that this result might be correct for finite wh-islands in English, which are typically strict, in contrast to non-finite wh-islands (see Chomsky (1986) and Frampton (1990)). As far as non-finite wh-islands as in (86) are concerned, it is proposed that here the TopP projection is “impoverished” to an extent that permits wh-items to use SpecTop without incurring a PUB violation. On this view, the weak islandhood of infinitival wh-clauses for wh-movement in English can be treated on a par with the weak islandhood of finite wh-clauses for topicalization in German; cf. (91-a).
4.2.6. The Interaction of the PUB and Economy Constraints

In this subsection, I would like to address the question of whether the effects of improper movement discussed in the preceding subsections really require a specific constraint like the PUB or can be made to follow from the economy constraints Fewest Steps and Last Resort in their standard forms. I have highlighted three cases involving improper movement: (a) super-raising in English, (b) long-distance scrambling in German, and (c) a wh-movement/topicalization asymmetry in the case of wh-islands in German. The three relevant derivations are repeated here in that order (see (83), (85), and (93-a)):

(95)
 a. *John seems [CP \text{t}_1′ that [\text{IP} it is likely [\text{IP} t_1 to win]]]
 b. *dass Antje Hygrometer\text{t}_1 sagt [CP \text{t}_1′ dass niemand t_1 mag]
 that Antje hygrometers says that no-one likes
 c. ?*[CP Was \text{t}_1 C [\text{TopP} – \ldots [CP wie \text{t}_1′ man t_2 t_1 repariert]]]?

As can easily be verified, the Fewest Steps condition does not rule out the derivations in (95). In all three cases, only one operation of Form Chain applies to the moved item; there is nothing inherent in that operation that precludes the insertion of the “offending” intermediate traces that give rise to improper movement configurations. Thus, since Fewest Steps per se does not say anything about possible positions for the insertion of intermediate traces, it cannot block the derivations in (95) in favour of competing derivations which do not contain improper movement.

Note next that the PUB effects in (95) do not follow from Last Resort either. In all cases, long-distance movement (to SpecI, VP-Adj, and SpecC, respectively) is triggered by the need to check a morphological feature ([scr], [Case], and [+wh]). Like Fewest Steps, Last Resort does not per se impose a restriction on the insertion of intermediate traces by Form Chain, and hence does not bar improper movement configurations.

More generally, then, the conclusion can be drawn that a constraint on successive cyclicity like the PUB appears to be necessary, at least under the standard formulations of Last Resort and Fewest Steps. Unfortunately, a redundancy nevertheless arises, but in the opposite direction. It turns out that the PUB can also do some of the work of economy constraints – as noted in Müller & Sternefeld (1996), the PUB directly excludes both wh-topicalization and wh-scrambling, as discussed in subsections 3.2.1 and 3.2.2 above. Consider first an example that illustrates the prohibition against wh-topicalization in English. (17-c) is repeated here:

(96)
 *Who t_1 said [CP that [\text{TopP who}_2 [\text{IP John likes t}_2]]]

At LF, who\text{t}_2 is raised from the embedded SpecTop position to the matrix SpecC position, where it is then adjoined. Thus, a derivation that generates the LF representation in (97) via the S-structure representation in (96) violates Fewest Steps because there is a competing derivation that is more economical (in this derivation, who\text{t}_2 stays in situ at S-structure). However, a derivation yielding (97) via (96) also involves ambi-
guous binding of the initial trace t_2. Hence, such successive-cyclic movement violates the PUB and counts as improper:

$$(97) \quad *[_{\text{SpecC}} \text{who}_1 \text{who}_2] \ t_1 \text{ said } [_{\text{CP}} \text{that } [_{\text{TopP}} t'_2 [_{\text{IP}} \text{John likes } t_2]]]$$

Basically the same goes for the prohibition against wh-scrambling in German. The relevant example is (19-c), repeated here as (98):

$$(98) \quad *_{\text{how}} \text{hat } [_{\text{IP}} \text{was } t_2 [_{\text{IP}} \text{der Fritz } t_1 \ t_2 \text{repariert }]] \ ?$$

As before, the wh-phrase that has undergone optional movement at S-structure (i.e., was_2 (‘what’)) raises to the matrix SpecC position at LF; and again, the Fewest Steps condition rules out such a derivation in favour of a more economical derivation in which was_2 is in situ at S-structure. However, overt wh-scrambling also induces an improper movement configuration (reducible to the PUB) – at LF, t_2 is bound ambiguously from a left-adjoined IP (i.e., scrambling) position and a right-adjoined SpecC (i.e., wh-) position:

$$(99) \quad *[_{\text{SpecC}} [_{\text{SpecC}} \text{wie}_1] \text{was}_2] \ldots [_{\text{IP}} t'_2 [_{\text{IP}} \ldots t_2]]$$

I take it that such a redundancy is not desirable; before I turn to its resolution in section 6, I will highlight further problems with the present analysis in the following section.

5. Problems

5.1. Conceptual Problems

The approach developed so far suffers from a number of drawbacks. A first conceptual problem has just been mentioned: There is a redundancy between cyclicity constraints (the PUB) and economy constraints (Fewest Steps) as far as the ban on wh-topicalization in English and wh-scrambling in German is concerned. A second problem is conceptual in nature, too. It concerns the notion of Form Chain. As shown in subsection 3.2.4 above, the concept of Form Chain as in (100) (= (32)) as a replacement for Move α appears to be necessary in order to reconcile locality requirements with the transderivational economy condition Fewest Steps.

$$(100) \quad \text{Form Chain}:$$

Move α to its target position and insert intermediate traces in positions required by locality conditions.

Unless Form Chain is adopted, the Fewest Steps condition (cf. (16), repeated here as (101)) wrongly precludes successive-cyclic movement, which is required in (102) (= (30)):

$$(101) \quad \text{Fewest Steps}:$$

If two derivations D_1 and D_2 are in the same reference set and D_1 involves
Chapter 2. Movement Theory

fewer operations than D2, then D1 is to be preferred over D2.

(102) Why do you think [CP t′ that Mary came t1]?

One might assume that with the introduction of a derivational economy condition like Last Resort in Chomsky (1993; 1995), the concept of Form Chain could be dispensed with. Recall that given the formulation of Last Resort in (42) (repeated here as (103)), movement is possible only if it results in feature checking.

(103) Last Resort:
\(\alpha \) is raised to a position \(\beta \) only if \(\beta \) is in the minimal residue of \(\gamma \), and \(\alpha \) enters into a checking relation with \(\gamma \).

Thus, a truly successive-cyclic derivation of a sentence like (102) that involves two movement operations applying to the \(wh \)-phrase would have to involve two feature checking operations in which the \(wh \)-phrase participates, one in each SpecC position that is targeted. The numeration of a derivation of (102) in one fell swoop would, in contrast, necessarily lack the relevant features that are checked in the embedded SpecC positions; otherwise, it would not converge. Therefore, at first sight it seems as though a derivation of (102) in one fell swoop (without an intermediate trace) and a successive-cyclic derivation of (102) do not compete, due to different feature specifications in the numeration. However, this conclusion is not correct. Recall from subsection 3.2.3 that the stipulation in (104) (= (28)) had to be adopted in order to ensure that a derivation with an optional feature (like [top] or [scr]) can compete with (and ultimately be excluded by) a derivation that differs minimally in that such an optional feature is absent.

(104) Identity of Numerations:
Two numerations are identical if they differ only in the feature specification on some head.

Thus, given (104), a derivation of (102) in one fell swoop would still compete with a successive-cyclic derivation of (102) in which all \(wh \)-movement steps are triggered by feature checking operations, in accordance with Last Resort. Hence, without recourse to Form Chain, the Fewest Steps condition would still incorrectly predict derivations in one fell swoop to block successive-cyclic derivations. In conclusion, Last Resort does not render Form Chain superfluous under present assumptions, as far as the Fewest Steps condition is concerned.

What is more, it seems that Last Resort itself requires the concept of Form Chain. As noted above, a derivation of (102) involving two movement operations applying to the \(wh \)-phrase would require two instances of feature checking with the \(wh \)-phrase, one in the embedded [–wh] SpecC position and one in the matrix [+wh] SpecC position. More generally, we are led to the assumption that a \(wh \)-phrase that crosses \(n \) [–wh] SpecC positions on its way to its ultimate [+wh] target position is involved in \(n+1 \) feature checking operations in SpecC positions; clearly, the features that are
checked in these positions must be distinct from the *wh*-feature (the positions are marked [–wh]). Indeed, something along these lines has occasionally been suggested in recent work (cf. Collins (1994a; 1997, ch. 5), Groat & Ferguson (1994), Fanselow & Mahajan (1996), and Sabel (1996); see also the discussion in Chomsky (1995, 250 & note 29; 267; and 291)), and there may be direct evidence for such an assumption in languages that show overt reflexes of successive-cyclicity, such as Ewe or Modern Irish. However, I assume that the postulation of these kinds of feature checking operations in intermediate SpecC positions is poorly motivated in languages like English or German and should be avoided if possible. But if it is avoided, this implies that Last Resort requires the concept of Form Chain – according to this view, the *wh*-phrase in sentences like (102) is moved to the matrix [+wh] SpecC position (where it participates in feature checking) in one fell swoop, and intermediate traces are inserted by the operation Form Chain in the embedded SpecC positions (without further checking operations taking place).

Summarizing, it seems that economy constraints strongly suggest a concept like Form Chain. Ideally, however, one would like to be able to dispense with such an artifact of the theory. Moreover, it is well known that Form Chain raises a theory-internal problem in the minimalist program – it violates strict cyclicity because the insertion of intermediate traces after the movement operation involves referring back to a proper subpart of the tree that has been created. Therefore, I conclude that Form Chain should be abandoned.

Summarizing, there are two conceptual problems with the approach developed so far: On the one hand, it creates a redundancy (the PUB and Fewest Steps both rule out *wh*-topicalization and *wh*-scrambling), and on the other hand, it necessitates the problematic concept of Form Chain as a replacement for Move α. In the following subsection, I turn to an empirical problem raised by the analysis.

5.2. An Empirical Problem

5.2.1. Evidence for Modifying the Notion of Reference Set

Recall first that the Fewest Steps condition rules out *wh*-topicalization in English, as in (105):

(105) *Who$_1$ t$_1$ said [CP that who$_2$ [IP John likes t$_2$]] ?

As observed in Müller & Sternefeld (1996, 482), the same prohibition applies in German. Here, too, *wh*-topicalization (as in (106-c)) is not permitted, although there is no general prohibition against embedded topicalization in this context (cf. (106-b)) and although multiple questions can in principle be formed in which a *wh*-phrase in an

41 Accordingly, Chomsky (1993, 46) notes in this connection that “a modification [of strict cyclicity] is necessary for the case of successive-cyclic movement, interpreted in terms of the operation Form Chain.”
Chapter 2. Movement Theory

embedded clause takes matrix scope (cf. (106-a)).

(106) a. Wer1 sagte t1 [CP dass [IP Fritz wen2 gesehen habe]] ?
 who said that Fritz whom_{acc} seen has_{subj}

b. Wer1 sagte t1 [CP den Fritz3 habe [IP er t3 gesehen]] ?
 who said ART Fritz_{acc} has_{subj} he seen

c. *Wer1 sagte t1 [CP wen2 habe [IP Fritz t2 gesehen]] ?
 who said whom_{acc} has_{subj} Fritz seen

Obviously, whatever explanation is given for the illformedness of the English example in (105) should carry over to the German example in (106-c). However, it emerges that the Fewest Steps condition does not rule out (106-c) under present assumptions.42 To see this, consider the (simplified) LF representation which is generated by derivation D1 that yields the S-structure representation in (106-c):43

(107) *[SpecC Wer1 wen2] sagte t1 [CP t2 [IP Fritz t2 gesehen habe]] ?

Assuming complementizer deletion at LF (cf. Lasnik & Saito (1984; 1992), Chomsky (1986), among many others), a derivation D2 that generates the S-structure representation in (106-a) will end up with the same LF representation. Furthermore, assuming deletion of expletive es as it may appear in the SpecV/2 position in German V/2 clauses, a derivation D3 that yields the S-structure representation in (108) will also have the same LF representation:44

(108) ?Wer1 sagte t1 [CP es habe [IP Fritz wen2 gesehen]] ?
 who said EXPL has_{subj} Fritz whom_{acc} seen

Thus, one might hope that because they yield identical LF representations, the derivations D2 and D3 generating the S-structure strings in (106-a) and (108) compete with the derivation D1 that generates the ill-formed wh-topicalization structure in (106-c), and that D1 is blocked by D2 and D3 since it involves an additional operation applying to the wh-phrase wen2 that is undone at LF:45 Unfortunately, under the notion of reference set assumed so far (cf. (29), repeated here as (109)), this is not the case.

42 As shown in Müller & Sternefeld (1996), the derivation generating (106-c) violates the PUB, just as the derivation generating (105) does.

43 I assume here that overt V/2 movement is reconstructed at LF for semantic reasons; cf. Stechow (1992). Also see Koster (1987) for syntactic evidence that points to this conclusion.

44 For reasons which are not clear to me, V/2 clauses in general do not appear to tolerate wh-in situ taking matrix scope easily in German; cf. Büring & Hartmann (1994, 60) for discussion.

45 This would still presuppose that D1 – D3 are equally costly as far as other operations (V/2 movement, V/2 reconstruction, complementizer insertion, complementizer deletion, expletive insertion, expletive deletion) are concerned. For the purposes of the discussion, I will assume that this is indeed the case.
5. Problems

(109) **Reference Set:**

Two derivations D_1 and D_2 are in the same reference set iff they start with the same numeration, converge at LF and PF, and yield the same LF representation.

The numeration of D_1 differs from that of D_2 in that D_2 has an additional complementizer and from that of D_3 in that D_3 has an additional expletive *es*. For this reason, I would like to suggest that the notion of numeration be dispensed with in the definition of reference set and that (109) be altered as in (110):

(110) **Reference Set (final revision):**

Two derivations D_1 and D_2 are in the same reference set iff they yield the same LF output and converge at LF and PF.

Interestingly, this move does not seem to produce any negative consequences for the cases involving transderivational economy constraints that were discussed so far. Furthermore, the revised notion of reference set now ensures that *wh*-topicalization in German as in (106-c) is blocked byFewest Steps; and it also yields the welcome result that the assumption about identity of numerations in (104) can now be dispensed with. However, a problem arises in the shape of partial *wh*-movement constructions.

5.2.2. **Partial Wh-Movement**

Many languages exhibit the phenomenon of partial *wh*-movement. In partial *wh*-movement constructions, the *wh*-phrase undergoes S-structure movement to a [–*wh*] SpecC position; to reach its ultimate LF [+*wh*] target position (which is occupied by a scope marker at S-structure in some languages), a second (covert) movement operation appears necessary.\(^{46}\) Partial *wh*-movement systematically and freely alternates with successive-cyclic long-distance *wh*-movement in German; this is shown in (111-a) vs. (111-b) (cf. van Riemsdijk (1982), Stechow & Sternefeld (1988), McDaniel (1989), and the contributions in Lutz & Müller (1996)).

(111) a. Wen\(_1\) meinst du [\(\text{CP} t_1\) dass sie wirklich \(t_1\) liebt] ?

 who\(_{acc}\) think you that she really loves

b. Was\(_1\) meinst du [\(\text{CP} wen_1\) (dass) sie wirklich \(t_1\) liebt] ?

 [+*wh*] think you who\(_{acc}\) that she really loves

Thus, given that the derivation D_1 generating the successive-cyclic movement structure (111-a) and the derivation D_2 generating the partial *wh*-movement structure

\(^{46}\)Dayal (1994) argues that a partially moved *wh*-phrase in German and Hindi can be interpreted in its S-structure position and need not undergo a second movement operation at LF CL, however, Höhle (1990; 1996), Müller & Sternefeld (1996), and Beck & Berman (1996) for arguments that such an approach is not correct for German.
Chapter 2. Movement Theory

(111-b) both end up in the same LF representation (roughly of the form (111-a)), D₁ and D₂ are in the same reference set, according to (110). However, D₁ involves only one instance of Form Chain applying to the wh-phrase wen₁ (‘who’) (viz., overt long-distance movement plus insertion of an intermediate trace), whereas D₂ invariably involves two instances of Form Chain applying to wen – one before and one after the Spell-Out operation. Hence, the Fewest Steps condition incorrectly predicts partial wh-movement in German to be blocked by successive-cyclic long-distance movement.

Obviously, this problem would not arise under the notion of reference set in (109) because this notion depends on identity of numerations, and a derivation that includes a scope marker was automatically has a different numeration than a derivation in which a scope marker is not present. A cross-linguistic survey suggests, though, that partial wh-movement poses a problem under the notion of reference set in (109), too; so, the problem is more general.

Thus, whereas partial wh-movement in German requires a scope marker was in the [+wh] target position, the analogous construction in a language like Iraqi Arabic (cf. Wahba (1992)) often does not. Moreover, partial wh-movement in this language (cf. (112-b) and (112-c)) freely alternates with both successive-cyclic long-distance movement (cf. (112-a)) and wh-in situ at S-structure (cf. (112-d)).

\[(112)\]

\[
\begin{align*}
\text{a. } & [\text{CP } \text{meno}_1 \text{ Mona raadat }] [\text{CP } t'_1 \text{ tijbir Su’ad } [\text{CP } t'_1 \text{ tisa’ad } t_1]] \ ? \\
& \quad \text{whom}_\text{dat} \text{ Mona wanted to force Su’ad to help} \\
\text{b. } & [\text{CP } – \text{ Mona raadat }] [\text{CP } \text{meno}_1 \text{ tijbir Su’ad } [\text{CP } t'_1 \text{ tisa’ad } t_1]] \ ? \\
& \quad \text{Mona wanted to whom}_\text{dat} \text{ force Su’ad to help} \\
\text{c. } & [\text{CP } – \text{ tijbir Su’ad } [\text{CP } \text{meno}_1 \text{ tisa’ad } t_1]] \ ? \\
& \quad \text{Mona wanted to force Su’ad whom}_\text{dat} \text{ to help} \\
\text{d. } & [\text{CP } – \text{ tijbir Su’ad } [\text{CP } – \text{ tisa’ad } \text{meno}_1]] \ ? \\
& \quad \text{Mona wanted to force Su’ad to help whom}_\text{dat}
\end{align*}
\]

The derivations D₁ and D₂ which generate the S-structure representations in (112-a) and (112-d) can do with only one application of Form Chain to the wh-phrase menon₁ (‘whom’), at S-structure or at LF, respectively. In contrast, the derivations D₃ and D₄ generating the partial wh-movement structures in (112-b) and (112-c) need two applications of Form Chain to menon₁. Since D₁ – D₄ share the same lexical material in the numeration and since they terminate in the same LF representation, they are expected to compete with respect to economy constraints under both definitions of reference set (i.e., (109) and (110)). For this reason, D₃ and D₄ are wrongly predicted to be blocked by D₁ and D₂.⁴⁷

⁴⁷Note that partial wh-movement constructions are a fairly widespread phenomenon; they show up in many more languages (sometimes with and sometimes without a scope marker), e.g., Ancash Quechua (cf. Cole (1982)), Bahasa Indonesia (cf. Saddy (1991)), Hungarian (cf. Marácz (1990)), and Palauan (cf. Georgopoulos (1991)), so a systematic approach is called for.
6. A Revised Approach to Economy

To solve the three problems discussed in subsections 4.2.6, 5.1, and 5.2, I will now develop a revised approach to economy constraints.

6. A Revised Approach to Economy

In this section, I would like to suggest modifications of the economy constraints Fewest Steps and Last Resort. The basic idea is that economy constraints should be made sensitive to a distinction between movement operations on the one hand and actual checking operations on the other.

6.1. Assumptions

Suppose first that the Fewest Steps condition does not count all movement operations per se; rather, it only counts feature checking operations. The revised Fewest Steps condition is given in (113):48

\[
\text{(113) Fewest Steps (revised):} \\
\text{If two derivations } D_1 \text{ and } D_2 \text{ are in the same reference set and } D_1 \text{ involves fewer checking operations than } D_2, \text{ then } D_1 \text{ is to be preferred over } D_2.
\]

Obviously, this revision becomes interesting only if there is movement without feature checking. Therefore, suppose next that Last Resort does in fact permit movement without feature checking, but only if that movement is driven by the attempt to check a feature. More precisely, I will assume that an item \(\alpha \) can be “fooled” into moving to a certain position if that is a typical checking position for an unchecked feature of \(\alpha \).49

The revised Last Resort condition is shown in (114):

\[
\text{(114) Last Resort (revised):} \\
\text{\(\alpha \) is raised to a position \(\beta \) only if \(\beta \) is a typical checking position for an unchecked morphological feature of \(\alpha \).}
\]

48 As it stands, the revised Fewest Steps condition no longer says anything about syntactic operations that do not involve movement, like deletion, insertion, etc. Thus, in order to maintain the approach to argument/adjunct asymmetries developed in Chomsky & Lasnik (1993) (cf. subsection 3.2.5 above), which crucially relies on the idea that uneconomical deletion is prohibited by Fewest Steps, the condition must be reformulated. One possibility would be to assume that Fewest Steps does not count only checking operations (as in (113)), but rather, say, \(\zeta \)-operations, where \(\zeta \) stands for checking, deletion, insertion, etc., but not for movement per se. Nevertheless, for reasons of simplicity and perspicuity, I will adopt the version of Fewest Steps in (113) in what follows, keeping in mind that a more careful definition would have to proceed along the lines just sketched.

49 The idea of fooling an item into movement is due to Collins (1994a, 17). According to Collins’ formulation of Last Resort (called “Greedier”), however, a \(wh \)-phrase that is fooled into moving to an intermediate SpecC position in the course of successive-cyclic movement still has to participate in feature checking in that position, even if feature checking does not yet affect the [+wh] feature. As will become clear shortly, this is not the case in the approach suggested here.
As far as the notion of “typical checking position” is concerned, it simply refers to the regular checking position for a given feature, with the qualification that no actual feature checking has to take place. Thus, I will assume that the typical checking position for the feature [+wh] is a position in the minimal residue of C; that the typical checking position for the feature [Case] is a substitution position in the minimal residue of a head in the extended projection of the verb; that the typical checking position for the feature [scr] is an adjoined position in the same domain; and that the typical checking position for the feature [top] is a substitution position in the minimal residue of Top.

Based on these assumptions, I will now show that the three problems raised by the earlier approach (relating to a redundancy between the PUB and Fewest Steps, the concept of Form Chain, and the existence of partial wh-movement) can all be overcome. I will begin with the concept of Form Chain, turn to partial wh-movement after that, and finally address the derivation of PUB effects.

6.2. Form Chain and Economy

Consider again a standard example involving successive-cyclic long-distance wh-movement of an adjunct, as in (115) (= (102)):

(115) Why1 do you think [CP t′1 that Mary came t1]?

It turns out that the present system of economy constraints systematically permits successive-cyclic movement without recourse to a concept like Form Chain. Both of the movement operations in (115) that apply to why1 end up in a typical checking position for the unchecked [+wh] feature of why1 (viz., in SpecC), even though only the second instance of wh-movement involves actual feature checking. Hence, Last Resort as defined in (114) is respected. Similarly, Fewest Steps is respected (cf. (113)). The reason is that although (115) involves two instances of movement applying to why1, it involves only one instance of [+wh] feature checking. Therefore, it is no more costly than a competing derivation in which why1 has undergone wh-movement in one fell swoop, thereby violating the Barriers Condition. Given this state of affairs, Fewest Steps permits us to choose either the successive-cyclic derivation in (115) or the competing derivation in one fell swoop, and since the latter violates the Barriers Condition while the former does not, the derivation with successive-cyclic movement is chosen, and the sentence is correctly predicted to be well formed.50

50One might assume that the revised Last Resort condition in (114) poses a problem with respect to Procrastinate, since the the first movement step of the wh-phrase in (115) seems to be motivated by the need to check a weak [+wh] feature – recall that it is the [+wh] feature of C that is strong in English, and not the [+wh] feature of a wh-phrase. However, closer inspection reveals that this dilemma is only apparent. Last Resort as defined in (114) does not actually require movement of the wh-phrase; the only thing that it does is to permit such movement. Hence, it is compatible not only with the derivation in (115), but also with a derivation in which the wh-phrase moves only to the embedded SpecC position, or not at all. The
6.3. Wh-Movement and Economy

Consider next the case of partial wh-movement. The German example in (111-b) is repeated here as (116-a), together with its abbreviated LF representation in (116-b) (the following remarks carry over to partial wh-movement in Iraqi Arabic (cf. (112-b) and (112-c)) and in other languages):

\[(116) \quad \text{a. Was}_{1} \text{ meinst du [} \text{CP wen}_{1} \text{ (dass) sie wirklich t}_{1} \text{ liebt }] ?
\quad [+\text{wh}] \text{ think you wh}_{\text{acc}} \text{ that she really loves }
\text{b. [SpecC wen}_{1} \text{] ... [CP [SpecC (} \text{t}_{1} \text{)] ... t}_{1} \text{]}
\]

Under the formulations of Fewest Steps and Last Resort in (113) and (114), the well-formedness of (116-a) follows directly, basically in the same way as the well-formedness of (115). The wh-phrase \(\text{wen}_{1} \) ('who\text{acc}') bears one [+wh] feature in the nume-
ration. Overt wh-movement of \(\text{wen}_{1} \) takes place to a typical checking position for the – as yet unchecked – feature [+wh], viz., to the embedded SpecC position. There is no actual feature checking in this position (the embedded C node does not bear a [+wh] feature), but this is permitted by Last Resort. The [+wh] feature on the wh-
phrase is eventually checked off by subsequent LF raising to the matrix SpecC[+wh] position; evidently, this second movement operation respects Last Resort, too. Since this derivation involves two movement operations applying to \(\text{wen}_{1} \), but only one
instance of [+wh] feature checking, it is just as costly as a competing derivation invol-
volved successive-cyclic long-distance wh-movement at S-structure (compare (111-a)).
Hence, Fewest Steps does not rule out either of these two options, and the two con-
structions alternate freely.\(^{52}\)

\(^{51}\) I assume here that the scope marker \(\text{war} \), being an illegitimate (i.e., uninterpretable) LF object, is overwritten by the wh-phrase at LF via expletive replacement. Alternatively, it could be assumed that the
wh-phrase does not replace the scope marker at LF, but adjoins to it. Given that the LF output of partial wh-
movement constructions and successive-cyclic wh-movement constructions would still count as identical
under such an assumption (in the technical sense relevant for the definition of reference sets), this would not yield different consequences.

\(^{52}\) Although this analysis reconciles the very existence of partial wh-movement with the economy constraints Last Resort and Fewest Steps, it is clear that many relevant questions are left open. First, there is a problem related to Procrastinate. Assuming that scope marker insertion is a means to check the strong [+wh] feature of the matrix C node and yielding (115), will the derivation converge.

choice among these derivations is then made by the requirement of PF convergence – only if wh-movement
applies twice, checking the strong [+wh] feature of the matrix C node and yielding (115), will the derivation converge.
Chapter 2. Movement Theory

Note that whereas the present system of economy constraints permits \textit{wh}-movement to a \([-\text{wh}]\) \text{Spec}C position followed by LF \textit{wh}-movement to a \([+\text{wh}]\) \text{Spec}C position, the case is different with overt \textit{wh}-movement to a \([+\text{wh}]\) \text{Spec}C position followed by LF raising to another \([+\text{wh}]\) \text{Spec}C position. The relevant evidence comes from multiple questions such as (117), a type of example studied in Baker (1970) and much subsequent work (also cf. subsection 3.4.1 above).

(117) Who$_1$ t$_1$ wonders \([\text{CP where}_2 \text{ we bought what}_3 \text{ t}_2] \)?

As is well known, (117) is ambiguous in two ways. It can be interpreted either as a multiple embedded question with \textit{what}_3 taking embedded scope or as a multiple matrix question with \textit{what}_3 taking matrix scope. These two readings correspond to the LF representations of (117) in (118-a) and (118-b), respectively.

(118) a. \([\text{SpecC who}_1] \text{ t}_1 \text{ wonders [CP [SpecC where}_2 \text{] what}_3 \text{] we bought t}_3 \text{ t}_2] \)

b. \([\text{SpecC [SpecC who}_1 \text{] what}_3 \text{] t}_1 \text{ wonders [CP [SpecC where}_2 \text{] we bought t}_3 \text{ t}_2] \)

However, a third reading is absent. In the LF representation corresponding to this reading, the \textit{wh}-phrase \textit{where}_2, which is in the embedded \text{Spec}C position at S-structure, is moved to the matrix \text{Spec}C position at LF, thereby creating a multiple matrix question, and \textit{what}_3 takes embedded scope. This LF representation is shown in (119):

(119) \(*[\text{SpecC [SpecC who}_1 \text{] where}_2 \text{] t}_1 \text{ wonders [CP [SpecC (t}_2^{'} \text{) what}_3 \text{] we bought t}_3 \text{ t}_2] \)

Various proposals have been made in order to rule out such an LF based on the S-structure in (117). The empirical generalization commonly arrived at (cf., e.g., Chomsky (1973; 1986), Aoun, Hornstein & Sportiche (1981), and Lasnik & Saito (1984; 1992)) is that overt \textit{wh}-movement to a \([+\text{wh}]\) position fixes the scope of the moved \textit{wh}-phrase. As observed by Epstein (1992), this generalization suggests an account in terms of economy, and it remains to be shown that the present system achieves that.

According to the standard view, \textit{where}_2 bears one \([+\text{wh}]\) feature in the numeration; this feature is checked off by overt \textit{wh}-movement to the \([+\text{wh}]\) \text{Spec}C position of the embedded clause. Hence, subsequent LF raising to the matrix \([+\text{wh}]\) \text{Spec}C position violates Last Resort (Fewest Steps would be respected by this derivation). But suppose now that \textit{where}_2 actually comes equipped with \textit{two} \([+\text{wh}]\) features in the numeration, the second one being optional. One might argue that such a thing is precluded anyway. However, it is at least worth noting that under the present system it is unnecessary to

does not explain why partial \textit{wh}-movement is impossible in a language like English. See McDaniel (1989), Stechow & Sternefeld (1988), Fanselow & Mahajan (1996), and the contributions in Lutz & Müller (1996), where these and other problems are addressed.
6. A Revised Approach to Economy

stipulate a prohibition against such an unmotivated proliferation of identical features explicitly. The reason is that a derivation of (119) via (117) in which where2 has two [+wh] features in the numeration would automatically be excluded by Fewest Steps (although Last Resort would be respected in this case); there is a competing converging derivation that yields the same LF output but does so with one fewer instance of [+wh] feature checking. In this derivation, where2 initially has only one [+wh] feature and remains in situ at S-structure (what3 undergoes overt wh-movement to the embedded SpecC position). Summarizing, the interaction of Fewest Steps and Last Resort rules out wh-movement at LF from a [+wh] position. In addition, a more general result is obtained: The optional addition of features that trigger movement to lexical items is severely restricted; i.e., features on items are minimized. More specifically, the following theorem can now be derived:53

\[(120) \quad \text{Optional Features (Theorem):} \]

An optional feature \(\alpha \) can show up on a lexical item \(X \) in the numeration only if the checking position of \(\alpha \) is identical to the position of the first member of the \(X(P) \) chain at LF.

In the following two subsections, this result will shown to be valid for topicalization and scrambling.

6.4. Topicalization and Economy

Let us consider the consequences of the revised notions of Fewest Steps (cf. (113)) and Last Resort (cf. (114)) for licit and illicit cases of topicalization. The relevant example involving illicit \(wh \)-topicalization in English is repeated here once more, as (121-a).54 Again, (121-b) is a simplified LF representation of (121-a); here, the NP who2 has undergone LF raising from the embedded SpecTop position to the matrix SpecC position, adjoining there.

\[(121) \quad \text{a. } *\text{Who}1 \text{ said } t1 \text{ [CP that [TopP [SpecTop who2] Top [IP John likes } t2]]]? \]
\[\text{b. } *[\text{SpecC } [\text{Spec who1 } \text{ who2 }] \text{ ... [CP [TopP [SpecTop (} t2' \text{)] ... } t2]] \]

Recall from subsection 3.2.1 that examples like (121-a) can be ruled out by the classical Fewest Steps condition, whereas the Last Resort condition in its standard formulation is not needed in order to exclude this sentence (cf. subsection 3.4.4); recall also that the PUB excludes examples like (121-a) as involving ambiguous binding at LF

53 Note incidentally that this theorem is closely related to the statement that “\(\alpha \) enters the numeration only if it has an effect on output,” which is proposed as an economy constraint in its own right in Chomsky (1995, 294).

54 Given that reference sets are defined via LF-identity, but not via identity of numerations, what follows carries over immediately to illegitimate \(wh \)-topicalization in German; recall the discussion in subsection 5.2.1 above.
Thus, the task now is to show that *wh*-topicalization as in (121-a) can be ruled out under the present system of economy as well. It turns out that this is indeed the case. Interestingly, however, this time both economy constraints, i.e., Fewest Steps and Last Resort, are necessary to achieve this result.

There are two possible derivations of the LF representation in (121-b) via the S-structure representation in (121-a), resulting from the fact that we are in principle free to choose or not to choose the optional [top] feature in the numeration. In derivation D₁, *who₂* does not bear the feature [top] in the numeration, and neither does Top. Overt topicalization in D₁ therefore violates the Last Resort condition – recall that movement without feature checking is possible under (114), but only if that movement ends up in a typical checking position for an unchecked feature of the moved item. If *who₂* does not have an unchecked [top] feature in the first place, topicalization is prohibited by Last Resort. Note, however, that the revised Fewest Steps condition (unlike the original one) does not rule out derivation D₁ – no competing derivation that yields the same LF output requires fewer instances of feature checking.

The case is different with the second derivation (D₂) of (121-b) which will be considered here. D₂ differs from D₁ in that *who₂* bears the feature [top] in the numeration. Hence, overt topicalization respects Last Resort. However, this time Fewest Steps is violated: There is an alternative derivation that converges and yields the same LF output but involves one instance of feature checking fewer. This derivation differs from D₂ in that a [top] feature is not present on the *wh*-phrase, so that overt *wh*-topicalization does not occur and LF raising to the matrix clause takes place from the in situ position of *who₂* in the embedded clause. To sum up, in the present approach a conspiracy of Fewest Steps and Last Resort is responsible for the ban on *wh*-topicalization – there is no derivation of (121-b) via (121-a) that respects both economy constraints.

Note that ordinary topicalization is still permitted under these assumptions; recall (21-b) in English, which is repeated here as (122):

(122) I think [CP that [Top P Mary₁ John likes t₁]]

(122), in contrast to (121-a), must not be blocked by the interaction of economy constraints. And indeed, it emerges that there is a legitimate derivation of (122). In this derivation, *Mary₁* is equipped with the optional [top] feature in the numeration. Hence, overt topicalization satisfies Last Resort. More interestingly, however, Fewest Steps is not violated either – there is no competing derivation that is more economical. As before, the reason is that topicalization is not undone by subsequent LF raising in (122), as it is in (121-a). Technically, the derivation generating (122) is not blocked by a

55 Of course, this implies that Top also must have a [top] feature so as to be able to check off the [top] feature of *who₂*. For the sake of simplicity, I will abstract away from this issue in what follows; i.e., in all cases where I postulate that an XP has an optional feature (like [top] or [scr]) in the numeration, this feature is tacitly assumed to also be generated on a target head – otherwise, the derivation crashes.
derivation that differs minimally in having the NP object \(Mary_1 \) in situ at S-structure because the two derivations do not share identical LF outputs and hence do not compete, given the notion of reference set in (110) and given the above assumption that optional movement types like topicalization are not literally reconstructed at LF (see footnote 16).

6.5. Scrambling and Economy

Basically the same picture arises with licit and illicit cases of scrambling. Again, let us consider the illicit case of optional movement first, viz., \(wh \)-scrambling in German as in (123-a), with the schematic LF representation in (123-b):

\[(123)\]
\[
\text{a. } *\text{Wie hat } [\text{IP was}_2 [\text{IP der Fritz } t_1 t_2 \text{ repariert }]] \text{?} \\
\text{how has } \text{what}_{acc} \text{ ART Fritz}_{nom} \text{ fixed}
\]
\[
\text{b. } *[\text{SpecC SpecC wie}_1] \text{ was}_2] \ldots [\text{IP (t}_2^1 \text{) [IP ... t}_2]]
\]

As with \(wh \)-topicalization, two possible derivations that generate the S-structure representation in (123-a) and terminate in the LF representation in (123-b) must be ruled out. In the first derivation \(D_1 \), \(was_2 \) does not bear the feature [scr]. Hence, Last Resort is violated in \(D_1 \) by scrambling to IP; the Fewest Steps condition, however, is respected, because an alternative derivation with the \(wh \)-phrase \(was_2 \) in situ at S-structure does not involve fewer feature checking operations (again, \(D_1 \) would violate the original Fewest Steps condition that does not discriminate between checking and movement). In contrast, in the second derivation that is possible a priori, \(D_2 \), \(was_2 \) does bear the feature [scr]. Consequently, overt scrambling in front of the subject respects Last Resort; this time, though, Fewest Steps is violated: There is an alternative derivation in which \(was_2 \) does not have an optional [scr] feature and shows up in situ at S-structure. This derivation has the same LF output as \(D_2 \) (with \(was_2 \) adjoined to SpecC), but achieves this with one instance of feature checking fewer.

Turning next to legitimate cases of scrambling, as in (22-b), the wellformedness follows in complete analogy to that of ordinary topicalization, as in (122). (22-b) is repeated in (124):

\[(124)\]
\[
\text{dass } [\text{IP den Fritz}_1 [\text{IP keiner } t_1 \text{ gesehen hat }]] \\
\text{that ART Fritz}_{acc} \text{ no-one}_{nom} \text{ seen has}
\]

Suppose that (124) is generated by a derivation in which the NP \(den Fritz_1 \) is equipped with a [scr] feature. This [scr] feature is checked by left-adjunction to IP, in accordance with Last Resort. Furthermore, this derivation is not blocked by a competing derivation in the same reference set via Fewest Steps, assuming that scrambling behaves like topicalization in that it is not literally reconstructed at LF. Again, intuitively, the contrast between licit and illicit cases of scrambling is that ill-formed \(wh \)-scrambling as in (123-a) is later undone by LF raising, whereas well-formed ordinary scrambling as in (124) persists at LF.
To draw a preliminary conclusion, the present system of economy constraints comprising the Fewest Steps condition in (113) (together with the notion of reference set in (110)) and the Last Resort condition in (114) has the following consequences: First, it evades the conceptual objection raised in subsection 5.1 because it renders the concept of Form Chain superfluous. Second, it is immune to the empirical criticism in subsection 5.2 because it systematically permits partial \(wh\)-movement. And third, it accounts for all the evidence that was formerly handled by the original economy constraints (with the qualification made in footnote 48). However, it has yet to be shown how the redundancy between the PUB and economy constraints addressed in subsection 4.2.6 can be resolved. I address this issue now.

6.6. Deriving PUB Effects from Economy

In what follows, I would like to argue that typical PUB effects as they have been discussed in subsection 4.2 above follow from the interaction of the revised Fewest Steps and Last Resort conditions, and that, accordingly, the PUB can be dispensed with. In fact, it seems to me that the present system of economy constraints goes a long way towards a general theory of improper movement. I address super-raising (cf. subsection 4.2.1), long-distance scrambling (subsection 4.2.2), and the \(wh\)-island asymmetry between \(wh\)-movement and topicalization (subsection 4.2.5) in turn.

6.6.1. Super-Raising and Economy

Before I tackle super-raising, let me briefly point out the consequences that the revised economy approach developed above has for well-formed cases of successive-cyclic raising, as in (125):

\[(125) \text{John is likely}_{IPt}^t_{IPt}^{t_{IPt}} \text{to be asked}_{IPt}^t_{IPt}^{t_{IPt}} \text{to } t \text{ leave}\]

Let us assume that successive-cyclic A-movement via the two intervening SpecI positions is required in (125) because of locality requirements; the constraint in question cannot be the Barriers Condition (IP is not a barrier for an item in SpecI), but it might be (something like) Relativized Minimality (Minimize Chain Links). If locality requires the presence of the traces \(t^{t_{IPt}}\) and \(t^{t_{IPt}}\) in (125), it must be ensured that their existence is compatible with economy constraints. Indeed, the present system permits successive-cyclic raising in (125): There are three movement operations to typical checking positions (for the [Case] feature) that apply to \(\text{John}_{t}\), but there is only one actual checking operation (viz., in the matrix SpecI position) - \(\text{John}_{t}\) is “fooled” into A-movement twice. Since in all three instances the [Case] feature of \(\text{John}_{t}\) is still unchecked at the stage of the derivation at which NP-raising occurs, Last Resort
6. A Revised Approach to Economy

is respected. Moreover, Fewest Steps is respected because there is no competing derivation in the same reference set that involves fewer feature checking operations ([Case] being an obligatory feature on an NP).

Thus, in allowing successive-cyclic raising, the approach to economy developed here differs again from the standard approach: Definitions of Fewest Steps and Last Resort of the kind discussed in section 3 either require recourse to the concept of Form Chain to permit successive-cyclic raising as in (125) or necessitate the assumption that the NP $John_1$ is in fact involved in three instances of feature checking on its way to the matrix clause (cf. Chomsky (1995, 283)).

Next, consider a typical super-raising construction, as in (126):

(126) *$John_1$ seems that it is likely t_1 to win

As noted before, there are various derivations that need to be ruled out in order to ensure that (126) is actually predicted to be ungrammatical. A first derivation involving movement in one fell swoop violates locality; a second derivation with counter-cyclic insertion of it violates both locality and the Strict Cycle Condition; and a third successive-cyclic derivation via SpecC involves improper movement, which can be reduced to the PUB. The relevant derivation is repeated in (127):

(127) *$John_1$ seems [CP t'_1 that it is likely [IP t_1 to win]]

To fulfill the Barriers Condition, the NP $John_1$ moves first into the intermediate SpecC position, and then into the subject position of the matrix clause. Both operations respect strict cyclicity. What, then, rules out the combination of movement to SpecC followed by movement to SpecI if the PUB is to be dispensed with?

The answer is that (127) is excluded by economy. This time, though, it is not the interaction of Fewest Steps and Last Resort that achieves this; the Last Resort condition in (114) suffices to rule out (127). The NP $John_1$ bears the feature [Case], but it does not bear the feature [+wh]. Hence, by Last Resort, it may undergo movement to a typical checking position for [Case], but not to the embedded SpecC position, which is a typical checking position for [+wh].

Thus, abstracting away from the qualification in the last footnote for the time being, the prohibition against super-raising is derived in toto, with the gap created by derivations like (127) that involve improper movement now being filled by an eco-

56 Note that although the revised version of Last Resort in (114) differs from the standard version of Last Resort in (42) in that it allows movement without feature checking, both versions succeed in ruling out movement to a checking position for a [–Interpretable] feature α (like [Case]) if α has already been checked on the moved item. Thus, the instances of “unmotivated” NP-raising ruled out by Last Resort in Chomsky (1995, 284) are still ruled out by Last Resort in the present framework.

57 A similar result is obtained in the theory of economy developed in Collins (1994a, 23-24). Like Collins’ (1994a) analysis, the present approach raises the question of what happens if some item undergoes successive-cyclic super-raising that does bear a [+wh] feature. I address this question in subsection 6.7.
nomy constraint (Last Resort) instead of a cyclicity constraint (the PUB).

6.6.2. Long-Distance Scrambling and Economy

Next, consider the prohibition against long-distance scrambling from finite clauses in German, as in (128):

(128) *dass Antje Hygrometer1 sagt [CP t’1 dass niemand t1 mag]
that Antje hygrometers says that no-one likes

If movement does not apply successive-cyclically, via the embedded SpecC position, the Barriers Condition is violated (cf. subsection 4.2.4). But what rules out long-distance scrambling via SpecC, given that we no longer want to resort to an account in terms of the PUB? Not surprisingly, successive-cyclic long-distance scrambling as in (128) is ruled out by economy, in more or less the same way as successive-cyclic super-raising (cf. (126)): The NP Hygrometer1 in (128) has a [scr] feature, but no [+wh] feature. Hence, intermediate substitution in SpecC violates Last Resort – this position is a typical checking position for the feature [+wh] but not for the feature [scr]. Thus, the PUB is no longer needed to derive the prohibition against long-distance scrambling in German.58

6.6.3. Wh-Island Asymmetries and Economy

The third case of ambiguous binding encountered above concerns the asymmetry between wh-movement and topicalization in the case of wh-islands in German. The relevant contrast was that between (91-a), which has an intermediate (Subjacency-like) status, on the one hand and (92-a), which typically strikes speakers as considerably worse, on the other. These examples are repeated here:

(129) a. ???[CP – C [TopP Radios1 weiß ich nicht [CP wie2 [TopP t’1 man t2 t1 repariert]]]]
fixes
b. ?* [CP Was1 C [TopP – weißt du nicht [CP wie2 [TopP (t’1) man t2 t1 repariert]]]]?
fixes

58 A potential problem is that long-distance scrambling from finite clauses is in fact permitted in a number of languages, among them Russian (with arguments and adjuncts), Korean, and Japanese (in these two languages arguments can undergo long-distance scrambling, but adjuncts cannot; see above). This issue is addressed in Müller & Sternefeld (1993); the proposal there is independent of the PUB and could be carried over into the present approach basically unchanged.
Suppose, following the reasoning in subsection 4.2.5 above, that the key to a solution of this problem is that an intermediate trace in the embedded SpecTop position is possible with long-distance topicalization, as in (130-a), but not with long-distance \(wh\)-movement, as in (130-b).

\[(130)\]
\[
\text{a. ??[CP – C [TopP Radios 1 \ldots [CP wie 2 [TopP t' 1 man t_2 t_1 repariert]]]]}
\]
\[
\text{b. ??[CP Was 1 C [TopP – \ldots [CP wie 2 [TopP t' 1 man t_2 t_1 repariert]]]]}
\]

As shown above, the illegitimacy of the intermediate trace \(t'_1\) in SpecTop in (130-b) follows from the PUB. But, again, the same result is obtained in the revised economy approach without invoking an explicit constraint against improper movement: \(wh\)-movement via SpecTop is ruled out by the interaction of Fewest Steps and Last Resort. A derivation of (130-b) in which \(\text{was}_1\) does not bear the optional [top] feature in the numeration (in addition to its obligatory [+\(wh\)] feature) does not violate Fewest Steps, but it does violate Last Resort. In contrast, a minimally different derivation in which \(\text{was}_1\) initially has a [top] feature respects the Last Resort condition. However, this derivation is ruled out by Fewest Steps because there is an alternative derivation that converges and yields the same LF output (i.e., that is in the same reference set) but involves one instance of feature checking fewer; this derivation involves \(wh\)-movement across the \(wh\)-island.\(^{59}\)

More generally, then, it seems reasonable to venture the hypothesis that the interaction of the economy constraints Fewest Steps and Last Resort in their formulations in (113) and (114) suffices to account for illegitimate combinations of movement operations and renders specific constraints on improper movement (like the PUB) superfluous.\(^{60}\)

\(^{59}\)This reasoning presupposes that a non-V/2 Top head may in principle check a [top] feature in German (and that the obligatory filling of Top by V/2 movement in topicalization contexts results from actual lexical filling of SpecTop at S-structure); if this were not the case, the Fewest Steps condition would in fact not be needed to account for the illformedness of (130-b). For lack of decisive evidence, I will remain uncommitted as far as this issue is concerned; recall the remarks in subsection 3.4.2 above.

\(^{60}\)Note, however, that there are still certain empirical differences between a PUB-based account and the revised economy approach to improper movement. One will be discussed in the following subsection; another one concerns illicit sentences such as (i) in English:

(i) *Who \textsubscript{1} \(t_1\) thinks [CP what \textsubscript{2} John saw \(t_2\)]?

Epstein (1992) argues that overt \(w\)-movement to a [-\(w\)] position (the embedded SpecC position in (i)) followed by LF raising to a [+\(w\)] position (the matrix SpecC position) is precluded by economy. Similarly, Müller & Sternefeld (1996) show that the illformedness of (i) follows from the PUB (overt substitution in SpecC is followed by LF adjunction to SpecC). In the present approach, however, Fewest Steps and Last Resort permit sentences like (i) just as they permit partial \(w\)-movement in German. Accordingly, I would like to contend that whatever is responsible for the lack of partial \(w\)-movement in English also covers (i); cf. the references given in footnote 52. Consequently, unless further assumptions are made, examples like (i) are predicted to be well formed in German under the revised economy approach. The data appear not to be crystal-clear. Whereas an ungrammatical German example of the type in (i) is given in Müller...
6.7. A Problem and Its Solution

Finally, I would like to address a problem that arises in the present approach. This problem concerns the interaction of the two movement types raising and wh-movement and has already been alluded to in footnote 57. Given that both [Case] and [+wh] are obligatory features (in the sense that they must show up on a wh-NP), nothing rules out a combination of raising and wh-movement as in (131), which is of course a welcome result.

(131) $\left[CP \text{Who}_1 [IP \ t'_1 \ was \ kissed \ t_1] \right]$?

Both movements respect Last Resort, and the derivation is not blocked by Fewest Steps either because there is no competing derivation with fewer instances of feature checking (if one or both of the obligatory features [Case] and [+wh] are not checked, non-convergence results).

The problem now is that the same considerations lead us to conclude that successive-cyclic derivations of super-raising constructions as in (132) are also well formed, contrary to fact ((132) differs minimally from the typical super-raising example (126) discussed above in that the [–wh] NP John is replaced by the [+wh] NP who).

(132) *Who$_1$ t''_1 seems $\left[CP \ t'_1 \ that \ it \ is \ likely \ [IP \ t_1 \ to \ win] \right]$?

This derivation does not violate Fewest Steps because it involves only the minimal number of feature checking operations required for convergence – the [Case] feature of who$_1$ is checked in the matrix SpecI position, and the [+wh] feature of who$_1$ is checked in the matrix SpecC position. (132) does not violate Last Resort either: The first movement operation to the position of t'_1 ends up in a typical checking position (SpecC) for an unchecked feature ([+wh]) of who$_1$, and the next two movement operations result in actual feature checking. Thus, it appears that the account of super-raising is undermined if the super-raised NP bears a [+wh] feature.

Note that in contrast to the revised economy approach, the PUB rules out (132)–A-bar movement to SpecC is illegitimately followed by raising to another kind of position, viz., SpecI. On the other hand, the PUB permits (131) only because it is explicitly defined as a constraint on variables (conceived of as locally A-bar bound traces); there is ambiguous binding of a trace in (131), but that trace (t_1) is not a variable and hence is immune to PUB effects, by stipulation (recall the discussion in subsection 4.2.3). I think this can be taken to indicate that a departure from the “best case” is necessary in any event and that an additional stipulation in the revised economy approach to rule out derivations like (132) does not imply that the analysis is inferior to the

& Sternefeld (1996, 485), others (e.g., McDaniel (1989), d’Avis (1993, 92-95), Brandner (1994), Brody (1995, 108), and Fanselow & Mahajan (1996, 10)) assume that well-formed sentences of this kind do in fact exist in (colloquial) German. I have to leave this issue undecided.
PUB approach. In other words, there is a trade-off between the PUB-based account of improper movement and the economy-based account argued for in this section: Whereas the PUB requires an additional stipulation to permit (131), economy requires an additional stipulation to exclude (132).

How, then, should the economy-based approach be revised? Various options come to mind; I will here follow proposals that go back to Williams (1974) (cf. the so-called “Williams cycle”) and Sternefeld (1992) and pursue the idea that the Last Resort condition is to be modified in such a way that it predicts a certain sequence of feature checking. For the sake of concreteness, suppose that the set of features on a lexical item is ordered and that this order is not arbitrary, but rather reflects the hierarchy of typical checking positions in the tree, as in (133):

\[(133) \ [+\text{wh}] \succ [\text{top}] \succ [\text{scr}] \succ [\text{Case}]\]

Based on (133), I would like to suggest that movement to a typical checking position for a feature γ is possible only if there is no unchecked lower-ranked feature δ on the lexical item. This can be accomplished by revising the Last Resort condition (114) as in (134):

\[(134) \text{Last Resort (second revision):} \alpha \text{ is raised to a position } \beta \text{ only if } \beta \text{ is a typical checking position for the lowest-ranked unchecked morphological feature of } \alpha.\]

This revision leaves all previous reasonings intact. In addition, however, (134) rules out wh-super-raising as in (132) while at the same time allowing (131). Thus, (131) does not violate Last Resort in (134) because the $[\text{Case}]$ feature (which is lower than the $[+\text{wh}]$ feature on the hierarchy in (133)) is checked off before the $[+\text{wh}]$ feature is checked off, but (132) is now ruled out by Last Resort: The embedded SpecC position, albeit a typical checking position for an unchecked feature of \textbf{who}_1 (viz., $[+\text{wh}]$) at the point in the derivation where the first movement operation applies to this item, is nevertheless not a typical checking position for its lowest-ranked unchecked feature, which is not yet $[+\text{wh}]$, but still $[\text{Case}]$. More generally, Last Resort now predicts that the $[\text{Case}]$ feature must be checked off by an NP before other movement operations.

61 For alternative approaches to the problem of how to exclude super-raising of wh-items as in (132) by economy constraints, cf. Collins (1994a, 24) and Costa (1995, 6f).

63 In particular, all the cases where the contribution of the Fewest Steps condition was indispensable to derive ungrammaticality continue to rely on this transderivational economy constraint. The reason is that the illicit combinations of movement operations discussed so far (except for super-raising and long-distance scrambling) can still fulfill Last Resort as in (134); and super-raising and long-distance scrambling could be ruled out by Last Resort alone already under the earlier formulation in (114).
can apply; this result seems to be correct.

7. Conclusion

To sum up, a derivational theory of movement has emerged in the preceding sections that crucially incorporates the notions of locality, economy, and cyclicity. As far as locality is concerned, I have adopted the Barriers Condition (see (1)). With respect to cyclicity constraints (conceived of as constraints that govern the interaction of movement operations), I have argued that in addition to the Strict Cycle Condition (see (74)), a constraint banning improper movement seems necessary under standard notions of economy; I have suggested that this role is played by the Principle of Unambiguous Binding (PUB) (see (82)). However, it turned out that the interaction of independently motivated revisions of the economy constraints Fewest Steps (see (113)) and Last Resort (see (134)) comes close to a principled theory of improper movement and thereby renders a constraint like the PUB superfluous.

With this theory of movement as the background, I will now return to the issue of remnant movement and address the four questions posed at the end of chapter 1. The guiding idea will be that the derivational approach to movement developed in this chapter significantly contributes to an explanation of the properties of incomplete category fronting.
Chapter 3

Proper Binding

1. The Problem

Recall a typical example involving incomplete category fronting in German, such as (1):

(1) \[\text{VP} \ t_2 \text{Gelesen} \] \[\text{hat} \ [\text{IP} \ [\text{NP} \text{das Buch} \]_2 \ [\text{IP} \text{keiner} \ t_1]] \]

read \ has \ the \ book\textsubscript{acc} \ no-one\textsubscript{nom}

Under the remnant movement approach adopted in chapter 1, (1) is derived by two movement operations: NP\textsubscript{2} is scrambled out of VP\textsubscript{1}, and VP\textsubscript{1} is topicalized. This latter process creates an unbound trace, t\textsubscript{2}. The problem now is that constructions involving unbound traces do not otherwise appear to be legitimate.\footnote{This is often considered to be one of the most problematic aspects of the remnant movement approach to incomplete category fronting. See, e.g., Haider (1991, 28).} Thus, unbound traces created by wh-lowering regularly induce illformedness, as is shown by the following English example (= (47) of chapter 1):

(2) *John asked t\textsubscript{1} \ [\text{CP} \text{who\textsubscript{1} Mary saw Bill}]

As noted in subsection 3.1 of chapter 1, there does not seem to be anything wrong with selection requirements in (2). The matrix verb ask selects an embedded wh-clause, and this implies (in English) that either SpecC or C must be lexicalized by an appropriate lexical item carrying a [+wh] feature. The lowered wh-phrase who\textsubscript{1} is a priori a good candidate for satisfying this requirement. Thus, it looks as though it is the unbound trace of who\textsubscript{1} that is responsible for the ungrammaticality of (2).

Similarly, as noted in subsection 3.1 of chapter 1, topic-lowering as in (3) in German (= (48) of chapter 1) is impossible, and it seems plausible to relate the impossibility of (3) to the occurrence of an unbound trace.

\[\text{VP} t_1 \text{keinen} \] \[\text{hat} \ [\text{IP} \text{das Buch} \]_2 \ [\text{IP} \text{keiner} \ t_1]] \]

read \ has \ the \ book\textsubscript{acc} \ no-one\textsubscript{nom}
Chapter 3. Proper Binding

In what follows, I would like to discuss a number of proposals that have been made to account for illicit lowering operations as in (2) and (3) and see whether or not they can be reconciled with the very existence of unbound traces in remnant movement configurations.

2. The PBC at S-Structure

Fiengo (1977) discussed ill-formed English sentences like the following:

(4) a. *t₁ was destroyed [NP the city]₂ by [NP the barbarians]₁
 b. *t₁ was [NP a fly]₁ on the wall

In line with standard assumptions of the time, he assumed that well-formed English passive sentences such as (5-a) and existential sentences such as (5-b) are derived by two operations. First, NP Postposing takes place (removing the subject NP from its canonical pre-verbal position and locating it farther to the right), and second, the subject position is filled by the object NP in the passive construction and by the expletive there in the existential construction:

(5) a. [NP The city]₂ was destroyed t₂ by [NP the barbarians]₁
 b. There was [NP a fly]₁ on the wall

According to this view, the illicit sentences in (4) correspond to intermediate stages in the derivations of the sentences in (5). The question that arose in the framework adopted by Fiengo was why NP Postposing as in (4) could not apply unless subsequent operations that move or insert another item (an NP or an expletive) into the vacated subject position took place.

For similar reasons, the same problem arose with illicit NPs like the one in (6-a). Given that (6-b) is derived by NP Postposing followed by NP Preposing, it is clear that (6-a) is an intermediate stage in the derivation of (6-b), and the question is why this intermediate stage does not qualify per se as a well-formed grammatical object.

(6) a. *t₁ destruction (of) [NP the city]₂ by [NP the barbarians]₁
 b. [NP The city’s]₂ destruction t₂ by [NP the barbarians]₁

Fiengo’s idea was that the illformedness of the examples in (4) and (6-a) can be traced back to the fact that the initial subject trace t₁ occurs unbound at S-structure. To exclude such unbound traces, he postulated the Proper Binding Condition (PBC) as an S-structure filter. The PBC can be formulated as follows:
(7) *The Proper Binding Condition (PBC): Traces must be bound at S-structure.

Assuming the standard notion of binding in terms of c-command (cf., e.g., Chomsky (1981)), the traces t_1 in (4) and (6-a) violate the PBC because they are not c-commanded by their antecedents, which appear in lower positions at S-structure.²

It seems that the original motivation for the PBC as an S-structure filter has largely been lost over the last 20 years. On the one hand, the sentences in (4) are standardly taken to violate a constraint like the Extended Projection Principle (EPP) (see Chomsky (1982; 1995)) that requires the subject position to be filled at S-structure; similar considerations apply in the case of the pre-noun position in English NPs (cf. (6-a)). And on the other hand, the assumption that NP preposing or there-insertion may overwrite traces in θ-positions does not seem to be tenable in current theorizing anyway. Nevertheless, Fiengo’s (1977) PBC in (7) directly rules out wh-lowering and topic-lowering, as in (2) and (3), and thus receives independent corroboration. Unfortunately, it is evident that remnant movement structures as in (1) also violate the PBC at S-structure and are therefore incorrectly predicted to be ungrammatical. For this reason, I take it that the PBC as an S-structure filter is not correct and that an alternative explanation of the illegitimacy of syntactic lowering must be found.

3. The Generalized PBC

Lasnik & Saito (1992, 90) propose a derivational formulation of the PBC. Empirical motivation for this can be gained from ungrammatical examples like (8), which exemplifies a typical complementizer-trace effect in English:³

(8) *Who₁ do you think [CP t'_1 that [IP t_1 left early]]?

Suppose for the sake of the argument that complementizer-trace effects do not result from a failure of some form of head-government (as in Rizzi (1990), Chomsky & Lasnik (1993), and much related work), but rather from a violation of the Barriers

²Cf. May (1977). Note, incidentally, that Fiengo (1977, 45) assumes that binding is not defined via c-command (as has become the standard view), but rather via precedence: A trace must be preceded by its antecedent. Clearly, as it stands this rules out all rightward movement. Concerning Heavy NP Shift (HNPS), Fiengo (1977, 48) argues that this result is tenable. He suggests that HNPS structures are in fact derived by leftward movement, a process very much akin to Larson’s (1988; 1991) idea of Light Predicate Raising; also see Kayne (1994). As far as other rightward movement operations are concerned, they are either ignored in Fiengo’s analysis (e.g., this is true of extraposition), or they are permitted by an explicit stipulation that the PBC only affects NP traces (as in the case of Particle Shift and Affix Hopping).

³Actually, the example considered by Lasnik & Saito (1992) is somewhat different; it involves wh-extraction from a subject NP. However, their argument for the reformulation of the PBC based on subject NP islands rests on a problem that does not arise in the theory of barriers adopted here; cf. section 2 of chapter 2. The example considered here makes the same point, though.
Condition, essentially as proposed in Chomsky (1986, 47-48). On this view, the presence of a complementizer that in English induces a barrier. If the derivation proceeds as depicted in (8), the illformedness does not pose a problem – movement from \(t_1 \) to \(t'_1 \) violates the Barriers Condition, and given that \(t_1 \) is thereby marked * (cf. subsection 3.2.5 of chapter 2) and cannot be deleted on the way to LF (in contrast to \(t'_1 \), which is deleted under Chomsky & Lasnik’s (1993) assumptions about uniform chains), strong ungrammaticality is indeed to be expected.

However, as noted by Barss (1985) and, following him, Chomsky (1986, 87), there is a potential loophole for movement in (8)– what if the subject is first lowered from the SpecI position to a VP-adjoined position and then raised again via the embedded SpecC position to the matrix SpecC position, as in (9)?

(9) *Who do you think [\(CP t''_1 \) that [\(IP t_1 \) [\(VP t'_1 \) [\(VP \) left early]]]]?

Crucially, the first step here, i.e., lowering from SpecI to an adjoined position in the extended projection of the verb, does not violate the Barriers Condition. Of course, the second movement operation, which moves the subject from the adjoined position to the SpecC position, does violate the Barriers Condition under present assumptions. On the one hand, however, an intermediate, deletable argument trace \(t'_1 \) marked * cannot induce as strong a degree of ungrammaticality as is typical with complementizer-trace effects; on the other hand, we would expect whatever proviso is made in the case of adjunct and object movement across a lexical complementizer in English (cf. the last footnote) to carry over immediately to (9). Indeed, if (9) were an admissible derivation, we would wrongly expect (8) to be on a par with examples like (10) (cf. Lasnik & Saito (1984, 256; 1992, 68)), in which a complementizer-trace effect does not show up because the initial trace \(t_1 \) is not adjacent to a lexical complementizer and is thus “rescued” by an intermediate trace \(t'_1 \) (which in turn is immune to the complementizer-trace environment):

(10) Who do you believe [\(CP t''_1 \) that Mary said [\(CP t'_1 \) [\(C – I \) [\(IP t_1 \) left early]]]]?

Thus, it seems that lowering as in (9) must be excluded in order to maintain the derivation of complementizer-trace effects in English. A standard PBC along the lines of Fiengo (1977) does not achieve this result, though. The reason is that the PBC is formulated there as an S-structure filter; but although there is a step in the derivation at which a trace occurs unbound in (9) – \(t_1 \) is unbound after \(wh \)-lowering to VP (step

4 Two remarks are in order here. First, whether the barrier created by a lexical complementizer in English is \(C' \), as argued in Chomsky (1986), or IP, as argued in Koster (1987, ch.4) and Müller (1995, 31-38), is immaterial for present purposes. (However, IP barrierhood would follow directly under the assumptions in section 2 of chapter 2 concerning the notion of barrier, given that I and C are in fact distinct when C is filled by a complementizer.) And second, something must be said about why object and adjunct movement can freely cross the purported barrier induced by the complementizer, despite an apparent violation of the Barriers Condition. See Müller (1995, ch. 2) for a discussion of both issues.
(1)) and before wh-raising to SpecC (step (2)) –, every trace of who₁ is bound at S-structure, and the PBC is fulfilled. This problem disappears under Lasnik & Saito’s (1992, 90) reformulation of the PBC as the Generalized Proper Binding Condition (GPBC):

(11) **Generalized Proper Binding Condition (GPBC):**

| Traces must be bound throughout a derivation. |

The GPBC not only excludes lowering in (9) but also accounts for the illformedness of the lowering derivations in (2) and (3).⁵ However, since the GPBC is a strengthened version of the PBC, it clearly does not fare any better than the original PBC with respect to cases of remnant movement as in (1). These constructions are still wrongly classified as ungrammatical.

Furthermore, it is worth pointing out that quite independently of the lowering problem, the derivation in (9) is ruled out by the interaction of the economy constraints Fewest Steps and Last Resort, as a PUB effect (cf. section 6 of the previous chapter). To see this, consider the movement operations that take place in (9) (which is repeated here) more closely:

(12) *Who₁ do you think [CP t₁′ that [IP t₁ [VP t₁′ [VP left early]]]]

The first step is adjunction to VP, i.e., scrambling, according to the assumptions of chapter 2. The second and third steps, then, involve substitution in SpecC, i.e., wh-movement. There are two ‘sub’derivations of (12) to be examined. In one derivation (D₁), the wh-phrase who₁ is equipped with a [+wh] feature in the numeration but not with a [scr] feature. Hence, intermediate scrambling violates Last Resort (cf. (134) from chapter 2, repeated here).

(13) **Last Resort:**

α is raised to a position β only if β is a typical checking position for the lowest-ranked unchecked morphological feature of α.

The Fewest Steps condition (cf. (113) from chapter 2, which is also repeated here) is not violated by D₁, though – there is no competing derivation in the same reference set (i.e., converging and yielding the same LF output) that involves fewer instances of feature checking.

(14) **Fewest Steps:**

If two derivations D₁ and D₂ are in the same reference set and D₁ involves fewer checking operations than D₂, then D₁ is to be preferred over D₂.

⁵Note also that the GPBC is incompatible with the kinds of derivations envisaged by Fiengo (1977) that were discussed in the previous subsection, because these derivations depended on the possibility that unbound traces in the derivation could be prevented from inducing ungrammaticality by later operations which apply before S-structure and remove such traces.
The case is different with the other derivation of (12) that is a priori possible, viz., \(D_2\). In this derivation, \(\text{who}\) bears a \([\text{scr}]\) feature in the numeration, so that neither intermediate scrambling nor the following two instances of \(\text{wh}\)-movement violate Last Resort.\(^6\) However, \(D_2\) violates Fewest Steps because there is an alternative derivation that is more economical in the sense that it dispenses with the optional \([\text{scr}]\) feature and hence with the additional \([\text{scr}]\) feature checking operation. Thus, it emerges that the impossibility of a derivation like (12) is explained straightforwardly as an instance of improper movement – it involves a PUB effect, which can be derived from the interaction of Fewest Steps and Last Resort.\(^7\)

Although we now have additional corroboration of the approach to movement theory developed in chapter 2, it seems that we are not yet closer to the original goal of this chapter, which was to come up with a constraint on lowering (as in (2) and (3)) that does not simultaneously exclude remnant movement. To this end, I will consider another version of the PBC in the following subsection.

4. The PBC at LF

4.1. The Approach

In line with the view embodied in the minimalist program that S-structure does not exist as a level of representation to which constraints may apply, Truckenbrodt (1992) suggests that the Proper Binding Condition should be taken to hold only at the interface level LF, as in (15).

(15) *The Proper Binding Condition (revised)*:
Traces must be bound at LF.

The basic idea pursued by Truckenbrodt is then that topicalized items undergo reconstruction at LF for semantic reasons. Among other things, this implies that a sentence involving remnant topicalization, such as (1), repeated here as (16-a), ends up with an LF representation like (16-b), where the topicalized VP is reconstructed into its base position and the VP-internal scrambling trace \(t_2\) is bound, in accordance with the PBC

\(^6\)Recall that the \([\text{scr}]\) feature is ranked lower than the \(+\text{wh}\) feature (cf. subsection 6.7 of chapter 2) and is accordingly checked off first, in line with Last Resort, and that the first \(\text{wh}\)-movement operation in (12) is permitted by Last Resort even though it does not involve actual feature checking.

\(^7\)Note that the derivation in (12) proceeds via what has been called Yo-Yo movement and closely resembles the illicit derivation (38) of the ungrammatical Ewe example (37-b) discussed in subsection 3.3.1 of chapter 2. Recall that the transderivational Shortest Path Condition can be invoked to rule out that latter derivation (cf. Collins (1994)). Hence, it is not surprising that the Shortest Path Condition also excludes (12), just as the interaction of Fewest Steps and Last Resort has been shown to do. I will come back to this issue shortly.
4. The PBC at LF

in (15):\(^8\)

(16) a. \[[VP t_2 Gelesen]_1 \hat{[IP [NP das Buch]_2 [IP keiner t_1]]}\]
 read has the book\(_{acc}\) no-one\(_{nom}\)

b. – \hat{[IP [NP das Buch]_2 [IP keiner [VP t_2 gelesen]_1]]}\)

Thus, it looks as though remnant movement structures are permitted by assuming that
the PBC holds only at LF. The question now is, of course, whether illicit S-structure
lowering is still ruled out. If we consider the failed attempt at question formation in
English in (2) (repeated here), it seems that it is:

(17) *John asked t_1 [CP who_1 Mary saw Bill]

There are two possibilities to be considered. One is that the LF representation of (17)
corresponds roughly to the S-structure representation, i.e., no further movement op-
eration applies to the \(wh\)-phrase \(who_1\). In that case, the PBC in (15) is violated at LF,
and illformedness results, as desired. The other possibility is that the \(wh\)-phrase raises
back into the matrix clause at LF, substituting in the matrix Spec\(C\) position, as shown
in (18):

(18) who_1 John asked t_1 [CP \(t'_1 C_{ [+wh]}\) Mary saw Bill]

Thus, if (17) could result in an LF representation like (18) without violating a principle
of grammar, it would mean something like (19):

(19) Who_1 did John ask t_1 [CP whether Mary saw Bill]?

However, although the derivation in (18) does not violate the PBC at LF, it does violate
other principles. Specifically, as noted above, it is a fact about \(wh\)-clauses in English
that they require lexicalization of either Spec\(C\) or \(C\) by an appropriate \(wh\)-item at S-
structure (the [+\(wh\)] feature of \(C\) is strong in this language), and this requirement is
of course violated by the matrix clause in (17) if it is to be interpreted as in (18)/(19).
Since similar considerations apply in the case of the illicit German example involving
downward topicalization in (3), it seems at first sight that the PBC in (15) successfully
accounts for both the legitimacy of remnant movement and the illegitimacy of syntac-
tic lowering. However, closer scrutiny reveals that this conclusion might be premature.

\(^8\)To simplify matters, I here ignore other LF operations that arguably take place in the derivation of
(16-b) from (16-a), such as quantifier raising applying to \(keiner\) (‘no-one’) and V/2 reconstruction; these
operations do not affect the issue under discussion. Also, for the time being I would like to abstract away
from the question of whether (VP) reconstruction is handled in terms of downward movement at LF (as
argued by Chomsky (1977) and May (1985)) or by invoking the copy theory of movement (cf. Chomsky
(1981; 1993)); Truckenbrodt (1992) adopts the latter approach. Clearly, if an LF lowering approach were to
be adopted, this would imply that LF lowering does not leave a trace, given the PBC in (15). See below.
4.2. Problems

Clearly, in order for the solution just envisaged to work, it must be ensured that all legitimate instances of remnant movement can be reconstructed and that no instance of illegitimate syntactic lowering can be undone by subsequent raising. In what follows, I show that both assumptions are problematic.

4.2.1. Syntactic Lowering, Undone by Raising

Let me begin by pointing out two cases of syntactic lowering that do not violate the PBC at LF but are nevertheless prohibited. The examples to be discussed differ from the English case in (17) in that a derivation like (18) does not appear to be excluded a priori.

Partial Wh-Movement in German The first case involves partial wh-movement in German. Recall that in this kind of construction, a wh-phrase undergoes syntactic movement to a [–wh] SpecC position, whereas its ultimate [+wh] target SpecC position is filled by a scope marker *was*. If there are [–wh] SpecC positions intervening between the moved wh-phrase and its target position, these positions are either filled by scope markers too or left empty, in which case C is filled by the complementizer *dass* (‘that’). Relevant examples that show this are given in (20) (cf. the discussion in subsection 5.2.2 of chapter 2):\(^9\)

\[(20)\]
\[\text{a. Was}_{1}\text{ meinst du } [\text{CP}_{4} \text{ was}_{1} \text{ C er gesagt hat } [\text{CP}_{5} \text{ wen}_{1} \text{ er } t_{1} \begin{array}{l}
\text{[+wh] think you [+wh] he said has whom}_{acc} \text{ he met }
\end{array}] \text{? has}
\]
\[\text{b. Was}_{1}\text{ meinst du } [\text{CP}_{4} – \text{ dass er gesagt hat } [\text{CP}_{5} \text{ wen}_{1} \text{ er } t_{1} \text{ getroffen }
\begin{array}{l}
\text{[+wh] think you that he said has whom}_{acc} \text{ he met }
\end{array}] \text{? has }
\]

As noted before, the existence of partial wh-movement in German shows that the strong [+wh] feature of a C node can be checked by insertion of a scope marker *was*. Furthermore, for reasons which I will not discuss here, a wh-phrase is required to move to a SpecC position in this construction (in apparent violation of Procrastinate)

\[^9\]Note that there is no general agreement as to whether sentences like (20-b) are completely grammatical; van Riemsdijk (1982), McDaniel (1989, 576), and Haider (1993, 98), e.g., assume that they are not. I will here follow the judgement in Höhle (1990, 2; 1996, 40) and Müller & Sternefeld (1996, 507-509) according to which (20-b) is possible (also cf. Stechow & Sternefeld (1988, 358) for remarks on this issue). However, the wellformedness of (20-b) is not crucial for the argument that follows; (20-a) would suffice to make the point.
even though its scope is indicated by the scope marker:

(21) a. *Was$_1$ glaubst du [CP$_4$ was$_1$ er gesagt hat [CP$_5$ was$_1$ er wen$_1$

 [+wh] believe you [+wh] he said has [+wh] he whom$_{acc}$

getroffen hat }] ?

 met has

b. *Was$_1$ glaubst du [CP$_4$ was$_1$ er gesagt hat [CP$_5$ dass er wen$_1$

 [+wh] he said has that he whom$_{acc}$

getroffen hat]] ?

 met has

Interestingly, the principles of grammar do not determine exactly which SpecC posi-

tion the wh-phrase undergoes overt movement to – any SpecC position between the

clause the wh-phrase originates in and the clause that contains its eventual target po-

sition is fine:

(22) a. Was$_1$ glaubst du [CP$_4$ wen$_1$ er gesagt hat [CP$_5$ t$'_1$ dass sie meint

 [+wh] believe you whom$_{acc}$ he said has that she thinks

 [CP$_6$ t$'_1$ dass sie t$_1$ liebt]] ?

 that she loves

b. Was$_1$ glaubst du [CP$_4$ was$_1$ er gesagt hat [CP$_5$ (dass) sie

 [+wh] he said has whom$_{acc}$ that she

 meint [CP$_6$ t$'_1$ dass sie t$_1$ liebt]] ?

 thinks that she loves

c. Was$_1$ glaubst du [CP$_4$ was$_1$ er gesagt hat [CP$_5$ was$_1$ sie meint [CP$_6$

 [+wh] believe you [+wh] he said has [+]h] she thinks

 wen$_1$ (dass) sie t$_1$ liebt]] ?

 whom$_{acc}$ that she loves

With this in mind, consider now the following ungrammatical sentences, which are

minimal variants of those in (20-a) and (20-b):

(23) a. *Was$_1$ meinst du [CP$_4$ was$_1$ C er t$_1$ gesagt hat [CP$_5$ wen$_1$ er

 [+wh] think you [+wh] he said has whom$_{dat}$ he

geschlafen hat]] ?

 slept has

b. *Was$_1$ meinst du [CP$_4$ dass er t$_1$ gesagt hat [CP$_5$ wen$_1$ er geschlafen

 [+wh] he said has whom$_{dat}$ he slept

 hat]] ?

 has

The difference between (20-a) and (20-b) on the one hand and (23-a) and (23-b) on the

other is that the wh-phrase that ends up in the SpecC position of CP$_5$ at S-structure is

base-generated within CP$_4$ in the former examples, and within the embedding clause

CP$_4$ in the latter ones. However, it seems that all typical constraints on wh-scope
marking structures are respected in (23-a) and (23-b) – the *wh*-phrase is in SpecC at S-structure, and the SpecC positions intervening between the *wh*-phrase and its LF target position are either filled by scope markers or left empty. Furthermore, and this is relevant in the present context, it is not quite clear why the PBC should not be fulfilled at LF in these examples via LF raising of the *wh*-phrase, as in (24):

(24) \(wem_1 \) meinst du [\(CP_4 \) \(t'_1 \) C er \(t_1 \) gesagt hat [\(CP_5 \) \(t'_1 \) er geschlafen hat]]?

If the principle that precludes overt lowering is the PBC in (15), there is no obvious reason why the sentences in (23) should not co-exist alongside the grammatical version involving successive-cyclic long-distance movement in (25). It is also worth noting that the economy constraints Fewest Steps and Last Resort would not be violated by a derivation that creates the LF representation (24) from the S-structure representations in (23-a) and (23-b). (On this and the Shortest Path Condition, see below.)

(25) \(Wem_1 \) meinst du [\(CP_4 \) \(t'_1 \) dass \(t_1 \) gesagt hat [\(CP_5 \) dass er geschlafen hat]]?

Thus, illicit lowering in partial *wh*-movement constructions as in (23-a) and (23-b) is not explained under the assumption that the PBC holds only at LF, as in (15).

Yo-Yo Movement in Ewe

More or less the same holds for illicit Yo-Yo movement constructions in Ewe, as discussed in subsection 3.3.1 of chapter 2. The crucial example (= (37-b) from chapter 2) is repeated here:

(26) Kofi1 e me gle na \(t_1 \) [\(CP \) be *wo/é fo Kosi]
 Kofi FOC I said to that he hit Kosi
 ‘It was Kofi that I told that he hit Kosi.’

Recall that the embedded subject pronoun ‘he’ can be changed from the regular form é to wo only if the adjacent SpecC position is filled. What must be ensured, then, is that a derivation as in (27) is precluded. Here, S-structure lowering to SpecC triggers morphological alternation in the embedded SpecC position, and subsequent raising to the matrix SpecC position guarantees that all traces are bound.\(^\text{10}\)

\(^\text{10}\)As it stands, this analysis depends on the assumption that focus movement in Ewe is formally identical to *wh*-movement, in that it targets SpecC positions (cf. Collins (1993; 1994)). However, the consequences would be basically the same under the assumption that focus movement in Ewe targets a different landing site. Also, recall from footnote 21 of chapter 2 that Collins (1994, 54) assumes that focus-lowering in (27) is preceded by VP-adjunction. Clearly, under present assumptions such a combination of movement types would automatically qualify as a PUB effect, reducible to the interaction of Fewest Steps and Last Resort. Hence, such a derivation would not pose a problem in the first place, irrespective of the issue of lowering.
4. The PBC at LF

(27) *Kof1 e me gble na t1 [CP t1′ be wo fo Kosi]

Evidently, the only significant difference between illicit Yo-Yo movement in Ewe and illicit partial \textit{wh}-lowering in German as in (23-a) and (23-b) is that the sequence \textit{lowering to SpecC} \Rightarrow \textit{raising to SpecC} applies in its entirety before Spell-Out in Ewe but is split up by the Spell-Out operation in German. Hence, it does not come as a surprise that the PBC at LF cannot rule out Yo-Yo movement in Ewe either – at LF the “offending” trace created by intermediate lowering (viz., t1) is bound. As before, the derivation in (27) is also not excluded by the interaction of Fewest Steps and Last Resort, as presented in chapter 2 (again, see below on how the Shortest Path Condition relates to all this).

Thus, I conclude that assuming the PBC to hold at LF does not suffice to systematically preclude illicit lowering. What is more, the next subsection shows that it does not even permit all well-formed cases of remnant movement.

4.2.2. Remnant Movement That Is Not Reconstructed

Recall that the assumption that traces must be bound at LF can be reconciled with the existence of remnant VP topicalization as in (1) only if VP topicalization is reconstructed. Indeed, the idea that a moved predicate is reconstructed so that it can be interpreted in its base position seems to make sense from the point of view of both semantics and syntax.11 As far as topicalized remnant NPs as in (28) (= (20) from chapter 1) are concerned, the evidence for reconstruction at LF is not so clear; however, the counter-evidence does not strike me as decisive either, so the approach based on the PBC in (15) is not called into question directly.12

\begin{equation}
(28) \quad [NP \text{ Ein Buch } t_1]_2 \text{ hat Antje } [PP \text{ über die Liebe } t_2 \text{ gelesen}}
\end{equation}

However, the case is different with certain kinds of remnant XPs that have undergone \textit{wh}-movement in the syntax. Here, there is semantic evidence against reconstruction of either the whole \textit{wh}-item or a part of it. A relevant example illustrating this point is (29) (= (59-a) from chapter 1):

\begin{equation}
(29) \quad \text{Ein Buch } t_1 \text{ hat Antje } [PP \text{ über die Liebe } t_2 \text{ gelesen}}
\end{equation}

11See especially Heycock (1995) and Takano (1995) for syntactic arguments for predicate reconstruction based on binding-theoretic considerations.

12Possible counter-evidence to assuming that topicalization is always reconstructed is related to the fact that topicalization may serve a focusing function. According to standard assumptions, a focused NP cannot be interpreted in its in situ position (cf. Chomsky (1981) and Kratzer (1991), among others). If this is so, it would follow that there are contexts in which topic reconstruction may not apply at LF. The licensing of remnant topics, though, does not appear to depend on whether the topic is focused (i.e., non-reconstructable under present assumptions) or not (i.e., reconstructable).
Chapter 3. Proper Binding

(29) [NP Was für ein Buch t_1 hast du [PP über die Liebe t_2 gelesen?]
what for a book$_{acc}$ have you about the love read

The same goes for a sentence like (30):\(^\text{13}\)

(30) ?[NP Welches Buch t_1 hast du [PP über die Liebe t_2 gelesen?]
which book$_{acc}$ have you about the love read

In both cases, PP$_1$ has undergone scrambling out of the wh-phrase NP$_2$, and NP$_2$ is overtly moved to SpecC, creating an unbound trace t_1. If this trace is to fulfill the PBC in (15), it seems that NP$_2$ or a constituent that contains t_1 and is dominated by NP$_2$ must be reconstructed into its base position. But there is semantic evidence that suggests that such reconstruction is not an option in (29) and (30).

Heim (1987; 1992), Stechow (1993; 1996), and Beck (1996), among others, argue that in the case of which-phrases, no part may undergo reconstruction. The reason for this is that wh-phrases are to be treated on a par with existentially quantified phrases, given a standard semantics of questions along the lines of Karttunen (1977). Quantifiers are commonly interpreted as relations between sets of individuals – the first set forms the restriction of the quantifier and the second the nuclear scope (cf. Heim (1982) for this terminology). Now, in the case of wh--phrases of the which book kind (as in (29) and (30)), which is interpreted as an existential quantifier, and book acts as the restriction of this quantifier.\(^\text{14}\) Hence, it is crucial that the non-wh-part of a which-phrase not be reconstructed – since it forms the restrictive part of the wh-operator (viewed as an existential quantifier), it cannot be interpreted as such in situ, i.e., within the nuclear scope. Thus, Heim and Stechow show that a (simplified) LF representation of a question like (30) must be of the form (31), given the approach of Karttunen (1977):

(31) which [$\alpha \lambda x \ [x \text{ book about love }]$] C [$\beta \lambda x \ [\text{ you read x }]$]

\(^\text{13}\) (30) is generally felt to be somewhat worse than (29), but it is not unacceptable for most speakers. The wh-expressions was für ein in (29) and welches in (30) differ in that the former is indefinite and the latter definite. In line with this, I would like to contend that (29) involves a weak Specificity effect (cf., e.g., Ross (1967), Chomsky (1981, 235), Webelhuth (1992, 170), and Mahajan (1992)). Indeed, the contrast between (29) and (30) is mirrored by the following examples exhibiting extraction from NP in German in the presence of an indefinite (i-a) and a definite (i-b) determiner (cf. subsection 2.3.2 of chapter 1):

(i) a. Worüber$_1$ hast du [NP ein Buch t_1] gelesen ?
about what have you a book read

b. ??Worüber$_1$ hast du [NP das Buch t_1] gelesen ?
about what have you the book read

That said, to simplify the discussion I will neglect the difference between definiteness and indefiniteness in (29) and (30) in what follows and pretend that the two sentences have the same meaning.

\(^\text{14}\) Note that the case is different with wh-items like how many or how much. Here, the wh-operator triggers reconstruction; see the references just cited.
Clearly, to gain something like (31) from (29)/(30), two requirements must be met. First, the trace t_1 must be interpretable at LF as “about love;” I will return to that. Second, however, it is crucial that α is external to β at LF, i.e., that no part of the fronted wh-item is reconstructed at LF. But then, if reconstruction is a prerequisite for remnant movement, as predicted under the PBC in (15), unbound traces in $which$-phrases should not occur at S-structure, in contrast to what is shown by the examples in (29) and (30).

To sum up, there is empirical evidence that the PBC at LF in (15) is both too strong and too weak as it stands. It is too strong because it incorrectly precludes licit remnant movement of $which$-phrases in German; and it is too weak because it does not rule out illicit wh-lowering in partial wh-movement constructions in German and in Yo-Yo movement constructions in Ewe.

4.3. The Gist of the PBC

Still, in spite of the shortcomings of the LF-based PBC just mentioned, something about the PBC in (15) seems to reflect a basic property of natural language: Elements that are semantically interpreted as variables must be bound by an operator. Given that LF is a syntactic level of representation that serves directly as the input for semantic interpretation (see, e.g., Heim (1989) and Stechow (1993), among many others), and given that semantic variable binding must involve syntactic binding (i.e., c-command plus co-indexing) at LF (see, e.g., May (1985), Barss (1986, 416)), it appears that a statement like (32) is indispensable for natural language interpretation:

(32) Variables must be bound at LF.

Note that whereas the notion of binding is to be understood syntactically in (32), in terms of c-command, the notion of ‘variable’ in (32) is semantic in nature, and not syntactic: It includes initial traces of NP movement (anaphoric traces in the theory of Chomsky (1981; 1982)) that are co-indexed with an operator, initial traces of A-bar movement (which belong to the class of syntactic ‘variables’ in standard theorizing) that are co-indexed with an operator, as well as pronouns that are co-indexed with an operator; however, it does not include intermediate traces of any kind (even if they are classified as syntactic variables) or initial traces and pronouns that are not co-indexed with an operator.

With this in mind, let us now see what consequences arise if the PBC at LF in (15) is replaced by the semantically based requirement (32). First, does (32) preclude lowering? The answer is that it does so only if the lowering operation (a) leaves behind a trace that is interpreted as a variable, and (b) is not undone by subsequent raising before LF is reached. Obviously, there is then a way out for all the illicit lowering cases discussed so far, because in these cases a scenario in which both (a) and (b) hold
can in principle be avoided.\footnote{But note that a violation of (32) in an example like (17) in English can be circumvented only at the cost of a violation of other grammatical principles; recall the discussion in subsection 4.1.}

The kind of lowering that (32) does rule out, though, is one that applies at LF only. Thus, as observed by May (1985, 6), a statement like (32) suffices to exclude a reading of (33-a) where the quantified expression someone is inside the scope of the matrix verb believe. As shown in (33-b), such a reading could be gained by LF lowering of someone:\footnote{Note that in (33-b) t_1 qualifies as a semantic variable, susceptible to (32), because it is an initial trace co-indexed with a quantified expression.}

\begin{itemize}
 \item a. Someone$_1$ believed $[\text{CP}\ [\text{IP}\ \text{Angleton suspected Philby}]]$
 \item b. *t_1 believed $[\text{CP}\ [\text{IP}\ \text{someone$_1$ [IP Angleton suspected Philby]]}]$
\end{itemize}

Next, let us see what consequences this has for remnant movement constructions. Clearly, if the remnant XP is reconstructed for semantic reasons, as was proposed for (most cases of) remnant topicalization above, and if this reconstruction operation does not leave behind a semantic variable (there is nothing that forces us to assume that it does), there are no problems that could arise with respect to (32). But what about the cases where I have just argued that no part of the moved remnant must be reconstructed, viz., (29) and (30) (the latter example is repeated here as (34))?

\begin{itemize}
 \item (34) ?$[\text{NP}\ \text{Welches Buch t_1 hast du [PP über die Liebe], t_2 gelesen ?}]$
\end{itemize}

First, note that PP$_1$ in (34) is not an operator, so t_1 does not have to qualify as a variable. However, recall that (34) results in an LF representation like (35):

\begin{itemize}
 \item (35) which $[\alpha \lambda x [x \text{book about love}]] C [\beta \lambda x [you read x]]$
\end{itemize}

Thus, it seems as though the trace t_1 in (34) must be interpreted as if it were its antecedent, and the antecedent may not be interpreted at all. To achieve this result, I would like to suggest adopting the copy theory of movement envisaged in Chomsky (1981) and developed in Chomsky (1993; 1995). According to this theory, traces that result from S-structure movement are full copies of their antecedents, with an articulated structure. Under the copy theory, a sentence like (34) actually looks like (36) (traces in (36) are in italics):

\begin{itemize}
 \item (36) ?$[\text{NP$_2$ Welches Buch [PP$_1$ über die Liebe]] hast du [PP$_1$ über die Liebe] [NP$_2$ welches Buch [PP$_1$ über die Liebe]] gelesen ?}$
\end{itemize}

Only the non-italicized items are pronounced at PF; the italicized parts are deleted. As far as LF is concerned, the correct result is obtained if the leftmost occurrences of NP$_2$ and PP$_1$ are interpreted as such and the other occurrences are either left without
semantic interpretation, or are interpreted as a variable.

Clearly, the copy theory of movement also accounts for the above-mentioned cases of reconstruction with remnant topicalization – here, the fronted item is pronounced, and its trace is interpreted at LF. I take it that all instances of remnant movement can be reconciled with the requirement in (32) along these lines. However, in what follows I will generally (i.e., if nothing depends on it) abstract away from the copy theory again and continue to note traces as ‘t’ rather than as full copies with internal structure; this is mainly for reasons of perspicuity and simplicity.

To sum up this subsection, I assume that (32) is a semantically grounded constraint applying to LF representations. This constraint is compatible with the existence of remnant movement, but it does not explain why syntactic lowering is barred. Things are different with the version of the syntactic Proper Binding Condition in the following subsection.

5. Chain Binding

As we have seen, one possibility to reconcile the PBC with remnant movement is to assume that unbound traces in remnant XPs can fulfill the PBC at LF via remnant reconstruction. However, this analysis has turned out to be quite problematic. Given that genuine reconstruction cannot be the decisive factor in licensing remnant movement, it could be assumed, following Höhle (1991), that the relevant notion is what one might call a purely syntactic “pseudo-reconstruction.” Indeed, an approach along these lines is suggested by Frank, Lee & Rambow (1992, 150ff). Pseudo-reconstruction can easily be understood in terms of Barss’ (1984) notion of chain-binding, which is given in (37):

17 Two remarks. First, note that this analysis crucially depends on the option not to analyze t₁ in (34) (= the leftmost occurrence of ‘PP₁ über die Liebe’) in (36)) as a semantic variable. Thus, if nothing more is said, we expect that items that must be interpreted as variables, bound by an IP-internal operator, will create ill-formedness if they appear within fronted which-phrases. (This does not necessarily rule out anaphors in these positions, given that they are not co-indexed with a quantified element.) See Engdahl (1986) and Kim (1996) for discussion of this issue and for an approach to apparent counterexamples. Second, if we adopt the copy theory, and in particular the strong form that retains copies at LF even if they are not interpreted (see below), a couple of modifications of the theory of LF legitimacy adopted so far (especially Chomsky & Lasnik’s (1993) approach to trace deletion; cf. chapter 2) appear to be necessary. However, most of these modifications strike me as fairly straightforward, and I will therefore not dwell on this issue here.

18 Much more would have to be said about a theory of reconstruction that is based on copying. For instance, it is pointed out in Kang & Müller (1994) that there are constructions in Korean and German that require reconstruction into an LF target position which can be shown to have not been used as an intermediate position by overt movement, which, if correct, poses a problem for the copy theory. I will not discuss these issues here, assuming that problems of this type can be solved in one way or another.

19 Also compare the theory of chain accessibility sequences in Barss (1986).
Chapter 3. Proper Binding

(37) **Chain-Binding:**

X chain-binds Y iff X and Y are co-indexed, and

a. X c-commands Y, or

b. X c-commands a trace of Z, where Z = Y or Z contains Y.

The PBC would then have to be revised to require chain-binding (instead of binding) at S-structure, as in (38):

(38) **The Proper Chain-Binding Condition (PCBC):**

Traces must be chain-bound at S-structure.

In all the examples involving remnants discussed so far, the traces that are unbound at S-structure (and possibly also at LF, cf. (29) and (30)) are still chain-bound at this level. The reason is that although an unbound trace in a remnant XP is not itself c-commanded by its antecedent, the latter does c-command a trace of the remnant XP, and the remnant XP contains the unbound trace. Thus, the PCBC in (38) is clearly superior to its predecessors discussed in the previous three subsections (i.e., the PBC at S-structure, the GPBC, and the PBC at LF) because it systematically permits remnant movement.

The question is then: Does the PCBC in (38) also exclude all the illicit cases of lowering discussed above?

At first, one might think that it does: Wh-lowering as in the English example (2) is barred, and the same goes for topic-lowering as in the German example (3). However, whether or not the PCBC rules out wh-lowering in partial wh-movement constructions in German (as in (23-a) & (23-b)) is not quite clear. If the scope marker is co-indexed with the wh-phrase undergoing partial wh-movement and forms an S-structure chain with it (as is standardly assumed), the PCBC incorrectly predicts that these examples are possible; thus, in order for the PCBC to rule out wh-lowering in scope marking constructions in German, it would be necessary to assume that the scope marker was cannot bind either a partially moved wh-phrase or its trace; and I believe that there is strong evidence against such an assumption (cf. Müller (1997)). Still more problematic is the case of Yo-Yo movement in Ewe (recall the illicit derivation in (27)). In this

20Note, incidentally, that Barss (1986, 57) and Saito (1989, 187) explicitly discuss the issue of whether a condition like (38) holds for traces or not. They come to the conclusion that whereas (a requirement like) chain-binding is valid for anaphoric expressions, it is not for traces, which they assume must be properly bound at S-structure. The evidence this claim is based on comes from ungrammatical instances of remnant wh-movement in English, as in (i) (instances of well-formed remnant movement in a language like German are not considered by Barss and Saito):

(i) "[NP Which book about t₁]₂ don’t you know [CP who₂ to read t₂])?

I will address this kind of sentence in chapter 5 and will argue there that remnant wh-movement is in fact not systematically prohibited in English and therefore must not be excluded by a principle like the PBC at S-structure (as assumed by Barss and Saito). Rather, I will show that (i) can be excluded in the same way as illicit cases of remnant scrambling and remnant left dislocation in German (recall subsection 3.3 of chapter 1).
6. Lowering and Economy

6.1. Fewest Steps & Last Resort

Is remnant movement permitted by economy constraints, and are the illicit cases of syntactic lowering ruled out by these constraints? Assuming that both movement operations in a remnant movement construction are triggered by strong features, and that the resulting LF representation cannot be arrived at with fewer feature checking operations, Last Resort and Fewest Steps permit remnant movement. Turning next to lowering, we have already seen that although these two constraints exclude certain instances of lowering, they do not systematically exclude this operation. Thus, recall that Fewest Steps and Last Resort conspire to rule out a derivation like (12), which, if it were possible, would undermine the account of complementizer-trace effects in English. Here, adjunction to an XP in the extended projection of the verb is followed by

21 The same considerations apply in the case of the illicit derivation in (9) that would undermine the account of complementizer-trace effects in English; but, as noted above, this derivation is independently ruled out by the interaction of Fewest Steps and Last Resort, and therefore does not per se argue against the PCBC.

22 Another potential argument against the PCBC is conceptual in nature and rests on the leading idea in the minimalist program that there are no S-structure constraints. To counter this objection, one might come up with a derivational version of the PCBC, as in (i), which one might dub Derivational Proper Binding Condition:

(i) **Derivational Proper Binding Condition (DPBC):**
A trace must be bound at one stage in the derivation.

Evidently, the DPBC is the counterpart to Lasnik & Saito’s (1992) GPBC discussed in section 3 above (cf. (11)), with the universal quantification implicit in the GPBC (a trace must be bound at all stages in the derivation) replaced by existential quantification. The DPBC permits remnant movement without mentioning S-structure, but it can easily be verified that it does not fare any better than the representational PCBC in (38) with respect to the lowering data. On the contrary, it allows lowering in partial *w*-movement constructions irrespective of whether or not the scope marker *was* may serve as a binder – in fact, it does not preclude any lowering operation that is undone at some point later in the derivation.
substitution in SpecC, which automatically gives rise to an improper movement configuration. However, Fewest Steps and Last Resort do not exclude lowering as in (2) (wh-lowering in English), (3) (topic-lowering in German), (23-a)/(23-b) (wh-lowering in scope marking constructions in German), and (27) (focus-lowering in Ewe). To illustrate this point, I will now discuss two of these examples under this perspective.

First, consider lowering in partial wh-movement constructions in German, as in (23-a), which is repeated here in (39-a), together with its LF representation in (39-b) (= (24)):

\[(39)\]

- a. *Was_1 meinst du [CP_4 was_1 \text{C er t}_1 \text{gesagt hat [CP}_5 \text{wem}_1 \text{er [+wh] think you [+wh] he said has whom}_{dat} \text{he geschlafen hat }] ?

- b. wem_1 meinst du [CP_4 t'_1 \text{C er t}_1 \text{gesagt hat [CP}_5 t'_1 \text{er geschlafen hat }] ?

The wh-phrase wem_1 (‘whom_{dat}’) is equipped with one [+wh] feature in the numeration. Hence, all three movement operations in (39-b) conform to Last Resort: Each step ends up in a typical checking position (SpecC) for the lowest-ranked unchecked morphological feature of wem_1 (which is [+wh], assuming that the [Case] feature of the dative NP has been checked (via dative shift) prior to the first wh-movement operation), even though only the last step (3) results in feature checking with the matrix [+wh] C node. Similarly, Fewest Steps is not violated by this derivation: True, there are three instances of movement applying to the wh-phrase, and a competing derivation that yields the same LF representation without lowering in the first step only needs two movement operations applying to wem_1; but recall that the revised Fewest Steps condition argued for above does not actually count movement operations per se, but only feature checking operations. And of course, no derivation that converges and yields the same LF involves fewer instances of feature checking. Thus, illegitimate lowering as in (39) cannot be excluded by the interaction of Fewest Steps and Last Resort; and clearly, the same considerations apply in the case of illicit focus-lowering in Ewe.

Next, consider topic-lowering, as in the German example (3), which is repeated here, too:

\[(40)\]

* dass Fritz _1 sagte [CP dem Peter_1 habe [IP keiner die Claudia that Fritz said ART Peter_{dat} has_{subj} no-one_{nom} ART Claudia_{acc}

gesehen]]]

Given that _1 is not the trace of an operator but rather the trace of a name, it does not have to be interpreted as a variable. Hence, under the copy theory, no additional movement operation has to apply to either _1 or dem Peter_1 in (40)– _1 is interpreted as a name, and the lowered NP is ignored for the purpose of interpretation. Assuming that syntactic topic-lowering was triggered by a [top] feature on NP_1, nothing is wrong
with respect to Last Resort; and given that (40) is not identical at LF to a sentence that minimally differs in that NP1 remains in situ at S-structure (cf. (41) – the crucial difference is the presence of the lowered NP in the embedded SpecC position), Fewest Steps is not violated by (40) either.

(41) dass Fritz dem Peter1 sagte [CP es habe [IP keiner die that Fritz ART Peter1dist said EXPL hassubj no-one,cont ART Claudia gesehen]] Claudia,acc seen

To sum up, remnant movement is not blocked by Fewest Steps and Last Resort; but illicit lowering in the syntax cannot be ruled out in general by these economy constraints, either.

6.2. The Shortest Path Condition

6.2.1. Yo-Yo Movement

Recall from subsection 3.3 of chapter 2 the transderivational Shortest Path Condition (35), which is repeated here in (42):

(42) Shortest Path Condition:
If two derivations D1 and D2 are in the same reference set and the movement paths of D1 are shorter than the movement paths of D2, then D1 is to be preferred over D2.

As shown in chapter 2, the Shortest Path Condition can be invoked to exclude Yo-Yo movement involving intermediate focus-lowering in Ewe and similar constructions in other languages (cf. Collins (1994)). A derivation D1 as in (27), which is repeated here again as (43-a), has longer paths than a competing derivation D2 that moves the focused phrase Kofi1 to its target position in the matrix clause without an intermediate step of lowering into the embedded clause; D2 is given in (43-b):

(43) a. *Kofi1 e me gble na t1 [CP t1 be wo fo Kosi]
 b. Kofi1 e me gble na t1 [CP be é fo Kosi]

Thus, D2 blocks D1 via the Shortest Path Condition, and this yields the result that there cannot be effects of successive cyclicity in an embedded clause if movement starts in the matrix clause and also ends there.

Given this state of affairs, one might ask whether the Shortest Path Condition can generally be held responsible for the illegitimacy of syntactic lowering, while at the same time accounting for the very option of remnant movement. And indeed, at least the German cases involving partial wh-lowering as in (23-a) and (23-b) follow from the Shortest Path Condition, in complete analogy to (43-a). But again, upon closer inspection the dismal finding is that the Shortest Path Condition cannot be the factor underlying the prohibition against lowering. To illustrate this, I will first show that
there are cases of illicit lowering that are not excluded by the Shortest Path Condition, and I will then return to a general problem raised by this constraint that has already been noted in the previous chapter.

6.2.2. Topic-Lowering

A relevant case is again topic-lowering, as in the ungrammatical sentence (44) (= (40)):

(44) *dass Fritz$_t_1$ sagte [CP dem Peter$_1$ habe [IP keiner die Claudia gesehen]]

I have argued above that the object trace t$_1$, which is a full copy of its antecedent in the embedded SpecTop position and does not (necessarily) qualify as a semantic variable, can be interpreted as dem Peter in situ. This means that no additional raising operation is necessary on the way to LF in (44). Under this assumption, however, there is no way to block (44) via the Shortest Path Condition: The movement paths of the derivation generating (44) are indeed longer than those of a derivation in which dem Peter remains in situ at S-structure, but these two derivations do not compete since they yield different LF representations.

In conclusion, the Shortest Path Condition does not rule out all cases of illicit syntactic lowering: It fails as soon as lowering is not undone by LF raising.

6.2.3. Wh-Movement at LF

I noted in subsection 3.3.2 of chapter 2 that if there is wh-movement of wh-in situ phrases at LF, the transderivational Shortest Path Condition cannot derive superiority effects (cf. (45-a) vs. (45-b)) as assumed by Chomsky (1993, 14) and Kitahara (1993, 113ff).

(45) a. I wonder [CP who$_1$ C [IP t$_1$ bought what$_2$]]
 b. *I wonder [CP what$_2$ C [IP who$_1$ bought t$_2$]]

Even if we make the non-trivial assumption that the LF outputs of (45-a) and (45-b) count as “identical” for the purposes of the definition of reference set assumed here (cf. (110) from chapter 2), the movement paths of the derivations D$_1$ and D$_2$ generating the S-structure representations (45-a) and (45-b), respectively, all have the same length at LF. This undermines an explanation of superiority effects that is based on the Shortest Path Condition.

Of course, the evidence presented in the last two subsections does not speak against the Shortest Path Condition as such (i.e., it does not prove it wrong), but it shows that this transderivational constraint is poorly motivated from an empirical
7. Strict Cyclicity

7.1. A Reformulation of the Strict Cycle Condition and the Cycle

Abstracting away from all the versions of the Proper Binding Condition and from economy constraints like Fewest Steps, Last Resort, and the Shortest Path Condition, the difference between illicit lowering and licit remnant movement is quite obvious from an intuitive point of view: Whereas both lowering and remnant movement create unbound traces, only the former operation involves downward movement; all movement operations in the remnant movement constructions encountered so far involve upward movement. Thus, the simplest way of putting it would be to state (46), which is a quote from Chomsky (1995, 253):

(46) Movement is raising, in the specific sense defined by c-command.

It seems to me that (46) accounts for all the facts tackled in this chapter in a fairly straightforward way. The question is whether (46) must be stipulated as a property of the operation Move \(\alpha \), or should be derived from other assumptions (as argued, e.g., by Epstein (1995)). Here, I take the latter stand; in what follows, I would like to show that (46) follows from an appropriately revised version of the Strict Cycle Condition.\(^\text{24}\)

\(^{23}\) Another application of the transderivational Shortest Path Condition is given in Chomsky (1995, 328); it has to do with the illegitimacy of extraction from derived NP subjects (as in passive constructions). I will address this construction in some detail in chapter 4; it will turn out that the transderivational Shortest Path Condition is not needed for an account of this construction either (see in particular footnote 9 of chapter 4).

\(^{24}\) The idea that standard strict cyclicity effects and the prohibition against lowering have a common source is also present in Chomsky (1993; 1995). Thus, Chomsky’s (1993) Extension Condition on Merge (that was discussed in subsection 4.1 of chapter 2 in the context of strict cyclicity effects) also blocks lowering operations unless they involve adjunction or apply at LF. Similarly, Chomsky’s (1995) assumption that strong features must be checked at the root (cf. his ex. (3) on page 234) correctly rules out a number of illicit downward movement operations, in addition to standard strict cyclicity configurations. Just like the Extension Condition, I will not adopt this requirement here, for the following reasons. First, it has nothing to say about lowering (or, indeed, strict cyclicity effects) at LF, given that LF movement is never triggered by strong features. Second, the system of economy constraints adopted here (cf. section 6 of chapter 2) permits syntactic movement without actual checking of a strong feature, as long as the feature is eventually checked before Spell-Out. However, I have argued that cases of “intermediate” lowering (without feature checking) must be ruled out too, which the assumption that strong features must be checked at the root...
To this end, recall first the definitions of the Strict Cycle Condition and the Cycle adopted so far (cf. (74) and (76) from chapter 2):

(47) **Strict Cycle Condition:**
No rule can target a position that is dominated by a cyclic node and does not belong to the minimal residue of the head of this cyclic node.

(48) **Cycle:**
An XP becomes a cyclic node in the derivation iff movement to the minimal residue of its head takes place.

The basic intuition behind the Strict Cycle Condition is that those parts of phrase structure that have been “affected” by (movement) operations are not internally accessible for further (movement) operations anymore. With this in mind, consider a schematic lowering structure like (49):

(49) ... [UP ... t ... WP ... [YP ... [ZP α1 [Z Z ...]] ...] ...] ...]

According to (48), ZP becomes a cyclic node at the point in the derivation where α is substituted in SpecZ (which is part of Z’s minimal residue). Assuming that no other movement operation has yet targeted (the minimal residue of) YP, WP, UP (which I take to be the minimal maximal projection dominating t1), or some higher maximal projection in the tree, the Strict Cycle Condition is not violated by lowering of α.

But suppose now that the cycle is defined somewhat differently, in such a way that not only the ultimate XP landing site matters, but also all XPs that are part of a movement path:

(50) **Cycle (revised):**
An XP becomes a cyclic node in the derivation as soon as it is part of a movement path.

Movement paths are readily understood as sets of nodes that intervene between the starting point of movement and the target position. I will adopt the following definition:

(51) **Path:**
The Path from α to β is the set of nodes γ such that (a) and (b) hold:

a. γ is reflexively dominated by the minimal XP that dominates both α and β.

b. γ dominates α or β.

fails to do. Finally, this requirement relies on the idea that movement and structure-building operations may systematically alternate, which I do not assume here. That said, it should be kept in mind that the attempt to give a unified account of strict cyclicity effects and the prohibition against lowering which I will be concerned with in what follows is very similar to what is done in Chomsky (1995), and could in fact best be viewed as an alternative execution of that idea, on the basis of the general approach to movement that I have developed in chapter 2.
Now it follows that ZP, YP, WP, and UP in (49) become cyclic nodes as soon as lowering of α to SpecZ applies (UP is the minimal XP that dominates both t_1 and α_1 in (49) and turns into a cyclic node because of the assumption that domination is understood reflexively in (51-a)).

Do these assumptions suffice to exclude lowering in a systematic way by the Strict Cycle Condition (47)? It turns out that this is not quite clear because there is a certain vagueness in the formulation of the Strict Cycle Condition in (47) that did not matter before, but does now. What exactly does it mean for a (movement) rule to “target” a position? If targeting a position does not yet imply actually being in that position, the Strict Cycle Condition does not rule out lowering as in (49) – it is the lowering operation itself that creates the cyclic node, so strict cyclicity must not be checked before movement. In other words, what is needed is that the Strict Cycle Condition be formulated in such a way that it is checked after each movement operation and after cyclic nodes have been created by the movement operation. For the sake of concreteness, assume first that the Strict Cycle Condition in (47) is reformulated as in (52):

\[(52) \quad \text{Strict Cycle Condition (revised):} \]
\[\text{If a landing site of movement is dominated by a cyclic node, it must belong to the minimal residue of the head of this cyclic node.}\]

The question now is where in the derivation the Strict Cycle Condition (52) holds. Obviously, it cannot hold throughout. If it did, there could, e.g., never be a well-formed

25See Pesetsky (1982), Kayne (1984, ch. 7), Stechow & Sternefeld (1988), and Sternefeld (1997) for alternative definitions of movement path, which, however, do not immediately extend to lowering structures. Collins (1994) proposes a definition that does cover lowering. It is given in (i):

(i) **Path** (Collins (1994, 56)):
\[\text{Let } P_1 \text{ and } P_2 \text{ be two categories in a tree. Let } S_1 \text{ be the set of categories dominating } P_1 \text{ and let } S_2 \text{ be the set of categories dominating } P_2. \text{ The path between } P_1 \text{ and } P_2 \text{ is defined as follows:} \]
\[\text{Path}(P_1, P_2) = (S_1 \cup S_2) - (S_1 \cap S_2)\]

(i) is a notational variant of the definition given in the text in (51), with one crucial difference: The first XP dominating t_1 in (49) (i.e., UP) is not part of the movement path from t_1 to α according to (i) and consequently does not become a cyclic node by this lowering operation; in contrast, as just noted, it is part of the movement path according to (51) and therefore turns into a cyclic node after lowering. Similar considerations apply in the case of raising paths; as it stands, (i) (in contrast to (51)) predicts that the XP immediately dominating the landing site is not part of the movement path; however, we will see that there is evidence that such an XP must be part of the movement path. Furthermore, I take it that movement paths as determined under Collins’ (1994) approach are somewhat counter-intuitive, since they predict that in a structure like (ii), the node marked 3 is not part of the movement path from A to B (or from B to A, for that matter), in contrast to the nodes marked 1, 2, 4, and 5.

(ii) \[\{3 \{2 \{1 \{B \ldots \} \} \} \{4 \{5 \ldots \} \} A \ldots \}\]

3 dominates both A and B; hence, it is a member of the intersection of the set of nodes dominating A and the set of nodes dominating B. Since it is also a member of the union of these sets, it is not part of the movement path from A to B (or from B to A).
derivation for a sentence like (53) (= (56) from chapter 2):

(53) \[\text{CP}_1, \text{Who knows } [\text{CP}_2 \text{ what John did }] ? \]

A derivation in which embedded wh-movement precedes wh-movement in the matrix must not violate strict cyclicity. However, if the Strict Cycle Condition holds throughout the derivation, the landing site of what (i.e., the embedded SpecC position) will eventually be dominated by the matrix CP, which is a cyclic node after wh-movement of who, and will therefore violate the Strict Cycle Condition. For reasons like this, I would like to suggest that the Strict Cycle Condition and the cycle are to be viewed as parts of the movement operation itself, i.e., that the operation Move α is made up of the following subcomponents, which apply in the order indicated in (54) (i.e., movement \triangleright cycle \triangleright strict cyclicity):

(54) Move α:
 a. Movement of a category α to a position β, leaving a copy of α behind.
 b. Determination of cyclic nodes according to (50).
 c. Checking of the Strict Cycle Condition (52) in β.

It remains to be shown that the Strict Cycle Condition, now conceived of as part of the operation Move α, does indeed rule out all illicit cases of syntactic lowering, simultaneously permits remnant movement, and still covers all the effects attributed to strict cyclicity in chapter 2.

7.2. Lowering, Remnant Movement, and Strict Cyclicity

7.2.1. Standard Effects of Strict Cyclicity

Let me begin with a standard case showing the effects of strict cyclicity. Consider again an ungrammatical sentence involving wh-movement of an adjunct across a wh-island in English, such as (55) (= (64) from chapter 2).

(55) *How do [IP you wonder [CP which car$_2$ [IP to fix t$_2$ t$_1$]]] ?

In subsection 4.1.4 of the preceding chapter, I argued that a derivation like the following should be excluded by the Strict Cycle Condition:

(56) a. D-structure:
 \[[\text{CP}_6 \text{ – do } [\text{IP you wonder } [\text{CP}_5 \text{ – } [\text{IP to fix which car}_2 \text{ how}_1]]]] ? \]

26To be sure, what is involved here is a case of extrinsic rule ordering, which may or may not be objectionable on conceptual grounds, under certain premises.

27In chapter 2, I assumed that steps (b) and (c) of (56) are one instance of Form Chain; but with Form Chain gone, we can now return to genuine successive-cyclic movement in this derivation.
b. Movement of ‘how’ to the embedded SpecC:
\[\text{[CP}_6 \text{ do [IP you wonder [CP}_5 \text{ how}_1 \text{ [IP to fix which car}_2 \text{]]]] } ? \]

c. Movement of ‘how’ to the matrix SpecC:
\[\text{[CP}_6 \text{ how}_1 \text{ do [IP you wonder [CP}_5 \text{ t}_1 \text{ [IP to fix which car}_2 \text{]]]] } ? \]

d. Movement of ‘which car’ to the embedded SpecC:
\[\text{[CP}_6 \text{ how}_1 \text{ do [IP you wonder [CP}_5 \text{ which car}_2 \text{ [IP to fix t}_2 \text{ t}_1 \text{]]]] } ? \]

The first movement step in (b) turns the embedded CP_5 (which reflexively dominates itself) and all functional categories that are dominated by CP_5 and that dominate t_1 into cyclic nodes, given the definition of cyclic node in (50) and the definition of movement path in (51). According to (54), the Strict Cycle Condition (52) is checked after the determination of cyclic nodes; i.e., whether or not how-movement in (b) is legitimate or not according to the Strict Cycle Condition is calculated after the movement operation as such. Indeed, how in (b) is dominated by a cyclic node (CP_5) – but since it is part of the minimal residue of the head of this cyclic node, strict cyclicity is not violated by this step. This is, of course, exactly what we want – if the Strict Cycle Condition were already violated by the first movement step in (b), wh-movement would wrongly be expected never to be legitimate. Turning next to the second movement operation in (c), it is possible for more or less the same reason: After movement, CP_6 is a cyclic node (as are all the other XPs in the clause that dominate t_1), but how belongs to the minimal residue of the head of CP_6. The case is different with the third movement operation in (d): Raising of which car to the embedded SpecC position is excluded by the Strict Cycle Condition because there are cyclic nodes dominating the landing site of which car (viz., CP_6 and all other XPs that intervene between CP_6 and CP_5), and which car does not belong to the minimal residue of any of these cyclic nodes (except for CP_5 itself). Hence, embedded wh-movement in the last step in (56) is correctly ruled out as acyclic under present assumptions.

As before (cf. subsection 4.1.7 of chapter 2), it is necessary to assume that there is an LF cycle distinct from the S-structure cycle. This can technically be implemented in various ways. I will assume that the Spell-Out operation removes the label “cyclic node” from an XP and that the characterization of cyclic nodes according to (50) starts anew in the LF component. Under this view, the matrix CP (plus, irrelevantly, the matrix IP) is turned into a cyclic node by S-structure wh-movement in (57), but LF raising of the wh-in situ NP what_3 to the embedded SpecC position nonetheless does not violate strict cyclicity – after Spell-Out, the “cyclic node” feature is stripped from the matrix CP (and the intervening XPs), and only the embedded CP is a cyclic node, created by LF raising itself.

(57) Who_1 t_1 wonders [CP where_2 we bought what_3 t_2]?

To sum up, the revised approach to strict cyclicity behaves just like the one adopted in chapter 2 with respect to standard cases. In the following subsection, I show that it also covers illicit lowering.
7.2.2. Lowering and Strict Cyclicity

I have discussed various cases of illicit lowering operations in the preceding sections: First, there is syntactic lowering that is undone after Spell-Out, as in the derivation of the English example (58-a) that ends up with the LF representation in (58-b):

(58) a. *John asked _1 [CP who_1 Mary saw Bill]
 b. who_1 John asked _1 [CP t′_1 C+wh] Mary saw Bill

Notwithstanding the fact that the English example (with the derivation given) is also ruled out by whatever is responsible for C+wh requiring obligatory lexicalization of either C or SpecC at S-structure in this language, it is at least worth noting that the derivation in (58-b) is excluded by the Strict Cycle Condition in (52), given the concept of cyclic node in (50) and the internal structure of the Move α operation in (54). The lowering step (1) turns both the matrix VP and the embedded CP into a cyclic node (because these XPs are members of the movement path from t_1 to t′_1); strict cyclicity is checked afterwards, and since the position occupied by who_1 after lowering belongs to the minimal residue of the embedded C node but not to that of the matrix verb, ungrammaticality results. Subsequent raising of the wh-phrase restores c-command of the trace t_1, but this does not help anymore because the fatal violation has already occurred.

Exactly the same considerations apply in the German example in (59-a) with its LF in (59-b), which, as we have seen, is not independently ruled out by the effects of the “Wh-Movement Parameter.”

(59) a. *Was_1 meinst du [CP₄ was_1 C er t₁ gesagt hat [CP₅ wem_1 er [+wh] think you [+wh] he said has whom_{dat} he geschlafen hat]] ?
 b. wem_1 meinst du [CP₄ t′_1 C er t₁ gesagt hat [CP₅ t′₁ er geschlafen hat]] ?

Lowering in the first step (1) turns CP₅ and the VP that minimally embeds it into cyclic nodes, and since strict cyclicity is checked after the determination of cyclic nodes, lowering as in (59-b) is precluded.

Second, we have encountered examples where syntactic lowering is already undone before Spell-Out. This was the case in the following illegitimate derivation of an English sentence involving a complementizer-trace effect:

(60) *Who_1 do you think [CP t′₁ that [IP t₁ [VP t′₁ [VP left early]]]]]?

I abstract away from the issue of CP extraposition here and assume that CP is dominated by VP at the relevant stage of the derivation. See the following chapter, where I argue that this is indeed the case.
I have argued that (60) is ruled out by the interaction of Fewest Steps and Last Resort. But again, it is worth noting that (60) also violates the Strict Cycle Condition. Lowering from SpecI to the adjacent VP-adjoined position turns both IP and VP into cyclic nodes. As before, subsequent checking of strict cyclicity yields the result that lowering is illicit – movement ends up in a VP-adjoined position, but that position does not belong to the minimal residue of the embedding I node, as would be required by the Strict Cycle Condition.

Not surprisingly, the same situation arises in the Ewe example in (61), with the derivation as indicated:

(61) *Kofi₁ e me gble na t₁₁ [CP t₁'₁ be wo fo Kosi]

Recall that (61) cannot straightforwardly be ruled out by invoking principles of economy. However, the first wh-movement step (1) in this derivation immediately violates the Strict Cycle Condition. The movement path from t₁ to t₁’ consists of the matrix VP and the embedded CP, so these XPs become cyclic nodes as a result of the lowering operation. And although the first wh-movement operation ends up in the minimal residue of the embedded CP, this target position is still dominated by a cyclic node whose minimal residue it does not belong to, viz., by the matrix VP. Hence, strict cyclicity is violated by this lowering step, as intended.

Third, I have argued that there are illicit cases of syntactic lowering where downward movement is not undone by subsequent raising at all, neither before nor after Spell-Out. One such case was the English example (58-a), accompanied by a derivation that does not involve LF raising of the wh-phrase. Another one was topic-lowering, as in the German example (62):

(62) *dass Fritz t₁ sagte [CP dem Peter₁ habe [IP keiner die Claudia that Fritz said ART Peter, has subj no-one nom ART Claudia nom subj] gesehen]]

Substitution of dem Peter₁ in the embedded SpecTop position is excluded by strict cyclicity: The matrix VP, the embedded CP, and the embedded TopP are members of the movement path from t₁ to dem Peter₁, but whereas the lowered topic ends up in the minimal residue of Top, it is dominated by the cyclic nodes CP and VP, in violation of the Strict Cycle Condition.

Fourth and finally, the Strict Cycle Condition precludes cases of lowering at LF, as in the derivation (63-b), associated with an S-structure like (63-a).

(63) a. Someone₁ believed [CP [IP Angleton suspected Philby]]

b. *t₁ believed [CP [IP someone₁ [IP Angleton suspected Philby]]]

Quantifier lowering from the matrix SpecI position to an embedded IP-adjoined position violates the requirement that variables be bound at LF (see above); however, it also violates the Strict Cycle Condition at LF because the embedded CP, the matrix VP,
and all functional projections in the matrix clause that are part of the LF movement path of \textit{someone} are cyclic nodes that dominate the landing site and do not contain this latter position in their minimal residues.

It goes without saying that the present approach systematically prohibits lowering at LF, even in those circumstances where lowering at LF has been argued to be necessary for reconstruction phenomena. Hence, all reconstruction phenomena must be taken care of by the copy theory (or by invoking the means of \(\lambda \)-conversion), and this is indeed a result that I arrived at earlier, partly for different reasons (related to transderivational economy constraints and the notion of reference set).

With illicit lowering now accounted for, let me finally turn to remnant movement and try to figure out whether or not it is legitimate under present assumptions.

7.2.3. Remnant Movement and Strict Cyclicity

A typical remnant movement example involves two S-structure movement operations. (64), e.g., involves scrambling of NP\textsubscript{2} and topicalization of VP\textsubscript{1}.

\begin{equation}
\begin{array}{l}
\text{[VP } t_2 \text{ Gelesen }, \text{ hat [IP [NP das Buch]},_2 \text{ [IP keiner } t_1 \text{]]}] \\
\text{read has the book\textsubscript{acc} no-one\textsubscript{nom}}
\end{array}
\end{equation}

I have presupposed – more or less tacitly, and in line with most of the literature – that the order of rule application here is \textit{NP scrambling} \(\succ \text{ VP topicalization} \), as in (65):

\begin{equation}
\begin{array}{l}
a. \text{D-structure:} \\
\text{– hat [IP keiner [VP [NP das Buch]},_2 \text{ gelesen }],_1 \text{]}]
\end{array}
\end{equation}

\begin{equation}
\begin{array}{l}
b. \text{Scrambling of NP\textsubscript{2} to IP:} \\
\text{– hat [IP [NP das Buch]},_2 \text{ [IP keiner [VP } t_2 \text{ gelesen }],_1 \text{]]}]
\end{array}
\end{equation}

\begin{equation}
\begin{array}{l}
c. \text{Topicalization of VP\textsubscript{1} to SpecTop:} \\
\text{[VP } t_2 \text{ gelesen }, \text{ hat [IP [NP das Buch]},_2 \text{ [IP keiner } t_1 \text{]]}]
\end{array}
\end{equation}

Although an unbound trace is created by the second movement step, both of these movement steps are raising operations, and indeed, the Strict Cycle Condition is respected here: NP scrambling turns IP into a cyclic node;29 TopP and CP, however, are not yet cyclic nodes. NP\textsubscript{2} therefore does indeed end up in a position dominated by a cyclic node (IP), but since it also belongs to the minimal residue of this cyclic node, strict cyclicity is respected. Subsequent remnant topicalization then creates an additional cyclic node TopP, and again, although the topic is dominated by a cyclic node in its target position, it is part of the minimal residue of that cyclic node, and everything

29At least, this is the case if we assume that “domination” in the definition of movement path (cf. (51)) is to be understood not as “inclusion,” but rather as “non-exclusion,” so that an XP may dominate something even when only one segment of the XP dominates it.
8. Conclusion

is fine.30

In contrast, suppose now that scrambling and topicalization were to apply in reverse order, as in (66):

(66) \begin{enumerate}
\item \textit{D-structure}: \\
\text{– hat [\textit{IP keiner} [\textit{VP} [\textit{NP das Buch}$_2$ gelesen}$_1$]$_1$]}
\item \textit{Topicalization of VP$_1$ to SpecTop}: \\
\text{[\textit{VP [NP das Buch}$_2$ gelesen}$_1$]$_1$ hat [\textit{IP keiner} t$_1$]}
\item \textit{Scrambling of NP$_2$ to IP}: \\
\text{[\textit{VP t$_2$ gelesen}$_1$] hat [\textit{IP [NP das Buch}$_2$ [\textit{IP keiner} t$_1$]$_1$]}}
\end{enumerate}

Here, topicalization in the first step turns TopP and all functional projections intervening between TopP and VP into cyclic nodes. Subsequent scrambling out of the fronted VP in the second step then clearly qualifies as an instance of lowering and is ruled out by the Strict Cycle Condition: The landing site of NP$_2$ is an IP-adjoined position, i.e., a position that is dominated by (and does not belong to the minimal residue of) TopP, which has turned into a cyclic node as a result of the immediately preceding movement operation.

To sum up, not only is it the case that the Strict Cycle Condition (conceived of as part of the operation Move α) systematically rules out lowering structures and at the same time allows remnant movement structures – what is more, the Strict Cycle Condition also determines a certain order of application of movement operations in remnant movement constructions. I will return to this issue in the next chapter, where I argue that the order imposed on movement operations by the Strict Cycle Condition in constructions with incomplete category fronting is independently corroborated by evidence involving Freezing and Anti-Freezing effects. For the time being, however, I will leave it at that and draw a conclusion.

8. Conclusion

The goal of this chapter was to explain the fact that unbound traces occur in remnant movement configurations, but seem to be barred otherwise. In pursuing this goal, I first considered various versions of Fiengo’s (1977) Proper Binding Condition (PBC), viz., the Proper Binding Condition at S-structure, the Generalized Proper Binding Condition, the Proper Binding Condition at LF, the Derivational Proper Binding Condition, and the Proper Chain-Binding Condition. None of these conditions proved sufficient to account for the diversity of illicit lowering constructions, though. A common property of all these versions of the Proper Binding Condition is that they require c-command

30V/2 movement to Top is ignored in this derivation for reasons of simplicity. But it is clear that given the Strict Cycle Condition, V/2 raising must follow NP scrambling; whether it follows or precedes topicalization is not important.
of a trace either at a certain level of representation or at certain intermediate stages in
the derivation. As such, I contend that all versions of the PBC are inherently repre-
sentational in this sense (even the Generalized and the Derivational Proper Binding
Conditions). However, it seems to me that there is no single level of representation
and no single intermediate stage in the derivation where licit and illicit occurrences
of unbound traces can be captured correctly. For this reason, I have rejected approa-
ches in terms of proper binding, and, more generally, the Proper Binding Condition
altogether, except for a semantically based residue – the requirement that (semantic)
variables are bound at LF.

Next, I tried to derive the contrast between illicit lowering and licit remnant mo-
vement by invoking economy principles, such as the Fewest Steps condition, the Last
Resort condition, and the Shortest Path Condition. The interaction of the first two con-
ditions has turned out not to be sufficient to preclude all illicit instances of lowering
(although it does not make any wrong predictions either), and the latter condition,
while inherently problematic, also does not successfully rule out all cases of lowering.

From a conceptual point of view, I think that analyses in terms of proper binding
and economy miss a very simple generalization that covers all the data, namely: All
movement must be raising. Thus, what seems to be relevant is whether or not move-
ment is raising or lowering: Economy principles by themselves (as assumed here) do
not necessarily differentiate between upward and downward movement (as concerns,
e.g., the number of feature checking operations and the length of movement paths),
and similarly, versions of the Proper Binding Condition differentiate between bound
and unbound traces, but not directly between upward and downward movement.

In view of this, I have argued (essentially following Chomsky (1995)) that an
appropriately revised Strict Cycle Condition yields all the desired results. Given the
notion of strict cyclicity in (52), and given that the Strict Cycle Condition is checked at
the end of each Move \(\alpha \) operation, after movement and the determination of cyclic no-
des (cf. (54)), lowering invariably violates the Strict Cycle Condition, whereas raising
does not – even if it creates an unbound trace, as in cases of remnant movement.
Chapter 4

Anti-Freezing

1. Introduction

By and large, it seems to be the case that S-structure configurations are illicit when a trace is included in a moved XP and the antecedent of the trace is outside of XP. Basically, two kinds of approaches can be distinguished that strive to account for this Freezing effect that occurs with moved items, viz., (a) a representational account (see Browning (1991)), and (b) a derivational account (see Collins (1994)). The main purpose of this chapter is to show that the derivational account is preferable to the representational account, ultimately because the former also explains the a priori unexpected non-occurrence of Freezing effects under certain, well-defined circumstances. Most notably, these “Anti-Freezing” effects systematically show up with remnant movement; and this is the second peculiar property of remnant movement noted in section 3 of chapter 1 that calls for a principled explanation.

In the course of the discussion, I will also highlight another context where Anti-Freezing effects occur, viz., constructions involving extraction from an extraposed item. I will argue that these two Anti-Freezing effects are actually two sides of the same coin: The Anti-Freezing effect with extraposition shows up because extraposition can be remnant movement. It differs from the typical cases of remnant movement discussed up to now only insofar as it goes to the right and not to the left, and hence cannot be detected as easily in SOV languages where hierarchical positions on the right periphery are not obvious.

I will begin by illustrating the Freezing effect in section 2, on the basis of evidence taken primarily from German; it will first be shown how the data can be covered under both a representational and a derivational approach to movement theory. Only after this do I return to the Anti-Freezing effect with remnant movement in German in section 3. Section 4 covers the Anti-Freezing effects arising with extraposition in German and other languages. Section 5 provides additional evidence for the proposed analysis. Finally, sections 6 and 7 highlight some consequences of the approach to (Anti-) Freezing: section 6 discusses extraction from multiply embedded clauses, and
section 7 is concerned with the (non-) islandhood of the antecedent of an unbound trace in remnant movement constructions.

2. Freezing Effects

2.1. The Phenomenon

In general, extraction of an XP α from another XP β is possible only if β is in situ, as schematically depicted in (1-a), and not if it has undergone movement itself, as shown in (1-b).\(^1\)

\[
\begin{align*}
(1) & \quad \text{a. } \ldots \alpha_1 \ldots [\beta \ldots t_1 \ldots]_2 \\
& \quad \text{b. } \# \ldots \alpha_1 \ldots [\beta \ldots t_1 \ldots]_2 \ldots t_2
\end{align*}
\]

Henceforth, I will refer to this as the Freezing effect.\(^2\) Freezing effects show up regularly with all kinds of movement in German.

2.1.1. A-Movement

In (2) a Freezing effect can be observed with A-movement in passive constructions (which is optional in German); see den Besten (1981, 102ff) and Grewendorf (1989, 42ff), among others:

\[
\begin{align*}
(2) & \quad \text{a. Worüber}_1 \text{ ist von keinem } [\text{NP ein Buch } t_1]_2 \text{ gelesen worden ?} \\
& \quad \text{b. } \# \text{Worüber}_1 \text{ ist } [\text{NP ein Buch } t_1]_2 \text{ von keinem } t_2 \text{ gelesen worden ?}
\end{align*}
\]

In (2-a) the nominative NP remains in situ in the VP, and wh-extraction of worüber is possible. In (2-b), on the other hand, the subject NP has undergone optional movement out of the VP into the SpecI position, and wh-extraction is not allowed in this configuration.

Similarly, A-movement induces a Freezing effect in English. This is shown by the following example (see, e.g., Lasnik & Saito (1992, 196) and Collins (1994, 48)):

\[
(3) \# \text{Who}_1 \text{ do you think that } [\text{NP pictures of } t_1]_2 \text{ were painted } t_2 ?
\]

\(^1\)Linear order is irrelevant in these abstract representations.

\(^2\)Compare Ross’s (1967/1986, 173) Frozen Structure Constraint and Wexler & Culicover’s (1980, 119) Freezing Principle. Note, however, that according to Wexler & Culicover’s (and also partially according to Ross’s) assumptions, there are more Freezing contexts than just the one identified by (1-b); in this chapter, however, I will stick to the more narrowly defined notion of Freezing exemplified by structures such as (1-b).
2. Freezing Effects

The only difference to the German case is that NP raising is obligatory in passive constructions in English; so an example corresponding to (2-a) in German is ungrammatical in English, but because of Case reasons (or reasons related to the Extended Projection Principle (EPP); see Chomsky (1982; 1995)) and not because of a Freezing effect:

(4) *Who$_1$ do you think that – were painted [NP pictures of t$_1$]$_2$?

2.1.2. Scrambling

The same picture emerges with scrambling in German. The sentences in (5) illustrate that scrambling of an object NP (that is transparent for extraction in situ) in front of an adverbial induces a Freezing effect; i.e., it prohibits extraction.

(5) a. [PP Über wen]$_1$ hat der Fritz letztes Jahr [NP ein Buch t$_1$]$_2$
 about whom has ART Fritz$_{nom}$ last year a book$_{acc}$
 geschrieben ?
 written

 b. *[PP Über wen]$_1$ hat der Fritz [VP [NP ein Buch t$_1$]$_2$ [VP letztes Jahr
 about whom has ART Fritz$_{nom}$ a book$_{acc}$ last year
 t$_2$ geschrieben]] ?
 written

An identical situation arises with scrambling in front of the subject – even if the NP is transparent for extraction in its in situ position, it turns into an island if it is scrambled. This is shown by the following pair of examples (see (53) from chapter 1, subsection 3.2):

(6) a. [PP Worüber]$_1$ hat keiner [NP ein Buch t$_1$]$_2$ gelesen ?
 about what has no-one$_{nom}$ a book$_{acc}$ read

 b. *[PP Worüber]$_1$ hat [NP ein Buch t$_1$]$_2$ keiner t$_2$ gelesen ?
 about what has a book$_{acc}$ no-one$_{nom}$ read

Similarly,
 extraction of an R-pronoun from a PP in German (i.e., postposition stranding, see van Riemsdijk (1978)) becomes impossible if the PP has undergone scrambling; cf.:

(7) a. Wo$_1$ meinst du [CP t$_1$] dass keiner [PP t$_1$ mit]$_2$ gerechnet hat] ?
 what think you that no-one with counted has

 b. *Wo$_1$ meinst du [CP t$_1$] dass [PP t$_1$ mit]$_2$ keiner t$_2$ gerechnet hat] ?
 what think you that with no-one counted has

2.1.3. Topicalization

Just like A-movement and scrambling, topicalization in German imposes islandhood on the topicalized item. This is shown for topicalization of a direct object NP in (8)
Chapter 4. Anti-Freezing

(see Grewendorf (1988, 257), among others).

(8) a. \[[PP Über wen]_1 meinst du [CP t'₁ hat der Fritz [NP ein Buch t₁ about whom think you has ART Fritznom a bookacc]₂ geschrieben] \]

b. \[*[PP Über wen]_1 meinst du [CP [NP ein Buch t₁]₂ hat der about whom think you a bookacc has ART Fritznom]₂ geschrieben] \]

The Freezing effect that arises with topicalization of a PP in German is illustrated in (9).

(9) a. Wo₁ meinst du [CP t'₁ hat keiner [PP für]₂ gestimmt] ?

b. \[*Wo₁ meinst du [CP [PP für]₂ hat keiner t₂ gestimmt] \]

Next, consider topicalization of a VP in German; a standard example is given in (10-a). As indicated in (10-b), wh-extraction from this VP is – of course – possible if VP stays in situ. But again, VP topicalization induces a Freezing effect in the sense that movement out of the VP then becomes impossible; see (10-c) (these examples are identical to those in (54) in chapter 1, subsection 3.2):

(10) a. Ich denke [CP [VP das Buch gelesen]₂ hat keiner t₂]

b. Was₁ denkst du [CP t'₁ hat keiner [VP gelesen]₂] ?

c. \[*Was₁ denkst du [CP [VP gelesen]₂ hat keiner t₂] \]

Basically, the situation appears to be the same in English. Thus, Browning (1989, 481; 1991, 553f) notes that wh-movement is impossible from topicalized NPs; cf.:

(11) a. Who₁ do you think [CP t'₁ that John would like [NP pictures of t₁]₂] ?

b. \[*Who₁ do you think [CP [NP pictures of t₁]₂ John would like t₂] \]

Similarly, Postal (1972) observes that topicalization of a PP in English results in the PP not being accessible for P-stranding anymore; cf. the contrast between PP-in situ

\[^{3}\text{Examples like (11-b) are judged to be only slightly deviant by Lasnik & Saito (1992, 101). (More generally, these authors deny a Freezing effect with A-bar movement.) I will follow Browning's judgement here. Note, however, that even under Lasnik and Saito's assumptions, there is a deviance with examples like (11-b) which needs to be accounted for.}^{3} \]
2. Freezing Effects

(as in (12-a)) and PP topicalization (as in (12-b)):4

(12) a. Who1 do you think [CP t1′ he will talk [PP to t1]2] ?
 b. *Who1 do you think [CP [PP to t1]2 he will talk t2] ?

2.1.4. Wh-Movement

As a final instance of Freezing effects, consider wh-movement. (13-a) illustrates that wh-extraction from a direct object wh-phrase in a multiple question in German is possible if the object NP occurs in situ; (13-b), in contrast, shows that wh-extraction from a direct object wh-phrase becomes ungrammatical if the wh-phrase occupies SpecC, i.e., if it has undergone wh-movement itself.

(13) a. Worüber1 hast du [NP was für Bücher t1]2 gelesen ?
 about what have you what for books read
 b. *Worüber1 hast du gesagt [CP [NP was für Bücher t1]2 er t2 gelesen
 about what have you said what for books he read
 hat] ?
 has

Similarly, extraction from an AP is possible only if the AP is in situ (as in (14-a)), but not if it has undergone wh-movement to SpecC (as in (14-b)).5

4P-stranding generally seems to be impossible in PP topicalization structures in the Germanic languages. However, Afrikaans might be an exception; see Plessis (1977) and Sternefeld (1994). I have no explanation to offer for this phenomenon; but see Reis (1996, 62) for critical remarks.

5Chomsky (1986, 26) and Chomsky & Lasnik (1993, 544) claim, on the basis of the Spanish data in (i) (from Torrego (1985)), that extraction from wh-moved XPs does not cross an island.

(i) a. [pp De que autora 1 no sabes [CP [NP qué traducciones t1]2 han ganado [IP t2 premios internacionales]]] ?
 by what author not you-know what translations have won awards international
 b. *Esta es la autora [CP [PP de la que 1][IP [NP varias traducciones t1]2 han ganado premios
 this is the author by whom several translations have won awards
 internacionales] international

A sentence like (i-a) at first sight appears to involve wh-extraction from a wh-moved subject NP (as opposed to wh-movement from a subject NP in situ in (i-b)). However, it has been argued (see Cinque (1990, 47), Sternefeld (1991, 121ff), and Müller (1995, 397-399)) that sentences like (i-a) do not really exhibit the phenomenon of extraction from a wh-moved NP. Rather, under this view, (i-a) involves the marked option available with de-phrases in the Romance languages (similarly, with von-phrases in German) to be base-generated as an optional argument of certain verbs (such as ‘know’ as opposed to ‘win’). This optional argument then receives an “aboutness interpretation,” in Cinque’s terms. If this is so, the generalization that wh-movement induces a Freezing effect remains valid.
Chapter 4. Anti-Freezing

(14) a. [PP Auf wen] bist du [AP stolz] gewesen ?
 of whom have you been proud

b. *[PP Auf wen], fragst du dich [AP wie stolz] du sein kannst ?
 of whom ask you REFLECTIVE how proud you be can

2.1.5. Freezing and Barriers

Thus, given the ungrammatical sentences in (2) through (14), I take it that the correct generalization is that movement of any kind (e.g., A-movement, scrambling, topicalization, and wh-movement) induces a Freezing effect. In a representational fashion, this Freezing effect can be stated as follows.6

(15) Freezing:
 At S-structure, a trace t may not be included in a moved XP (i.e., an XP that binds a trace) if the antecedent of t is excluded by XP.

The question arises as to how the generalization in (15) can be derived. As a first step towards this, recall the concept of barrier assumed so far (cf. (2) from chapter 2), which is repeated here:

(16) Barrier:
 XP is a barrier for α iff there is an X^n (0 ≤ n ≤ P) such that (a), (b), and (c) hold:
 a. X^n includes α.
 b. X^n is not a complement.
 c. X^0 is distinct from Y^0, where XP is the complement of Y^0.

As shown in section 2 of chapter 2, it follows from (16) that any XP in a specifier or adjoined position is a barrier. Movement out of an XP in such a position therefore violates the Barriers Condition (cf. (1) from chapter 2), which is also repeated here, as (17):

6The clause “if the antecedent of t is excluded by XP” in (15) is necessary in the light of well-formed examples like (i-a) and (i-b) in German.

(i) a. Ich glaube [CP [VP [NP dem Fritz] letztes Jahr t₁ ein Buch gegeben] hat keiner von uns t₂]
 I think [ART FritzACC last year a bookACC given has no-one of us t₂]

b. Er sagte [CP [NP den Fritz] habe keiner t₁ gesehen] habe er t₂ gedacht
 he said [ART FritzACC hasACC no-one seen hasACC he thought]

In (i-a) NP scrambling takes place within a topicalized VP, and in (i-b) NP topicalization applies within a topicalized CP. In both cases a trace occurs in a moved XP (VP and CP, respectively); nevertheless, a Freezing effect fails to show up, as predicted under the formulation in (15) – in neither case is the antecedent of the trace t₁ excluded by the moved item.
2. Freezing Effects

(17) **Barriers Condition:**

Movement must not cross a barrier.

Since no movement type may legitimately target a complement position (cf. Chomsky (1981; 1995)), it follows that any moved XP will invariably turn into a barrier, given (16). Thus, after wh-movement, topicalization, scrambling, or A-movement, an XP blocks extraction out of it (cf. Baltin (1984) for the basic idea). These assumptions pave the way for an account of the Freezing effects encountered so far, but closer inspection reveals that more has to be said in order to fully rule out the ungrammatical examples in (2) – (14). In the following two subsections, I will discuss two approaches to the Freezing effect (one representational and one derivational in nature), both of which incorporate the idea that XPs in derived positions turn into barriers.

2.2. A Representational Approach

The basic idea behind the representational approach (cf. Browning (1991)) is to simply look at the S-structure representation and determine whether or not a category is a barrier in its S-structure position. Thus, in a representation like (1-b), which is repeated here in (18), β is a barrier according to the definition in (16), because it can never be a complement to some head (it has to be in a specifier position or in an adjoined position).

(18) *... α₁ ... [β ... t₁ ...]₂ ... t₂

Why, then, does this barrier block movement in the representational approach? For now let us forget the theory of movement introduced in chapter 2 and assume with Browning (1991) a more traditional version of the theory of movement, as it was developed in Lasnik & Saito (1984; 1992) and Chomsky (1986). Thus, suppose that the ECP is an LF filter stating that every trace must have a feature [+γ] (i.e., [+properly governed]) at LF and that [+γ] can be assigned to a trace only under antecedent-government (otherwise, [–γ] is assigned). Suppose furthermore that the ECP and the Subjacency condition can be unified (see Cinque (1990), Sternefeld (1991), and Lasnik & Saito (1992), among others), in the sense that the Subjacency condition is also a filter barring traces which are not antecedent-governed, with two differences: First, the Subjacency filter applies at S-structure (not at LF); and second, violations of this filter at S-structure are typically weaker than violations of the ECP at LF.

The crucial assumption put forward in Lasnik & Saito (1984) and adopted in Chomsky (1986) is that the feature [±γ] can never be assigned in the course of the derivation, but only at some level of representation. Now suppose that (18) is an S-structure representation, with two movements (one of α and one of β) having taken place between D-structure and S-structure – this is precisely the situation in all the examples involving Freezing that I have discussed so far. Then, it follows that t₁, the trace of α, receives its γ-feature at S-structure, and since β is a barrier at S-structure, the feature will be [–γ]; i.e., the trace t₁ is then marked as not being properly gover-
ned. Since γ-marking cannot later be undone (for instance, by assigning the feature $[+\gamma]$ to a $[-\gamma]$-marked trace), strong (i.e., ECP-induced) ungrammaticality arises in a structure like (18) (as long as there cannot be a β-internal intermediate trace that might antecedent-govern t_1 in (18)), and the Freezing effect is explained in a relatively straightforward way.

2.3. A Derivational Approach

A derivational account of the Freezing effect, still based on a notion of barrier like that in (16), has been suggested in Browning (1989) and is developed in some detail in Collins (1994). The central assumption put forward by Collins (1994) is that in contrast to what is postulated by Lasnik & Saito (1984; 1992), γ-marking does not necessarily take place at a level of representation, but may instead apply anywhere in the derivation. Given the derivational theory of movement introduced in chapter 2, we can dispense with the concept of γ-marking altogether and nevertheless maintain Collins’ insight. According to this view (taken from Chomsky & Lasnik (1993, 546f)), a trace that is generated by a movement operation which violates a locality condition (like the Barriers Condition) receives a star *, which in turn induces strong (ECP-like) ungrammaticality if it persists at LF and weak (Subjacency-like) ungrammaticality if it can be removed by a deletion operation before LF; recall, however, that a trace can be marked * only derivationally, immediately following the movement operation that created it. Thus, if a trace is not marked * immediately after the process that generates it, it cannot induce ungrammaticality at any later stage in the derivation, even if a later step in the derivation creates a configuration where the trace is contained in a barrier. It remains to be shown how the Freezing effect can be derived under this assumption.

To rule out a sentence involving a Freezing effect on the basis of the derivational approach developed by Collins (1994), one has to ensure that every possible derivation violates some principle of grammar. In what follows, I will sketch Collins’ analysis. As an example I will use the sentence in (2-b), which involves a Freezing effect with A-movement in German. (2-b) is repeated here as (19).

(19) *Worüber ist ein Buch von keinem gelesen worden?
 about-what is a bookNom by no-one read been

Collins observes that there are three derivations of sentences like (19) that are a priori possible. One derivation violates the Barriers Condition, the second the Strict Cycle Condition, and the third a prohibition against “chain interleaving.” I will address these three derivations in the following three subsections.

Note that I will sometimes tacitly adjust irrelevant differences between the derivational theory of movement adopted by Collins (1994) and the one introduced in chapter 2.
2. Freezing Effects

2.3.1. Derivation No. 1: Locality

The first derivation essentially mirrors the situation in the representational approach. The D-structure representation of (19) looks roughly as in (20):

(20) \[CP – [IP – von keinem [VP [NP ein Buch [PP worüber]],],]_2 gelesen worden ist]]]

First, NP\(_2\) undergoes raising to SpecI, creating (21).

(21) NP Raising to SpecI:
\[CP – [IP [NP ein Buch [PP worüber],], von keinem [VP t_2 gelesen worden ist]]]]]

The trace of NP\(_2\), t\(_2\), is not assigned a star because VP is not a barrier according to (16). But since NP\(_2\) itself now occupies a specifier position (SpecI), it turns into a barrier according to (16). Consequently, subsequent wh-movement of PP\(_1\) to the SpecC position, as in (22), crosses a barrier, and t\(_1\) receives a star *:

(22) PP Extraction to SpecC:
\[CP [PP worüber], [IP [NP ein Buch *[t_1]], von keinem [VP t_2 gelesen worden ist]]]]]

Thus, if raising precedes wh-movement, the Freezing effect in sentences like (19) can be reduced to a violation of the Barriers Condition.

2.3.2. Derivation No. 2: The Strict Cycle Condition

But what if raising and wh-movement apply to the D-structure representation in (20) (repeated here in (23)) in reverse order?

(23) \[CP – [IP – von keinem [VP [NP ein Buch [PP worüber],],]_2 gelesen worden ist]]]

In this case, the first step is wh-movement of PP\(_1\) to the SpecC position, as shown in (24).

(24) PP Extraction to SpecC:
\[CP [PP worüber], [IP – von keinem [VP [NP ein Buch t_1], gelesen worden ist]]]]]

This movement does not violate the Barriers Condition: NP\(_2\) is still in situ in a complement position of V, and given that lesen (‘read’) is a verb that in principle permits extraction from NP (cf. subsection 2.3.2 of chapter 1), wh-movement of PP\(_1\) from NP\(_2\) does not cross a barrier. Subsequent raising of NP\(_2\) to SpecI also does not violate the Barriers Condition (VP not being a barrier), so that t\(_2\) is not marked * either:

\[CP – [IP – von keinem [VP [NP ein Buch t_1],]_2 gelesen worden ist]]]

\[CP – [IP – von keinem [VP [NP ein Buch t_1],]_2 gelesen worden ist]]]

Here and in most of what follows, I ignore V/2 movement since it does not affect the issue under discussion.
Chapter 4. Anti-Freezing

(25) **NP Raising to SpecI:**

\[CP \ [\text{wörüber}], \ [IP \ [\text{ein Buch} \ t_1], \ von \ keinem \ [VP \ t_2 \ gelesen \ worden \ ist \]]\]

Thus, in this derivation, locality requirements are met. It is here that the Strict Cycle Condition enters the picture.

In the previous chapter I proposed that the Strict Cycle Condition and the notion of the cycle be formulated as in (26) and (27), respectively:

(26) **Strict Cycle Condition:**

If a landing site of movement is dominated by a cyclic node, it must belong to the minimal residue of the head of this cyclic node.

(27) **Cycle:**

An XP becomes a cyclic node in the derivation as soon as it is part of a movement path.

Moreover, I have suggested that both the cycle and the Strict Cycle Condition should be conceived of as part of the operation Move α, as in (28):

(28) **Move α:**

a. Movement of a category α to a position β, leaving a copy of α behind.

b. Determination of cyclic nodes.

c. Checking of the Strict Cycle Condition in β.

That is, according to (28), there is an extrinsic rule ordering, such that the movement operation as such is followed by a classification of XPs on the movement path as cyclic nodes, and finally, strict cyclicity is checked.

Under this conception of strict cyclicity (as well as under the conception proposed in chapter 2), NP raising to SpecI in the last step in (25) violates the Strict Cycle Condition. The reason is that the previous PP extraction operation in (24) has turned CP into a cyclic node — plus, irrelevantly, IP, VP, and NP. Subsequent NP raising in (25) ends up in SpecI, which is a landing site dominated by a cyclic node whose minimal residue it does not belong to (viz., CP).

\[9\text{Chomsky (1995, 328) suggests that the counter-cyclic movement operation in (25) can be excluded by the transderivational Shortest Path Condition: “Passive is the same in both; wh-movement is “longer” in the wrong one in an obvious sense, object being more “remote” from [Spec,CP] than subject in terms of number of XP’s crossed.” Since the Shortest Path Condition (at least in its transderivational formulation) was discarded in subsection 6.2 of chapter 3, such an account is not possible under present assumptions. But given that the relevant derivation is straightforwardly excluded by the Strict Cycle Condition which, as we have seen, receives independent motivation, a resort to the Shortest Path Condition is evidently not needed here. Note incidentally that the step in (25) can also be ruled out by two further constraints in Chomsky (1995, 234 & 365): on the one hand, by a constraint that blocks movement of any category containing a trace (which I have rejected earlier; cf. footnote 22 of chapter 1 and the examples in footnote 6 of the present chapter), and, on the other hand, by the assumption that strong features must be checked at the root (which}\]
2. Freezing Effects

Summarizing so far, the derivation of a sentence like (19) that involves a Freezing effect is ruled out by the Barriers Condition if NP raising precedes wh-movement of PP and by the Strict Cycle Condition if wh-movement of PP precedes NP raising.

Let us now turn to the third derivation that is a priori possible.

2.3.3. Derivation No. 3: Chain Interleaving

Consider again the D-structure representation (23) (repeated in (29)) of the sentence in (19):

\[(29) \text{CP} \rightarrow \text{IP} \rightarrow \text{von keinem } \text{VP} \rightarrow \text{NP ein Buch } \text{PP worüber } t_1 \rightarrow t_2 \text{gelesen worden ist }]\]

Now suppose that the first movement step involves the extraction of PP\(_1\) from NP\(_2\), as in derivation no. 2. However, this time movement does not yet go all the way to SpecC, but rather stops in a VP-adjoined position:

\[(30) \text{PP Extraction to VP:} \]
\[\text{CP} \rightarrow \text{IP} \rightarrow \text{von keinem } \text{VP} \rightarrow \text{PP worüber } t_1 \rightarrow \text{VP NP ein Buch } t_1 \rightarrow t_2 \text{gelesen worden ist }]\]

Since no barrier intervenes (the object NP is still in situ, in a complement position), t\(_1\) does not violate the Barriers Condition, as indicated. Now, in a second step, raising of NP\(_2\) to the SpecI position takes place:

\[(31) \text{NP Raising to SpecI:} \]
\[\text{CP} \rightarrow \text{IP NP ein Buch } t_1 \rightarrow t_2 \rightarrow \text{von keinem } \text{VP PP worüber } t_1 \rightarrow \text{VP } t_2 \text{gelesen worden ist }]\]

There is no barrier that separates t\(_2\) from its antecedent NP\(_2\), so t\(_2\) respects locality requirements, too. Furthermore, raising of NP\(_2\) in (31) does not violate the Strict Cycle Condition. The reason is that VP-adjunction in (30) turns VP (and, irrelevantly, NP\(_2\)) into a cyclic node, but raising to SpecI in (31) ends up in a higher position (turning IP into a cyclic node). Finally, PP\(_1\) undergoes wh-movement from the VP-adjoined position to SpecC in a third step, as in (32).

\[(32) \text{PP Movement to SpecC:} \]
\[\text{CP VP PP worüber } t_1 \rightarrow \text{VP NP ein Buch } t_1 \rightarrow t_2 \rightarrow \text{von keinem } \text{VP } t_1 \rightarrow t_2 \text{gelesen worden ist }]\]

Again, this movement respects the Barriers Condition (t\(_1\) in the VP-adjoined position is therefore not marked *), and it does not violate strict cyclicity either. If the derivational approach is to be successful, then this derivation must clearly also be ruled

is similar in spirit to the analysis given here; cf. footnote 24 of chapter 3).
How, then, can this be accomplished?

Collins (1994, 47ff) observes that derivations of the kind in (29) – (32) are instantiations of *chain interleaving*, in the sense that first a part of the *wh*-chain is formed (cf. (30)), then the raising chain is formed (cf. (31)), and finally the second part of the *wh*-chain is formed (cf. (32)). Given that this kind of chain interleaving is precluded for general reasons, derivation no. 3 is also ruled out, and the Freezing effect is derived in toto.

The question arises of why chain interleaving is prohibited. Collins argues that this is due to a Fewest Steps condition of the (standard) type in (33) (= (16) from chapter 2):

\[(33) \quad \text{Fewest Steps:} \]

If two derivations D_1 and D_2 are in the same reference set and D_1 involves fewer operations than D_2, then D_1 is to be preferred over D_2.

Assuming as before that reference sets are defined in terms of identity of LF output (and not via numerations, though not much depends on this in the present context), there cannot be any doubt that derivation no. 3 in (29) through (32) competes with derivations no. 1 and no. 2. However – so Collins (1994) argues – derivation no. 3 is longer than the other two derivations because it involves *three* movement operations as opposed to *two* movement operations in (20) – (22) and (23) – (25). Thus, although derivation no. 3 is the only one which does not violate either the Barriers Condition or the Strict Cycle Condition, it is prohibited by Fewest Steps.

But recall now that the Fewest Steps condition in (33) necessitates the concept of Form Chain; otherwise, sentences like (34) would incorrectly be predicted to be ill formed (since a derivation without the intermediate trace would be more economical but would at the same time violate the Barriers Condition):

\[(34) \quad \text{How}_1 \text{ do you think [CP}_1 \text{ t}_1 \text{ that Bill fixed the car t}_1 \text{]?} \]

As noted by Collins (1994), a resort to Form Chain still does not help in the case of derivation no. 3. Since movement applying to the PP$_1$ *worüber* is interrupted by another operation (raising of NP$_2$ to SpecI), there is no way that the two operations applying to *worüber* could be conceived of as one instance of Form Chain. Thus, derivation no. 3 continues to be excluded by Fewest Steps as being more costly than the other two competing derivations, even if Form Chain is adopted.

However, I suggested in section 6 of chapter 2 that the Fewest Steps condition should be revised in such a way that it does not count movement operations per se,
but only those movement operations that are accompanied by feature checking. The revised Fewest Steps condition is given again in (35) (= (113) from chapter 2):

(35) **Fewest Steps:**
If two derivations D_1 and D_2 are in the same reference set and D_1 involves fewer checking operations than D_2, then D_1 is to be preferred over D_2.

I have argued in chapter 2 that if the transderivational Fewest Steps condition in (35) is accompanied by a revised notion of Last Resort, as in (36) (= (134) from chapter 2), Form Chain can be dispensed with entirely.

(36) **Last Resort:**
α is raised to a position β only if β is a typical checking position for the lowest-ranked unchecked morphological feature of α.

Thus, the question arises of whether the prohibition against chain interleaving in a derivation of the type in (29) – (32) can still be explained under the revised approach to economy constraints adopted here. If we consider the two movement operations applying to the *wh*-item *worüber*$_1$ more closely, it turns out that it can. To see this, consider the relevant derivation again:

(37)

a. **D-structure:**

\[
\begin{array}{c}
[CP - [IP - von keinem [VP [NP ein Buch [PP worüber]$_1$$_2$]$_2$ gelesen worden ist \]]]
\end{array}
\]

b. **Movement of PP$_1$ to VP:**

\[
\begin{array}{c}
[CP - [IP - von keinem [VP [PP worüber]$_1$$_2$ [VP [NP ein Buch]$_1$$_2$]$_2$ gelesen worden ist \]]]
\end{array}
\]

c. **Movement of NP$_2$ to SpecI:**

\[
\begin{array}{c}
[CP - [IP [NP ein Buch]$_1$$_2$ von keinem [VP [PP worüber]$_1$$_2$ [VP t$_2$ gelesen worden ist \]]]
\end{array}
\]

d. **Movement of PP$_1$ to SpecC:**

\[
\begin{array}{c}
[CP [PP worüber]$_1$$_2$ [IP [NP ein Buch]$_1$$_2$ von keinem [VP t'$_1$$_2$ [VP t$_2$ gelesen worden is \]]]
\end{array}
\]

The first operation that applies to PP$_1$ is adjunction to VP, i.e., scrambling, given the assumptions above; and the second operation that applies to PP$_1$ is substitution in SpecC, i.e., *wh*-movement. Thus, what is involved here is actually a combination of scrambling to VP and *wh*-movement to SpecC applying to the same category. Therefore, it does not come as a surprise that the present system excludes (37) as involving improper movement, in more or less the same way that it derives the prohibition against *wh*-scrambling in German in examples like (38-a) (the LF representation of (38-a) is given in (38-b)):

(38)

a. *Wie$_1$ hat [IP was$_2$ [IP der Fritz t$_1$ t$_2$ repariert]] \?
how$_{acc}$ ART Fritz fixed
b. [SpecC [SpecC wie$_1$$_2$] was$_2$] [IP der Fritz t$_1$ t$_2$ repariert hat]

\[
\begin{array}{c}
\end{array}
\]
In both cases, a PUB effect arises that can be reduced to the interaction of Fewest Steps in (35) and Last Resort in (36). Thus, in (37) there are two possible ‘sub’derivations to be considered: One possibility is that a [scr] feature is absent in the numeration; then, intermediate scrambling of the wh-phrase violates Last Resort, but Fewest Steps is respected. Alternatively, if a [scr] feature does show up in the numeration, then intermediate scrambling fulfills Last Resort, but the derivation is ruled out by Fewest Steps because there are competing derivations that generate the same LF output with one feature checking operation fewer – viz., derivations no. 1 and no. 2. These derivations violate principles of grammar (the Barriers Condition and the Strict Cycle Condition, respectively), but assuming that they still converge, this does not preclude them from competing and, in this case, ultimately blocking less economical derivations that do not violate a grammar-internal principle.12 Thus, the only relevant difference between illicit chain interleaving as in (37) and illicit wh-scrambling as in (38) is that scrambling of the wh-phrase is undone by overt wh-movement in the first case and by covert wh-movement in the second.

In conclusion, the revised approach to economy constraints developed in section 6 of chapter 2 and adopted here is capable of excluding illicit chain interleaving in constructions involving wh-extraction from NP and NP raising to SpecI, just like Collins’ (1994) original approach in terms of the standard Fewest Steps condition. However, it is worth noting that the two approaches do not make identical predictions. In Collins’ (1994) approach, chain interleaving is ruled out in principle. In contrast, in the approach adopted here, chain interleaving is not ruled out per se: It is barred only if it induces a PUB effect, i.e., if it gives rise to an improper movement configuration. I will return to this issue.

2.4. Conclusion

Summarizing so far, it turns out that both the representational and the derivational approaches to movement theory can account for the occurrence of Freezing effects. The question arises of whether there are conceptual and empirical arguments in favour of one approach or the other. A conceptual argument in support of the derivational approach pursued by Collins (1994) might be that it complies with the overall assumption in the minimalist program that S-structure does not exist as a genuine level of representation. Since the representational approach obviously makes reference to S-structure (it requires that γ-marking apply at this level), the derivational approach to Freezing effects might seem superior in this respect. On the other hand, the representational approach looks simpler, and hence might be considered more attractive from a conceptual point of view.

In view of this situation, I take it that empirical evidence that differentiates bet-

12 Note, however, that the assumption that derivations that violate locality constraints can nevertheless converge is called into question in Chomsky (1995, 296-297).
ween the two approaches is called for. In the following two sections, I will consider
two types of – at first sight – unexpected non-occurrences of Freezing effects, and I
will argue that these Anti-Freezing effects strongly support a derivational approach to
Freezing.\footnote{Collins (1994, 50) presents one empirical argument for the derivational approach. This argument is
based on the following data involving PP extraposition from a subject NP in English (cf. Johnson (1985)).}

3. Anti-Freezing Effects with Remnant Movement

3.1. The Problem

First, recall the descriptive generalization in (15) that I arrived at on the basis of the
data in subsection 2.1; this generalization is repeated here in (39).

(39) *Freezing:*
 At S-structure, a trace may not be included in a moved XP (i.e., an XP that
 binds a trace) if the antecedent of t is excluded by XP.

By and large, (39) seems to be valid. But, as noted in subsection 3.2 of chapter 1, there
is one crucial case where the Freezing generalization makes wrong predictions, viz.,
remnant movement, which creates the following structure:

(40) \[\ldots [\beta \ldots t_1 \ldots]_2 \ldots \alpha_1 \ldots t_2 \]

(i) The case was judged.
 a. Then [NP a lawyer t_1] appeared t_2 [PP with green eyes]
 b. *Then [NP a lawyer t_1] appealed [PP with green eyes]

The claim is that PP extraction from a subject NP is possible with unaccusative verbs, as in (i-a), but not
with unergative verbs, as in (i-b), the reason for this being that (i-a) (but not (i-b)) may have a derivation
in which PP extraposition precedes raising of NP_2 from the direct object position to Spec_I without locality,
strict cyclicity, or economy being violated. However, data judgements are very subtle here, and various
factors may interfere. Thus, the German data in (ii), which are structurally analogous, are both well formed;
what is more, in this case, the sentence with the unergative verb (cf. (ii-b)) is even generally judged better
than the corresponding sentence with an unaccusative verb (cf. (ii-a)).

(ii) a. Dann ist [NP eine Frau t_1] zur Tür herein gekommen [PP mit einer wunderschönen Stimme]
 then is a woman_nom to the door into come with a beautiful
 Stimme]

 b. Dann hat [NP eine Frau t_1] angerufen [PP mit einer wunderschönen Stimme]
 then has a woman_nom called with a beautiful voice

I will therefore assume that extraposition from NP is mainly constrained by extragrammatical factors and
that subject NPs in general do not block rightward movement, but I will leave the question of how this can
be derived open here (cf. Baltin (1983), Culicover & Rochemont (1990), and Müller (1996), among others).
Chapter 4. Anti-Freezing

Thus, typical instances of remnant topicalization as in (41) exhibit a configuration where a trace t_1 is included in a moved XP$_2$ at S-structure, and the antecedent of t_1 is outside of XP$_2$. Nevertheless, these structures are evidently well formed:

(41) a. $[\text{CP} [\text{VP} \text{Gelesen} \; \text{hat} \; \text{the book} \; \text{no-one}]$

 b. $[\text{NP} \text{ein Buch} \; \text{hat} \; \text{der} \; \text{Fritz} \; \text{unter} \; \text{1} \; \text{t_2 geschrieben}]$

 a book has ART Fritz about that written

 c. $?[\text{VP} \text{mit} \; \text{hat} \; \text{da_1} \; \text{keiner} \; \text{t_2}]$

 with counted has there no-one

In the same way, unbound traces created by remnant wh-movement are at variance with the Freezing generalization:

(42) a. $[\text{NP} \text{was für Bücher} \; \text{hat} \; \text{er} \; \text{über die Liebe} \; \text{t_2 gelesen}]$

 what for books has he about the love read

 b. $[\text{AP} \text{wie stolz} \; \text{ist} \; \text{der} \; \text{Fritz} \; \text{auf seine Kinder} \; \text{gestern} \; \text{t_2 gewesen}]$

 how proud is ART Fritz of his children yesterday been

In (42-a) an NP from which scrambling of a PP has taken place is wh-moved; in (42-b) a remnant AP is wh-moved, again stranding the PP antecedent of the unbound trace in a scrambling position.

Data involving remnant scrambling are somewhat harder to find in German because, as was noted in subsection 3.3 of chapter 1 and will be discussed extensively in the following chapter, remnant scrambling is usually prohibited – at least if the antecedent of the unbound trace has also undergone scrambling, which is normally the case with remnant movement:

(43) *weil $[\text{VP} \text{das Buch} \; \text{gelesen} \; \text{the book} \; \text{no-one} \; \text{has}]$

Still, remnant scrambling is more or less acceptable in German if the antecedent of the unbound trace is a weak pronoun or clitic; cf.:14

14The intermediate status of (44) is probably due to the fact that a predicate has undergone scrambling. As is shown in (i), predicate scrambling is in general a marked phenomenon in German and requires specific intonation patterns (so-called I-topicalization) to be acceptable at all; see, e.g., Haider (1993) and Müller (1995).

(i) *weil $[\text{VP das Buch} \; \text{gelesen} \; \text{the book} \; \text{no-one} \; \text{has}]$

Here, I will abstract away from this intervening factor; what is important is that (44) is still much better than we would expect if a Freezing effect were involved. See chapter 5 for discussion.
3. Anti-Freezing Effects with Remnant Movement

(44) weil VP t₁ gelesen t₂ has read it no-one has

For the time being, it is immaterial why exactly an unbound trace in a scrambled item is illegitimate if its antecedent has undergone scrambling, but (more or less) possible if its antecedent is a clitic or weak pronoun. What is relevant, though, is that the relative wellformedness of (44) shows that unbound traces in scrambled remnants must not be precluded in general, as the result of a Freezing effect.

So there is a dilemma: Topicalization, wh-movement, and scrambling uniformly create Freezing effects with bound traces and Anti-Freezing effects with unbound traces. In fact, the remnant movement data closely resemble some of the ungrammatical examples involving Freezing that were discussed in subsection 2.1. Compare, e.g., the Anti-Freezing effect that arises with topicalization in the case of unbound traces in (41-a), (41-b), and (41-c) with the Freezing effect in the analogous examples in the case of bound traces in (10-c), (8-b), and (9-b), respectively. Similarly, there is a striking contrast between unbound traces in wh-moved XPs, which create an Anti-Freezing effect (cf. (42-a) and (42-b)), and bound traces in wh-moved XPs, which create a Freezing effect (cf. the analogous examples (13-b) and (14-b)); basically the same picture emerges with scrambling.

Thus, the question arises of how to account for the systematic Anti-Freezing effect with remnant movement (as in (41), (42), & (44)) under the representational and the derivational approaches to movement without sacrificing the explanation of the Freezing effect at the same time.

3.2. The Representational Approach

According to the representational approach, the Freezing effect in an S-structure representation like (1-b) (repeated here in (45-a)) is due to the fact that γ-marking of t₁ can apply only at this level and not in the course of the derivation – at S-structure, β is a barrier, and t₁ is consequently marked [–γ]. Obviously, by the same reasoning, the prediction is that a typical remnant movement structure like (40) (repeated in (45-b)) should also exhibit a Freezing effect, contrary to fact. Since, by assumption, t₁ can be γ-marked only at S-structure and not in the derivation, it will be marked [–γ] at this level, and the construction will be ruled out.

(45) a. *... α₁ ... [β ... t₁ ...]₂ ... t₂
 b. ... [β ... t₁ ...]₂ ... α₁ ... t₂

Indeed, it has often been noted that remnant movement behaves exceptionally in this respect. Assuming XPs in derived positions to be barriers, the very existence of remnant movement is therefore unexplained under the approaches to movement theory in Lasnik & Saito (1984) and Chomsky (1986) where γ-marking is confined to a level of representation. Hence, if the representational approach is to be maintained in the light of the Anti-Freezing effect with remnant movement, additional assumptions must be
made. One could, for instance, try to relate the non-occurrence of Freezing in (45-b) to the fact that the trace t_1 occurs unbound at S-structure here, which would violate a Proper Binding Condition at S-structure (as shown in the previous chapter). Along these lines, den Besten & Webelhuth (1987; 1990) and Rizzi (1990, 37ff) suggest that whatever accounts for t_1 occurring unbound in (45-b) might also account for the remnant category β not being a barrier – in both cases, the construction behaves as if β-movement had not taken place. A descriptively adequate generalization would be that whether a moved XP acts as a barrier for a trace t included in XP is determined by the D-structure position of XP if t is not bound at S-structure and by the S-structure position of XP if t is bound at S-structure. But, the critical remarks concerning the Proper Binding Condition made in the previous chapter notwithstanding, this would be more or less a restatement of the facts and not a real explanation. Hence, I take it that the Anti-Freezing effect that arises with remnant movement is a problem for the representational approach to Freezing effects. Let us now turn to the derivational approach.

3.3. The Derivational Approach

3.3.1. Why Remnant Movement Does Not Create Islands

Since two instances of movement are involved in the schematic remnant movement configuration (40) (= (45-b)), at least two derivations have to be compared under the derivational approach to Freezing. In order to account for the Anti-Freezing effect, we have to show that one legitimate derivation exists. For the sake of concreteness, consider sentence (41-a), which is repeated here:

\[(46) \ [ext{CP} [\text{VP } t_1 \text{ Gelesen }_2 \text{ hat }] \ [\text{NP das Buch }_1 \text{ keiner } t_2] \]

In one derivation, topicalization of VP$_2$ applies first. The VP-trace t_2 does not violate a locality constraint (the Barriers Condition), so it does not receive a star:

\[(47) \ [ext{CP} [\text{VP } *t_1 \text{ gelesen }_2 \text{ hat keiner } t_2] \]

However, subsequent movement of NP$_1$ to an IP-adjoined scrambling position in the second step is ruled out for at least two reasons. First, VP$_1$ is not in a complement position anymore, so it has already turned into a barrier at the time when NP$_1$ extraction from VP applies; hence, this movement operation violates the Barriers Condition, with t_1 receiving a star * that persists at LF (t_1 being an initial trace that cannot be deleted on the way to LF) and induces strong ungrammaticality:

\[(48) \ [\text{NP Lowering}: \ \ [ext{CP} [\text{VP } *t_1 \text{ gelesen }_2 \text{ hat }] \ [\text{NP das Buch }_1 \text{ keiner } t_2] \]

\]
Second, however, recall that the movement operation in (48) is ruled out by the Strict Cycle Condition as a standard instance of syntactic lowering, given the approach developed in section 7 of chapter 3. The reason is this: The first movement operation in (47), which ends up in SpecTop, turns the TopP into a cyclic node (plus, irrelevantly, all XPs between VP and TopP). The second movement operation then is required by the Strict Cycle Condition to end up at least in the minimal residue of TopP. Clearly, however, scrambling of NP2 to an IP-adjoined position ends up in a landing site that is dominated by the cyclic node TopP and does not belong to the latter’s minimal residue. Incidentally, it turns out that since movement in (48) is lowering, the operation would be rendered illicit by the Strict Cycle Condition even if there had not been a previous VP topicalization operation which turned TopP into a cyclic node. This is so because the movement path of the lowering operation that left-joins NP1 to IP consists of VP, TopP, and IP (cf. the definition of movement path in (51) in chapter 3). VP does not dominate the lowered NP1, and IP dominates it (under the assumption that domination of two-segmental categories is defined via non-exclusion; see above), but NP1 is in I’s minimal residue; TopP, however, dominates NP1, and NP1 does not belong to Top’s minimal residue, which induces a violation of strict cyclicity.

But suppose now that VP topicalization and NP scrambling apply in reverse order in a sentence like (46). First, NP1 undergoes scrambling out of the VP to an IP-adjoined position. The trace t1 left by this movement fulfills the Barriers Condition because VP is not a barrier in its in situ position:

(49) *NP Scrambling:*

\[CP \text{ hat } [NP \text{ das Buch }]_1 \text{ keiner } [VP \text{ t1 gelesen }]_2 \]

Then, topicalization of the remnant category VP2 takes place, creating an unbound trace. Again, no barrier intervenes in this movement:

(50) *VP Topicalization:*

\[CP [VP \text{ t1 gelesen }]_1 \text{ hat } [NP \text{ das Buch }]_1 \text{ keiner } t2 \]

Thus, this derivation does not violate locality. And, what is more, the derivation does not violate the Strict Cycle Condition either, in contrast to what was the case with the examples involving Freezing effects that were discussed in subsection 2.3. The reason is that VP topicalization in (50) goes to a position that is higher than the landing site of scrambling that has taken place before topicalization. By its very nature, remnant movement (i.e., movement of some XP that leads to an unbound XP-internal trace) extends the domain created by earlier movement and therefore meets the Strict Cycle Condition. More formally, NP scrambling in (49) creates a movement path consisting of IP and VP and turns these XPs into cyclic nodes. Since this movement operation ends up in the minimal residue of the highest of these cyclic nodes, strict cyclicity is respected. Given that IP is now a cyclic node, subsequent VP topicalization must end up in the minimal residue of I or of some higher head, which it does: It ends up in SpecTop, turning TopP into a cyclic node. This, in a nutshell, explains why
remnant movement is an exception to the Freezing generalization (39), i.e., why an Anti-Freezing effect arises – in remnant movement configurations, extraction from an XP may take place prior to XP movement without creating a violation of strict cyclicity, which it may not in the examples exhibiting Freezing effects that were discussed in section 2 above.

Note, incidentally, that the derivation in (49) and (50) closely resembles the third derivation of Freezing effects that was addressed in subsection 2.3.3, viz., the one that involves chain interleaving. In fact, the first two steps are more or less identical: First, movement of an item α out of an XP β takes place; and then β itself undergoes movement to a higher position, thereby creating an unbound trace. The only difference is that in the case of the derivation involving chain interleaving, there is yet another operation (viz., movement of α to a position c-commanding β) which is illicit (due to the interaction of Fewest Steps and Last Resort, under the assumptions made here); and just this third illicit step is absent in the case of remnant movement.\footnote{Note that this approach to the Anti-Freezing effect with remnant movement crucially depends on the fact that we are free to choose between the illicit derivation in (47), (48), and the licit derivation in (49), (50). If, however, economy considerations would force us to abandon the second derivation and to choose the first one in certain contexts, the prediction would be that remnant movement is impossible in these contexts, i.e., that it creates a Freezing effect. In section 7 of the following chapter, I will argue that this prediction is indeed borne out – there is a context in which economy forces the choice of a derivation of a remnant movement construction that violates the Barriers Condition and the Strict Cycle Condition over a competing derivation that does not violate these conditions.}

3.3.2. Why Remnant Movement Does Not Create Non-Islands

Clearly, this approach to remnant movement presupposes that the remnant category (i.e., the one bearing index 2 in the preceding examples) is not a barrier in its in situ position – otherwise, extraction of the item with index 1 would not be possible in the first place. Thus, it follows that remnant movement can never turn an island into a non-island. As shown in chapter 1, this prediction is indeed correct; the descriptive generalization arrived at there is that an unbound trace in a moved remnant XP β is possible only if a bound trace with β in situ is also possible.

Let me briefly discuss three cases from section 2 of chapter 1 that show this. First, there is a contrast between PP extraction from subject NPs and PP extraction from object NPs in German; the first kind of movement is prohibited, the second one is not (given the right choice of predicate). Compare (51-a) with (51-b):

(51) a. *dass darüber$\text{_}1$ merkwürdigerweise [$\text{_}1$ ein Buch _^*t_1] den Karl beeindruckt hat
 that about that strangely a book$_{\text{nom}}$ ART Karl$_{\text{acc}}$

 b. dass darüber1 merkwürdigerweise [$\text{_}1$ ein Buch _^*t_1] den Karl beeindruckt hat
 that about that strangely a book$_{\text{nom}}$ ART Karl$_{\text{acc}}$
Given that subject NPs are barriers, and object NPs are not (necessarily), these data are accounted for – scrambling in (51-a) violates the Barriers Condition, as indicated (and *t₁ is not deletable on the way to LF). The contrast is mirrored in remnant movement constructions:

(52) a. *\[NP \text{ Ein Buch } t₁ \] \[NP \text{ merkwürdigerweise keiner } t₁ \] hat darüber₁ merkwürdigerweise t₂ den Karl
\text{ a book } \text{ has about that strangely } \text{ ART Karl}_{acc}
\text{ beeindruckt} \text{ impressed}

b. \[NP \text{ Ein Buch } t₁ \] \[NP \text{ merkwürdigerweise keiner } t₂ \] hat darüber₁ merkwürdigerweise keiner \[PP \\
\text{ a book } \text{ has about that strangely } \text{ no-one}_{nom} \text{ gelesen}

\text{ read}

The wellformedness of the remnant NP topicalization sentence (52-b) follows in the same way as that of the remnant VP topicalization example (46); a derivation in which PP scrambling from NP precedes NP topicalization does not violate either the Barriers Condition (the object NP is still in complement position at the stage of the derivation where extraction takes place) or the Strict Cycle Condition (the second movement operation lands in a higher position than the first movement operation). However, such a derivation cannot save remnant NP topicalization in (52-a). The reason is that NP₂ does not have to move to become a barrier; it is a barrier from the start. Hence, a derivation of (52-a) where PP scrambling precedes NP topicalization is excluded by the Barriers Condition, and a derivation where NP topicalization precedes PP scrambling violates both the Barriers Condition and the Strict Cycle Condition, as shown above.

Next, consider PPs. PPs are islands in German for extraction of full lexical NPs, but (generally) transparent for extraction of R-pronouns (see van Riemsdijk (1978)); this is shown in (53-a), in which a lexical NP is scrambled out of a PP, vs. (53-b), in which an R-pronoun is scrambled out of a PP:

(53) a. *dass \[NP \text{ dieser Sache } t₁ \] keiner \[PP \text{ mit } t₁ \] gerechnet hat
\text{ that this thing}_{en} \text{ no-one}_{en} \text{ with counted has}

b. dass \[NP \text{ da } t₁ \] keiner \[PP \text{ mit } t₁ \] gerechnet hat
\text{ that there no-one}_{en} \text{ with counted has}

\[16\] Note that in order to permit extraction from PP at all, it must be ensured that the PP in examples like (53-b) occupies a complement position in VP. Cf. Frey & Tappe (1991) and Müller & Sternefeld (1994), among others, for arguments to this effect.
Suppose that the ban on extractions as in (53-a) can be made to follow from locality theory.17 Then, the contrast between the remnant movement examples in (54-a) and (54-b) follows along the same lines:

(54) a. *[VP [PP *t Mit] gerechnet]$_{1}$ hat [NP dieser Sache]$_{1}$ keiner t$_{2}$
 \hspace{1cm} with counted has this thing no-one$_{nom}$

 b. ?[VP [PP t$_{1}$ Mit] gerechnet]$_{1}$ hat da$_{1}$ keiner t$_{2}$
 \hspace{1cm} with counted has there no-one$_{nom}$

Again, if scrambling precedes topicalization in (54-b), locality requirements can be met and strict cyclicity is respected; but this ordering of movement rules does not help in the case of (54-a), where a locality constraint is violated even if scrambling precedes topicalization.

As a third and final case, consider the lexically determined contrast between coherent and incoherent infinitives, as it becomes manifest in the following data (= (41-b) and (41-a) from chapter 1):

(55) a. *dass [NP das Buch]$_{1}$ keiner [t$_{1}$ zu lesen] abgelehnt hat
 that the book$_{acc}$ no-one$_{nom}$ to read refused has

 b. dass [NP das Buch]$_{1}$ keiner [t$_{1}$ zu lesen] versucht hat
 that the book$_{acc}$ no-one$_{nom}$ to read tried has

A verb like \textit{versuchen} (‘try’) permits scrambling out of an embedded infinitive, whereas a verb like \textit{ablehnen} (‘refuse’) does not. This lexical variation is maintained under remnant movement, as in (56-a) vs. (56-b) (= (42-b) & (42-a) from chapter 1):

(56) a. *[t$_{1}$ Zu lesen]$_{1}$ hat [NP das Buch]$_{1}$ keiner t$_{3}$ abgelehnt
 to read has the book no-one refused

 b. [t$_{1}$ Zu lesen]$_{1}$ hat [NP das Buch]$_{1}$ keiner t$_{3}$ versucht
 to read has the book no-one tried

This follows in the way that by now is familiar: A derivation of (56-a) in which NP scrambling precedes α-topicalization does not help if α is already a barrier in its in situ position (cf. subsection 2.5 of chapter 1 for relevant references).

Summarizing so far, it turns out that an approach to Freezing effects based on the derivational movement theory adopted here also explains the Anti-Freezing effect with remnant movement without any additional stipulations, whereas the representational approach to Freezing does not offer an insightful account of the phenomenon and must resort to additional and otherwise unmotivated assumptions. As far as the main goals

17It argued in Müller (1995, ch. 2) that this follows from the Barriers Condition if additional assumptions about Case transmission and (abstract) incorporation are made. Alternatively, the confinement of P-stranding in German to extraction of R-pronouns might follow from a directionality constraint, as noted earlier in chapter 1.
of this monograph are concerned, I take it that the second of the four questions related to remnant movement that were raised in chapter 1 has received a satisfying answer: The Anti-Freezing effect with remnant movement may appear peculiar at first sight, but given the movement theory outlined in chapter 2, this is exactly what we expect.

It seems that one could stop here and move on to the next problem raised by remnant movement that was introduced in chapter 1 (viz.: Why does remnant movement show movement type asymmetries?). However, I will refrain from approaching this problem directly and will rather now turn to another kind of Anti-Freezing effect, viz., the one that systematically appears with extraposition. I do so for two reasons. First, I will argue that any instance of extraction from a finite clause in a language like German does in fact involve remnant movement of the clause, i.e., an unbound trace. And second, it turns out that the approach to extraposition to be developed in the following section provides a partial answer to the fourth question raised in section 4 of chapter 1: Why can remnant movement not create unbound intermediate traces?

4. Anti-Freezing Effects with Extraposition

4.1. The Phenomenon

Finite CP complements in SOV languages like German tend to occur post-verbally, and not pre-verbally like other arguments. This is shown in (57):

(57) a. ??dass er [CP dass Claudia Peter geküßt hat]_2 gesagt hat
 that he that Claudia Peter kissed has said has

b. dass er t2 gesagt hat [CP dass Claudia Peter geküßt hat]_2
 that he said has that Claudia Peter kissed has

Standardly, it has been postulated that the CP V order in (57-a) is the base-generated one and that the V CP order in (57-b) is derived by an extraposition operation which right-adjoins CP to some maximal projection; cf. Bierwisch (1963), Thiersch (1978), Stechow & Sternefeld (1988), Grewendorf (1989), Büring (1995), and Büring & Hartmann (1997), among others. Now, as has often been noted, extraction from a finite CP is possible only if CP appears to the right of V and never if CP is to the left of V; cf.:

(58) a. *(Ich weiß nicht) wen1 er [CP t1 dass Claudia t1 geküßt hat]_2 gesagt
 I know not whom,acc he that Claudia kissed has said
 hat
 has

Given Last Resort, extraposition must be triggered by a strong feature, in analogy to scrambling and topicalization. For the time being, I will assume that if extraposition applies, a strong feature [extr] is indeed present. See chapter 6.
There are two problems connected with extraction in (58-a) and (58-b) when one approaches V CP order in terms of extraposition. One is that (58-a), in which extraction from the purported in situ position occurs, is worse than its counterpart (57-a), in which no wh-extraction occurs (the latter I consider clumsy, but not ungrammatical, see chapter 6). This is unexpected if CP₂ in (58-a) occupies a base-position, viz., the object position of V (recall the definition of barrier in (16)); see, e.g., Webelhuth (1992, ch. 3) and Stechow & Sternefeld (1988, ch. 11). In the remainder of this chapter, I will ignore this problem. I will come back to it in section 3 of chapter 6, though, where it will become important. The other striking peculiarity of the extraction pattern in (58) is that under the extraposition analysis, we should expect (58-b) to exhibit a Freezing effect: At S-structure, the intermediate trace t₁′ is included in a moved CP, and the antecedent wen₁ is excluded by CP; this corresponds exactly to the typical Freezing configuration described in (39) above.

Thus, extraction from finite clauses in SOV languages like German exhibits an Anti-Freezing effect that is a priori unexpected (the same phenomenon occurs, inter alia, in Dutch, Hindi (cf. Mahajan (1990; 1994)), and Basque (cf. Ormazabal, Uriagereka, & Uribe-Etxebarria (1994)); this calls for an explanation. In the following two subsections, I will again compare the representational and the derivational approach to Freezing, and I will show that the Anti-Freezing effect with CP extraposition that is visible in (58-b) strongly supports the derivational theory.

4.2. The Representational Approach

Under the representational approach, wh-extraction in (58-b) is simply predicted to be impossible, if nothing else is said. Since, by assumption, CP₂ has undergone extraposition, it cannot occupy a complement position at S-structure; i.e., it cannot be a sister of some head (as to the exact landing site of extraposition, see below). Therefore, given the definition of barrier in (16), the creation of the intermediate trace t₁′ in (58-b) results in a violation of the Barriers Condition, and t₁′ should be marked [–γ] (or *). Given Chomsky and Lasnik’s (1993) assumptions about uniform chains, this intermediate trace must be deleted on the way to LF, but a Subjacency-like violation should still be expected in (58-b), contrary to fact.¹⁹

Not least because of this well-known problem for a representational approach to

¹⁹Alternatively, if t₁′ were not generated in the first place, the initial t₁ would be marked [–γ] (*) (due to a Barriers Condition violation), and strong ungrammaticality would be expected, since initial traces are not LF-deletable.
movement theory and locality, it has sometimes (and especially in much recent literature) been assumed that extraposition does not exist as rightward movement at S-structure. An extraposed CP, on this view, would be base-generated in its S-structure position (see Webelhuth (1992, ch. 3), Bayer (1994, sect. 3; 1997), Haider (1994; 1995, sect. 2.2), and Wilder (1996, sect. 4) for German; Hoekstra (1983; 1984), Koster (1987, 194), and Zwart (1993, 333ff) for Dutch; and Mahajan (1994) for Hindi). Nevertheless, I will adopt the rightward movement analysis of complement extraposition in SOV languages in what follows. I will do so mainly for reasons discussed in Büring & Hartmann (1997) and Müller (1996); however, I will later provide an additional argument in favour of deriving complement extraposition by syntactic right-adjunction, rather than by base-generation.

At this point, let me repeat just two of the arguments given by Büring & Hartmann (1997) against the idea that CP can be base-generated to the right of V in languages like German and Dutch. First, an approach that treats “extraposition” phenomena in SOV languages in terms of base-generation has difficulty in ensuring that not all clauses that appear to the right of V are transparent for movement (i.e., exhibit Anti-Freezing effects). Thus, in a language like German, finite subject clauses, relative clauses, and complement clauses to nouns that are located to the right of V block extraction just as much as those in a middle-field internal position do. This is shown for subject clauses in (59), for noun complement clauses in (60), and for relative clauses in (61) (see Fanselow (1987), Grewendorf (1989), and Müller (1995), among others).

(59) a. *(Ich weiß nicht) wen1 [CP t1′ dass Claudia t1 geküßt hat]2 dich beeindruckte
I know not whom that Claudia kissed has youacc impressed b. *(Ich weiß nicht) wen1 (es) dich beeindruckte [CP t1′ dass Claudia t1 geküßt hat]2 kissed has

(60) a. *[NP Welches Buch], hast du [NP ein Gerücht [CP t1′ dass er t1 gelesen hat]2] gehört ? which book have you a rumour that he read has heard b. *[NP Welches Buch], hast du [NP ein Gerücht] gehört [CP t1′ dass er t1 which book have you a rumour heard that he gelesen hat]2 ? read has

(61) a. *Wen1 hast du [NP einen Artikel [CP der1 t3 t1 beeindruckt hat]2] whom have you an article that impressed has
Chapter 4. Anti-Freezing

4.3. The Derivational Approach

4.3.1. The Problem

The typical extraction example (58-b) is repeated here again as (62).

\[(\text{Ich weiß nicht}) \text{ wen}_1 \text{ er t}_2 \text{ gesagt hat [CP t}^1 \text{ dass Claudia t}_1 \text{ geküßt hat]}_2\]

I know not whom he said has that Claudia kissed has

By assumption, there are three movement operations to be considered here, viz., two instances of \(\text{wh} \)-movement applying to the \(\text{wh} \)-phrase and one instance of extraposition applying to CP. It remains to be shown that at least one of the possible combinations of the three movement operations respects all locality, cyclicity, and economy

20 In the representational approach, it seems that one must assume that the prohibition against extraction that is at work in the (b)-examples is determined solely by lexical factors and not by structural ones; cf. Haider (1993).

21 Another possibility that is compatible with the evidence just cited would be to assume that extraposition is the result of a PF operation; see Chomsky (1986) and especially Truckenbrodt (1994). See, however, subsection 5.2 below for an argument in support of syntactic extraposition that speaks against this option, too.
constraints. Consider first a derivation in which extraposition precedes the two wh-
movement operations, as in (63):22

\begin{enumerate}[(a)]
 \item \textit{CP Extraposition to IP:}
 \[... [CP_3 - [IP_{er} t_2 gesagt hat I] [CP_2 - dass Claudia wen_1 geküßt hat]] ... \]
 \item \textit{Wh-Movement to SpecC_2:}
 \[... [CP_3 - [IP_{er} t_2 gesagt hat I] [CP_2 wen_1 dass Claudia t_1 geküßt hat]] ... \]
 \item \textit{Wh-Movement to SpecC_3:}
 \[... [CP_3 wen_1 [IP_{er} t_2 gesagt hat I] [CP_2 *t'_1 dass Claudia t_1 geküßt hat]] ... \]
\end{enumerate}

This derivation clearly violates the Barriers Condition in the third step. The reason
is that wh-movement to SpecC_3 takes place from a CP in an adjoined position, i.e.,
from a barrier (cf. (16)). In addition, the derivation in (63) violates the Strict Cycle
Condition; CP extraposition in the first step has turned the matrix IP into a cyclic
node, and subsequent wh-movement to the embedded SpecC_2 position in the second
step ends up in a position that is dominated by the matrix IP (via non-exclusion)
but does not belong to the latter’s minimal residue. Hence, it is evident that in order
to be compatible with strict cyclicity, wh-movement to SpecC_2 must apply before
extraposition of CP_2. These two operations are reversed in (64):

\begin{enumerate}[(a)]
 \item \textit{Wh-Movement to SpecC_2:}
 \[... [CP_3 - [IP_{er} [CP_2 wen_1 dass Claudia t_1 geküßt hat] gesagt hat I]] ... \]
 \item \textit{CP Extraposition to IP:}
 \[... [CP_3 - [IP_{er} t_2 gesagt hat I] [CP_2 wen_1 dass Claudia t_1 geküßt hat]] ... \]
 \item \textit{Wh-Movement to SpecC_3:}
 \[... [CP_3 wen_1 [IP_{er} t_2 gesagt hat I] [CP_2 *t'_1 dass Claudia t_1 geküßt hat]] ... \]
\end{enumerate}

This time, the Strict Cycle Condition is respected (no movement operation ends up
in a lower position than any preceding movement operation); however, the Barriers

22Two remarks are due concerning (i). First, I assume throughout that I is right-peripheral in German,
but not much hinges on this question in the present context. And second, for expository purposes I assume
here that CP is right-adjointed to IP. If German does not have obligatory V-to-I movement at S-structure, CP
might also be adjoined to the VP projected by the auxiliary hat (‘has’) (however, assuming a morphology-
based theory of V-to-I movement as developed, e.g., by Roberts (1993), Rohrbacher (1994), and Vikner
(1995), we might expect overt V-to-I raising to be obligatory in German, which has a relatively rich system
of verbal inflection.) Right-adjunction to the VP projected by the lexical verb gesagt (‘said’) cannot be an
option, though – as shown in (i), German obeys an adjacency requirement with respect to items of a verbal
cluster in situ in the middle field (see, e.g., Kohrt (1974, 28) and Haider (1990, 95)).

(i) *dass er t_2 gesagt [CP dass Claudia Peter geküßt hat] hat
 that he said that Claudia Peter kissed has has

See Büring & Hartmann (1997) and Truckenbrodt (1994) for proposals as to why (i) is impossible.
Condition is, of course, still violated by wh-movement to SpecC\textsubscript{3} in the third step. It seems that the only derivation in which the Barriers Condition can be fulfilled is one in which all wh-movement applies before extraposition to IP (VP), as in (65):23

(65) a. Wh-Movement to SpecC\textsubscript{2}:
 \[... [CP\textsubscript{3} \rightarrow [IP \rightarrow [CP\textsubscript{2} wen\textsubscript{1} dass Claudia t\textsubscript{1} geküßt hat] gesagt hat I]] \]

b. Wh-Movement to SpecC\textsubscript{3}:
 \[... [CP\textsubscript{3} wen\textsubscript{1} [IP \rightarrow [CP\textsubscript{2} t\textsubscript{1} dass Claudia t\textsubscript{1} geküßt hat] gesagt hat I]] \]

c. CP Extraposition to IP:
 \[... [CP\textsubscript{3} wen\textsubscript{1} [IP \rightarrow [IP t\textsubscript{2} gesagt hat I] [CP\textsubscript{2} t\textsubscript{1} dass Claudia t\textsubscript{1} geküßt hat]]] \]

This derivation does not violate the Barriers Condition; moreover, wh-movement does not violate the Strict Cycle Condition. However, this time, the extraposition operation in the third step violates strict cyclicity. Wh-movement in (65-a) has turned the matrix CP\textsubscript{3} into a cyclic node, and subsequent CP extraposition, analyzed here as right-adjunction to the embedded IP, ends up in a lower position (the result would be the same under the assumption that CP extraposition may target a VP-adjoined position). Hence, it seems that we end up with a dilemma – the Anti-Freezing effect with extraposition apparently cannot be accounted for under present assumptions. In the following subsection, I will suggest that this dilemma vanishes if we take the possibility that extraposition might be remnant movement into account.

4.3.2. Extraposition as Remnant Movement

Note first that there is one crucial factor that distinguishes extraposition from leftward movement types like wh-movement, topicalization, and scrambling, all of which induce Freezing effects – we cannot see exactly which hierarchical position an extraposed item shows up in, relative to the rest of the clause. Thus, suppose that extraposition may not only be analyzed as adjunction to VP or IP, as is commonly assumed, but also as adjunction to CP. More generally, it seems plausible to postulate that in principle right-adjunction to any kind of XP is possible. Given that right-adjunction exists at all, this is clearly the null hypothesis and therefore conceptually attractive – any restrictions on right-adjunction sites would require special justification. Thus, I would like to contend that (66) holds:24

\[Such a derivation is in fact proposed by Mahajan (1990, 142ff) for Hindi and by Büring & Hartmann (1997) for German, as an account of the Anti-Freezing effect with clausal extraposition in these languages.

\[For additional evidence for (66), see Müller (1996), where it is argued on the basis of empirical evidence that NP and PP also qualify as right-adjunction sites for extraposition. However, it is also argued, on the basis of theory-internal evidence, that CP is not a possible right-adjunction site in German. I believe that all pieces of indirect evidence against right-adjunction to CP in Müller (1996) can be explained away under the present approach, but, for reasons of overall coherence, I will not go into this here.\]
(66) **Right-Adjunction:**

Right-adjunction to any kind of XP is possible.

Under this assumption, there is yet another possible derivation for a sentence like (62), in addition to the ill-formed derivations in (63), (64), and (65), viz., the one given in (67):

(67) a. **Wh-Movement to SpecC₂:**

\[\ldots [\text{CP}_3 - [\text{IP} \text{ er } \text{CP}_2 \text{ wen}_1 \text{ dass Claudia } t_1 \text{ geküßt hat }] \text{ gesagt hat I }] \]

b. **Wh-Movement to SpecC₃:**

\[\ldots [\text{CP}_3 \text{ wen}_1 [\text{IP} \text{ er } [\text{CP}_2 t_1' \text{ dass Claudia } t_1 \text{ geküßt hat }] \text{ gesagt hat I }]] \]

c. **CP₂ Extrapoision to CP₃:**

\[\ldots [\text{CP}_3 [\text{CP}_3 \text{ wen}_1 [\text{IP} \text{ er } t_2 \text{ gesagt hat I }] [\text{CP}_2 t_1' \text{ dass Claudia } t_1 \text{ geküßt hat }]]] \]

As before, the Barriers Condition is not violated, because both *wh*-movement operations precede extraposition. But, what is more, extraposition to CP in (67-b) does not violate the Strict Cycle Condition either. *Wh*-movement in (67-a) has turned the matrix CP₃ into a cyclic node, and subsequent extraposition meets the demands of strict cyclicity because it ends up in the minimal residue of the head (C₃) of this cyclic node (i.e., in the CP-joined position). Thus, under this approach, what is responsible for the Anti-Freezing effect with extraposition of finite complement clauses is this: Extraposition may follow *wh*-movement in accordance with the Strict Cycle Condition because extraposition may end up in a position that is in the same minimal residue as the landing site of *wh*-movement – in fact, the landing site of extraposition (a CP-joined position, by assumption) is even slightly higher than the landing site of *wh*-movement (a SpecC position). Accordingly, the resulting structure in (67-b) involves an unbound trace, viz., \(t_1' \). Hence, if this account of the Anti-Freezing effect with CP extraposition is on the right track, this means that extraction from finite clauses in SOV languages like German, Dutch, or Hindi invariably involves remnant movement.

In the following section, I will provide independent support for this analysis.

5. **Additional Evidence**

In this section, I will provide three pieces of evidence in support of the approach to the Anti-Freezing effect with extraposition which was developed in the previous section. The evidence concerns (a) NP and PP extraposition; (b) Freezing effects that show up with extraposition under certain, well-defined circumstances; and (c) extraposition in SVO languages like English. I will address these issues in turn.

5.1. PP and NP Extraposition

Under the approach taken here, it follows that an Anti-Freezing effect should not show up only with CP extraposition; in principle, such an effect should also occur with other
Chapter 4. Anti-Freezing

kinds of XPs, such as PP and NP. This prediction does indeed seem to be borne out in German.

5.1.1. Anti-Freezing and PP Extraposition

Consider first PPs. So far I have shown that *wh*-extraction of an R-pronoun is possible if PP is in situ in a complement position (cf. (7-a), repeated here as (68-a)). If, however, leftward movement (like scrambling or topicalization) applies, whether post-position stranding is possible or not depends on whether PP contains a bound or an unbound trace of the R-pronoun. In the former case, a Freezing effect occurs (cf. (7-b), which is repeated here as (68-b)); in the latter case (i.e., with remnant movement), an Anti-Freezing configuration arises because extraction from PP may apply prior to topicalization without violating the Strict Cycle Condition; cf. (68-c) (= (41-c)):

(68) a. Woثلت du genau dass keiner [PP t1 mit]_2 gerechnet hat] ?
 what think you that no-one with counted has

b. *Woثلت du genau dass [PP t1 mit]_2 keiner t2 gerechnet hat ?
 what think you that with no-one counted has

c. ?[VP [PP t1 Mit]] gerechnet]_2 hat da1 keiner t2
 with counted has there no-one

Now, by the same reasoning, we are led to expect that an Anti-Freezing effect may also occur with PP extraposition. And indeed, as has sometimes been observed, this is the case (cf. Geilfuß (1988, 13) and Müller (1991, 190-191), among others). To see this, note first that PP extraposition is an option in German:

(69) Es hat keiner t2 gerechnet [PP da1 mit]_2
 EXPL has no-one counted there-with

The examples in (70-a) (with *wh*-movement from PP) and (70-b) (with scrambling from PP) then show that a Freezing effect does not occur if extraction from PP and PP extraposition are combined.

(70) a. Woثلت hat keiner t2 gerechnet [PP t1 mit]_2
 what has no-one counted with

b. dass da1 keiner t2 gerechnet hat [PP t1 mit]_2
 that there no-one counted has with

On the approach pursued here, this is so because PP can be right-adjointed to CP, so that extraction from PP may precede PP extraposition without inducing a violation of
5. Additional Evidence

5.1.2. Anti-Freezing and NP Extraposition

Basically, the situation seems to be similar in the case of NPs, although the issue is complicated by an intervening factor. Thus, recall that extraction from an object NP is possible in German (with certain governing verbs like *schreiben* (`write`)) if the NP stays in situ in a complement position (as, for instance, in (8-a), repeated here as (71-a)). Leftward movement of NP creates a Freezing effect if the NP-internal trace is bound at S-structure (cf., e.g., (8-b), repeated as (71-b)) and an Anti-Freezing effect in the case of remnant NP topicalization, i.e., if the NP-internal trace is unbound; cf. (71-c) (= (41-b)).

(71) a. \[\text{\(PP\ Über\ wen\)}, meinst\ du\ \text{\(CP\ t'_1\) hat\ der\ Fritz\ \text{\(NP\ ein\ Buch\ t_1\)},\ a\ book\ has\ ART\ Fritz_{nom} a\ book\ geschrieben\] ?
 written
b. *\[\text{\(PP\ Über\ wen\)}, meinst\ du\ \text{\(CP\ [NP \text{\(ein\ Buch\ t_1\)]},\ a\ book_{acc}\ has\ ART\ Fritz\ t_2\ geschrieben\] ?
 Fritz\ written
c. \[\text{\(NP\ Ein\ Buch\ t_1\)},\ hat\ der\ Fritz\ \text{\(PP\ darüber\)},\ a\ book\ has\ ART\ Fritz\ about\ that\ geschrieben\] ?

For reasons which are unclear to me, NP extraposition is available only with heavy NPs in German (`Heavy NP Shift`) and has a marked character throughout. This is

25The construction in (70) seems to be constrained by additional factors; cf.:

(i) a. Da \[t_1\] hat\ der\ keiner\ \text{\(PP\ für/??gegen\)}
 there\ has\ no-one\ voted\ for/against
b. Da \[t_1\] sind\ viele\ \text{\(PP\ auf/??unter\)}
 there\ are\ many\ people\ walked\ on/under
 ‘Many people walked on/under it (e.g., the bridge).’

All postpositions in (i) allow postposition stranding and PP extraposition in isolation, but the combination of the two processes may or may not lead to reduced acceptability. Since the syntactic context is identical for the legitimate and illegitimate cases in (i-a) and (i-b) and semantic considerations do not suggest themselves here (the antonymous postpositions being related to the main verb in roughly the same way in each case), one might speculate that phonological factors are relevant here, such that extraposition of a bare P category is optimal with a monosyllabic P, and gets worse the longer P gets. If something like this proves correct, it means that the degradedness of (i-ab) with *gegen* and *unter* as P is independent of the general approach developed here.

26In contrast to German, Dutch does not exhibit an identical behaviour of CP and PP with respect to extraction and extraposition: Whereas extraposed CPs are transparent for extraction in Dutch, extraposed PPs are islands; cf., e.g., van Riemsdijk (1985, 1991), where this Freezing effect is noted as a problem.
shown in (72).27

(72) ?dass keiner je t₂ gelesen hat [NP₂ Bücher [PP₁ über dieses Thema] [CP
der Fritz verfaßt hat]]
that no-one ever read has books about this topic
that ART Fritz written has

What is relevant in the present context is that Heavy NP Shift does not noticeably
decrease in acceptability if the extraposed NP contains a trace of some item in an NP-
external position (which, according to my previous reasoning, is then unbound); and
this is just what we are led to expect under the present set of assumptions. Consider
(73):

(73) ?dass [PP₁ über dieses Thema] keiner je t₂ gelesen hat [NP₂ Bücher t₁ [CP
die der Fritz verfaßt hat]]
that about this topic no-one ever read has books
that ART Fritz written has

Here, PP scrambling from NP to an IP-adjoined position can take place prior to ex-
traposition to CP, and this combination of movement operations violates neither strict
cyclicity nor locality constraints.

The same result arises with a combination of *wh*-extraction from NP and Heavy
NP Shift for basically the same reasons (*wh*-movement to SpecC may precede extra-
position to CP):

(74) ?[PP₁ Über dieses Thema] hat keiner je t₂ gelesen [NP₂ Bücher t₁ [CP
die about this topic has no-one ever read books that
der Fritz verfaßt hat]]
ART Fritz written has

5.2. Freezing Effects with Extraposition

The above explanation for the Anti-Freezing effect that shows up with extraposition
in German has capitalized on the fact that extraposition can be taken to involve right-
adjunction to CP rather than right-adjunction to VP or IP. Only under this assumption
can there be a derivation of extraction preceding extraposition that does not violate
the Strict Cycle Condition. This analysis makes a clear prediction. If, for some reason,
we can see that the landing site of extraposition is lower than the landing site of the
preceding extraction operation (e.g., if *wh*-movement out of CP is followed by CP

27Moreover, Heavy NP Shift is more acceptable if the extraposed NP is definite rather than indefinite (as
in (72)). However, as noted before, definite NPs in German exhibit a Specificity effect and block extraction,
quite independently of the issue of (Anti-) Freezing; cf. the references cited in subsection 2.3.2 of chapter
1. Also note that some speakers of German do not permit Heavy NP Shift at all, or only in intransitive
constructions; for these speakers, the issue to be discussed here does not arise in the first place.
extraposition to VP), a Freezing effect is to be expected with extraposition, just as with leftward movement types. In what follows, I will give three arguments showing that this prediction is indeed borne out.

5.2.1. **CP Extraposition to VP**

As noted before (cf. footnote 22), there is an adjacency requirement in German which ensures that no item intervenes between an auxiliary and its main verb in situ in the middle field. Among other things, this precludes right-adjunction to VP in situ in cases like the following:

(75) *dass er gesagt [CP dass Fritz Caroline liebt] hat that he said that Fritz Caroline loves has

However, CP extraposition to VP is an option in German if the VP undergoes topicalization; see Haider (1990), Truckenbrodt (1994), and Büring & Hartmann (1997), among others. This is shown in (76).

(76) [VP t2 Gesagt [CP2 dass Fritz Caroline liebt]] hat er nicht t3 said that Fritz Caroline loves has he not

What is more, Fanselow (1987; 1992) has noted that a VP as it appears in (76) may also undergo long-distance movement across a *wh*-island with only a weak Subjacency (i.e., Barriers Condition) violation arising; cf.:

(77) ??[VP3 t2 Gesagt [CP2 dass Fritz Caroline liebt]] weiß ich nicht [CP ob er t3 hat] said that Fritz Caroline loves know I not whether he has

Now, the interesting thing to note is that this kind of long-distance topicalization (i.e., of a VP with an extraposed CP adjoined to it) becomes impossible as soon as CP2 contains an unbound trace whose antecedent is located outside of VP3. Thus, (78) is completely ungrammatical in German (see den Besten & Webelhuth (1990, 83) and Fanselow (1992, 6)):

(78) *[VP3 t2 Gesagt [CP2 t1 dass Fritz t3 liebt]] weiß ich nicht [CP wen1 er t3 hat] said that Fritz loves know I not whom he has

The strong ungrammaticality of (78) cannot simply be due to a prohibition against remnant VP topicalization from a *wh*-island. As shown in (79), such a case is no worse than topicalization of a VP that does not contain an unbound trace:

(79) ??[VP3 t1 Geküßt] weiß ich nicht [CP wen1 sie t2 hat] kissed know I not whom she has

At first sight, the crucial difference between the (halfway) well-formed (79) and the impossible (78) seems to be that the remnant VP in (79) contains only an initial trace,
whereas the remnant VP in (78) contains an additional intermediate trace in an extraposed CP. Indeed, recall that (78) is one of the two kinds of examples that were discussed in subsection 3.4 of chapter 1; there, I tentatively assumed that the correct empirical generalization is that unbound intermediate traces are impossible. However, given the approach to extraction from finite clauses in SOV languages outlined above, it is clear that this generalization cannot be correct – under this view, any extraction from an extraposed CP involves an unbound intermediate trace in SpecC. Thus, what is relevant in (78) cannot be the unbound trace t'_1 in an extraposed item as such, but rather the fact that the extraposition operation here differs from other, well-formed cases in that it cannot circumvent a Freezing effect.

And indeed, the illformedness of (78) follows under the approach to (Anti-) Freezing adopted here. To see this, consider the possible derivations of (78) on the basis of the (simplified) D-structure representation in (80).

In the derivation of (78), four movement operations must take place, viz.: (a) two instances of wh-extraction, (b) CP$_2$ extraposition, and (c) VP topicalization. We can disregard from the start any derivation in which the wh-movement operations do not apply first. If CP$_2$ extraposition precedes the second wh-movement operation to SpecC$_4$, the Barriers Condition is violated, and if VP topicalization precedes the second wh-movement operation to SpecC$_4$, both the Barriers Condition and the Strict Cycle Condition are violated (VP in SpecTop qualifies as a barrier, and movement from within a category in SpecTop to a position dominated by the adjacent IP is invariably lowering).

But what about the following derivation?

(81) a. Wh-Movement to SpecC$_2$:

b. Wh-Movement to SpecC$_4$:
 – weiß ich nicht $[CP_4, wen_1 er [VP_3, CP_2, t'_1 dass Fritz t_1 liebt] gesagt] hat]$

c. Extraposition of CP$_2$ to VP$_3$:
 – weiß ich nicht $[CP_3, wen_1 er [VP_3, [VP_3, t_2 gesagt] [CP_2, t'_1 dass Fritz t_1 liebt]] hat]$

28 I abstract away from V/2 movement of weiß (‘know’) and pretend, contrary to fact, that weiß is base-generated in the V/2 position; this is simply for ease of exposition. Furthermore, I ignore the question of extraposition of the least embedded clause CP$_4$ in the following derivation. I will return to multiple CP embedding in the following section, though.

29 Note, however, that in order to derive strong ungrammaticality here, it has to be guaranteed that the unbound trace t'_1 in the fronted VP is not deleted on the way to LF (unlike bound argument traces). Incidentally, this might follow under the assumptions in Chomsky & Lasnik (1993) concerning deletion and uniform chains; if not, additional assumptions are necessary; cf. Cinque (1990) and Rizzi (1990) for discussion.
d. **Topicalization of VP**:
\[[\text{VP}_3 \ [\text{VP}_2 t \ 'gesagt \ [\text{CP}_2 t' \ 'dass Fritz t \ 'liebt \]] \ \text{weiß ich nicht \ [\text{CP}_4 \ wen_1 \ \text{er} \ t_3 \ 'hat \]} \]

Such a combination of *wh*-movement followed by CP extraposition is, of course, just what I have argued to be responsible for the systematic occurrence of Anti-Freezing effects with extraction from finite clauses in SOV languages like German. However, since CP₂ has to undergo topicalization together with VP in (81) in order to yield the word order in (78), it follows that extraposition of CP₂ must be right-adjunction to VP and cannot possibly be right-adjunction to CP₄.\(^{30}\) Therefore, the Strict Cycle Condition is violated in (81) – *wh*-movement has turned CP₄ into a cyclic node (plus, irrelevantly, all XPs that intervene between CP₄ and the most deeply embedded VP, i.e., all XPs that are part of the two movement paths created by *wh*-movement), and subsequent CP₂ extraposition ends up in a position that is dominated by this cyclic node but does not belong to the minimal residue of its head.

Another derivation of (78) that must be ruled out is one in which CP extraposition and VP topicalization apply in reverse order, as in (82):

\[(82) \]

a. **Wh-Movement to SpecC₂**:
- weiß ich nicht \ [\text{CP}_4 \ \text{er} \ [\text{VP}_3 \ \text{wen}_1 \ \text{dass Fritz t} \ 'liebt \] \ 'gesagt \] \ 'hat \]

b. **Wh-Movement to SpecC₄**:
- weiß ich nicht \ [\text{CP}_4 \ \text{wen}_1 \ \text{er} \ [\text{VP}_3 \ t' \ 'dass Fritz t \ 'liebt \] \ 'gesagt \] \ 'hat \]

c. **Topicalization of VP₃**:
\[[\text{VP}_3 \ [\text{CP}_2 t' \ 'dass Fritz t \ 'liebt \] \ 'gesagt \] \ 'weiß ich nicht \ [\text{CP}_4 \ \text{wen}_1 \ \text{er} \ t_3 \ 'hat \] \]

d. **Extraposition of CP₂ to VP₃**:
\[[\text{VP}_3 \ [\text{VP}_2 t \ 'gesagt \] \ [\text{CP}_2 t' \ 'dass Fritz t \ 'liebt \]] \ 'weiß ich nicht \ [\text{CP}_4 \ \text{wen}_1 \ \text{er} \ t_3 \ 'hat \] \]

Evidently, this derivation respects locality requirements like the Barriers Condition, and it also cannot be ruled out by invoking economy constraints. One might hope that at least one of the two final operations turns out to be counter-cyclic. However, topicalization of VP₃ in the third step is remnant movement (i.e., it creates an unbound trace of the *wh*-phrase *wen*) and does not violate the Strict Cycle Condition – it ends up in a higher position than the preceding *wh*-movement steps.\(^{31}\) The question is:

\(^{30}\)That would eventually yield (i):

\[(i) \ ?[\text{VP}_3 \ t_2 \ 'Gesagt \] \ 'weiß ich nicht \ [\text{CP}_4 \ \text{wen}_1 \ \text{er} \ t_3 \ 'hat \] \ [\text{CP}_2 t' \ 'dass Fritz t \ 'liebt \] \]

which arguably is closer in status to (79) than to (78).

\(^{31}\)Under present assumptions, a derivation that stops at this point, i.e., that dispenses with the last step in (82), does not violate any constraints. However, the S-structure representation corresponding to (82-c) is clearly ill formed. This is an instance of the more general problem (noted in subsection 4.1 above) that
Does subsequent right-adjunction of \(CP_2 \) to the topicalized VP violate the Strict Cycle Condition?

Intuitively, I think it should. VP topicalization turns the matrix TopP into a cyclic node, and the ensuing CP extraposition operation ends up in a subdomain of this cyclic node. The problem, however, is that CP extraposition in (82-b) does in fact respect the Strict Cycle Condition under the notion of minimal residue (or checking domain) in Chomsky (1993), which I have adopted so far (albeit in a somewhat different formulation); cf. (83) (= (75) from chapter 2):

\[
\text{(83) \textit{Minimal Residue} (‘Checking Domain’)}:
\]

The minimal residue of a head \(X \) is the smallest set \(M \) of categories \(\alpha \) such that:

a. \(X\text{-Adj, Spec}X \text{, and XP-Adj} \) is in \(M \).

b. If \(\alpha \) is in \(M \), then \(\alpha\text{-Adj} \) is in \(M \).

The Strict Cycle Condition demands that if an item is dominated by a cyclic node immediately after movement, it must be part of the minimal residue of the head of this cyclic node; according to (83), if some category \(\alpha \) is part of the minimal residue of a head \(\beta \) because \(\alpha \) is the specifier of \(\beta \), then another category \(\gamma \) that is adjoined to \(\alpha \) is also part of the minimal residue of \(\beta \). This is the situation that holds in (82-d) after VP-internal CP extraposition: VP\(_3\) is the specifier of Top, and hence part of Top’s minimal residue, as required by strict cyclicity; and CP\(_2\) extraposition ends up in a position adjoined to VP\(_3\), hence also in Top’s minimal residue, again in accordance with strict cyclicity. To block this last step as counter-cyclic, I would therefore like to suggest that the notion of minimal residue should be understood in a stricter sense, without the option of recursion, as in (84):

\[
\text{(84) \textit{Minimal Residue} (revised):}
\]

The minimal residue of a head \(X \) comprises \(X\text{-Adj, Spec}X \text{, and XP-Adj} \), and nothing else.

Clearly, given (84), the derivation in (82) violates strict cyclicity in the last step and is therefore excluded, as desired. What is more, it turns out that this change does not affect any of the preceding reasonings, except for one, and that there is indeed evidence in favour of (84) as opposed to (83). Let me first turn to a piece of independent corroboration of (84) that was brought to my attention by Joachim Sabel (p.c.).

Consider the following two examples:

\[
\text{(85) a. [CP [VP_2 Das Buch gelesen] hat [IP Fritz_1 gestern t_2]]} \\
\text{the book\textsubscript{acc} read has Fritz\textsubscript{nom} yesterday}
\]

\[
\text{b. *[CP [VP_2 Fritz_1 [VP_2 das Buch gelesen]] hat [IP t_1 gestern t_2]]} \\
\text{Fritz\textsubscript{nom} the book\textsubscript{acc} read has yesterday}
\]

\(wh\)-extraction from a finite CP obligatorily triggers CP extraposition in German. Thus, there is a constraint that is violated if the last step in (82-d) does not apply; see chapter 6.
5. Additional Evidence

In (85-a) a VP consisting of a direct object and the verb has undergone topicalization, and the result is well formed. In (85-b), however, the subject NP Fritz also undergoes fronting, and the sentence is ungrammatical. Clearly, a derivation of (85-b) must be excluded in which first the VP is topicalized, and then the subject NP is adjoined to the topomlialized VP, as an instance of scrambling, triggered by a [src] feature on the subject NP. This follows from the Strict Cycle Condition under the notion of minimal residue in (84) - VP topicalization turns TopP into a cyclic node, and subsequent scrambling of the subject NP to a VP-adjoined position ends up in a position that is dominated by TopP but is not part of the minimal residue of Top. If, however, a category adjoined to a member of the minimal residue of a head were also in the minimal residue of this head (as in Chomsky's original formulation and in (83)), this derivation of (85-b) could not be ruled out, and the sentence would be predicted to be well formed, contrary to fact.

So much for the supporting evidence. There is, however, one kind of movement that is now also precluded by the Strict Cycle Condition, viz., adjunction to SpecC, as assumed above for wh-movement at LF in multiple questions in languages like English and German. Consider (86-a) and its purported LF representation in (86-b):

(86) a. What₁ did you give t₁ to whom₂ ?
 b. [CP [SP [NP what₁] [PP to whom]₂] C₁[+wh]] you gave t₁ t₂]

According to the definition of movement path adopted here (cf. (51) from chapter 3), the movement path between PP₂ and its trace t₂ at LF includes CP - this is the minimal XP that dominates both of these items. Hence, CP turns into a cyclic node at LF (actually, it becomes a cyclic node for the second time in the derivation – recall that cyclic nodes created by S-structure movement are forgotten at LF). Under the definition of minimal residue in (83), PP₂ belongs to the minimal residue of C₁[+wh], and everything is fine. But given the notion of minimal residue in (84), PP₂ is not part of the minimal residue of the C head of the cyclic node CP, and LF raising of PP₂ is precluded as an instance of lowering. I would like to suggest that this conse-

32 There is some indirect evidence that subjects can in principle undergo scrambling in German, in contrast to what seems to be the case in, e.g., Japanese (cf. Saito (1985)). It has been argued argued that instances of weak pronoun fronting in German (and Dutch) involve movement to a designated Wackernagel position that precedes Spec; see, e.g., Thiersch (1978), Cardinaletti & Roberts (1991), Schmidt (1992), Zwart (1993), Cardinaletti & Starke (1995), and subsection 3.1 of chapter 5 below; cf. (i-a).

(i) a. dass es₁ der Fritz der Maria t₁ gegeben hat that ilacc ART Fritznom ART Maria.dat given has
 b. dass der Fritz₂ es₁ t₁ der Maria t₁ gegeben hat that ART Fritznom ilacc ART Maria.dat given has

If this is correct, then the fact that subjects may optionally precede weak object pronouns (cf. (i-b)) might be taken to indicate that subjects must be able to undergo scrambling to the XP that provides the Wackernagel position for pronouns in German.
Chapter 4. Anti-Freezing

quence is not as undesirable as it might seem at first sight. Note that the structures in (85-b) and (86-b) are virtually indistinguishable if category labels are removed, and I think this can be taken to indicate that there is indeed something wrong with the structure of (86-b). Thus, I will assume that *wh*-movement at LF in a multiple question in languages like English or German is in fact not (right-) adjunction to SpecC, but rather left-adjunction to CP (a landing site that is not available for overt scrambling in German), as in (87):33

(87) \[CP [pp to whom] _ [CP [NP what_1] C_1+wh] you gave t_1 t_2]

This approach to *wh*-movement in multiple questions raises a number of further issues because we now arrive at the general conclusion that adjunction to SpecX from within X’ is barred; but as far as I can see, this does not pose unsurmountable problems.34 I therefore finish this detour here, concluding that the more restrictive notion of minimal residue in (84) is empirically motivated by constructions involving illicit VP topicalization and does not make wrong predictions in other contexts. With this in mind, let

33Interestingly, this analysis also suggests itself from the point of view of semantic interpretation in a framework along the lines of Karttunen (1977), assuming that LF representations are maximally transparent; cf., e.g., Stechow (1993; 1996).

34To name just three potential problems: First, the Bulgarian data that are discussed in Rudin (1988) and that are often taken to show that right-adjunction to SpecC may occur in overt syntax (cf. chapter 2) must be reanalyzed in terms of left-adjunction to CP. Second, Irish constructions of the type in (i) (cf. McCloskey (1990, 226ff)) cannot be analyzed in terms of adjunction to SpecC:

(i) \[Spec_C _ [pp leis _1] _ [C_1+wh] raibh tl_IJ ag caint _1_]

‘Who were you talking to?’

Here, the *wh*-phrase *cé* (‘who’) has undergone *wh*-movement to SpecC, and the PP *leis* (‘with him’) can optionally be fronted to a position between the *wh*-phrase and the complementizer *a*. It seems that a straightforward analysis of this construction could involve right-adjunction of the PP to the *wh*-phrase (that the *wh*-phrase is the target of movement is also suggested by the observation that PP fronting in this context depends on phonological properties of the *wh*-phrase; cf. McCloskey (1990, 227)); but this option does not exist under present assumptions. Hence, I conclude that PP fronting in (i) must end up in another kind of position. A possibility that comes to mind is left-adjunction to C, all the more so since PP fronting appears to be reanalyzable as P fronting in all the examples discussed by McCloskey.

Third, cases of optional NP-internal PP fronting in German, as in (ii) (cf. Tappe (1989), Bayer (1990; 1996), Webelhuth (1992), and Müller (1995), among others) cannot be analyzed as involving PP adjunction to SpecN (or SpecD):

(ii) a. \[NP [pp von Peter _1] das Auto t_1]

of Peter the car

b. \[NP [pp in den Abgrund _1] der Blick t_1]

into the abyss the view

Assuming PP to be left-adjointed to NP (DP) in this construction (as suggested by, e.g., Bayer (1990; 1996)) would be compatible with the theory of strict cyclicity adopted here; see, however, Müller (1995, 114-117) for arguments against such a view. I will have to leave a careful analysis of the construction in (ii) open.
5. Additional Evidence

me return to the original topic of this subsection, which is to show that sentences like (88) (= (78)), which show a Freezing effect with extraposition, can be ruled out by a derivational approach to movement theory that incorporates the Barriers Condition and the Strict Cycle Condition.

(88) *[VP, \text{t}_2 \text{Gesagt} [CP, \text{t}_1 \text{ dass Fritz \text{t}_1 \text{ liebt }] \text{weiß ich nicht [CP \text{wen}_1 \text{er \text{t}_3 \text{ hat }]}]}

I have considered in detail two derivations of (88) that are a priori conceivable – in one, the order of rule application is \textit{wh-movement} \rightarrow \textit{extraposition} \rightarrow \textit{topicalization}; in the other, the order is \textit{wh-movement} \rightarrow \textit{topicalization} \rightarrow \textit{extraposition}. Both these derivations are now excluded by the Strict Cycle Condition, given a non-recursive version of the notion of minimal residue. In addition, any derivation in which the second \textit{wh}-movement operation that extracts the \textit{wh}-phrase from CP\textsubscript{2} does not apply before CP extraposition and VP topicalization violates the Barriers Condition, and any derivation that involves an additional movement operation applying to the \textit{wh}-phrase (thereby creating illicit chain interleaving) is ruled out by the interaction of Fewest Steps and Last Resort as an instance of improper movement. Thus, none of these derivations can lead to a well-formed sentence. In conclusion, strong ungrammaticality arises in examples like (88) in German because there is an additional (strong) Freezing effect that overrides the (weak) \textit{wh}-island effect with remnant VP topicalization. More generally, the picture emerges that CP extraposition induces a Freezing effect (just like standard cases of leftward movement) if the landing site of the extraposed CP is lower than that of \textit{wh}-movement, whereas CP extraposition induces an Anti-Freezing effect (just like typical instances of remnant movement) if the landing site of the extraposed CP is higher than that of \textit{wh}-movement. These extraposition asymmetries correspond exactly to what we would expect, given the interaction of the Barriers Condition, the Strict Cycle Condition, and economy constraints (Fewest Steps & Last Resort).

5.2.2. PP Extraposition to VP

Basically the same point can be made with examples involving a combination of NP scrambling, PP extraposition, and VP topicalization. First, recall that an Anti-Freezing effect arises in the case of postposition stranding (i.e., extraction of an R-pronoun from a PP) preceding remnant VP topicalization in German, as in (41-c), which is repeated here once more as (89).

(89) ?[VP \text{[pp \text{t}_1 \text{M it }]} \text{gerechnet \text{t}_2 \text{ hat da}_1 \text{keiner \text{t}_2}]

Moreover, I argued above that PP extraposition may induce the very same Anti-Freezing effect as remnant VP topicalization, because PP extraposition may be analyzed as adjunction to CP, i.e., as an instance of remnant movement. Cf. (70-a) and (70-b), which are also repeated here.
(90) a. dass da₁ keiner t₂ gerechnet hat [pp t₁ mit]₂
that there no-one counted has with
b. Wo₁ hat keiner t₂ gerechnet [vp t₁ mit]₂ ?
where has no-one counted with

Just like CPs, PPs can right-adjoin to a VP in German, provided that the VP undergoes topicalization. This is shown in (91):

(91) [vp [vp t₂ Gerechnet]₃ [pp damit]₂]₃ hat der Fritz nicht t₃
counted there with has ART Fritz not

However, postposition stranding may never apply in such a configuration; consider (92), which is completely parallel to (78).

(92) *[vp [vp t₂ Gerechnet]₃ [pp t₁ mit]₂]₃ hat da₁ der Fritz nicht t₃
counted with has ART Fritz not

(92) involves scrambling of the NP da₁ to a pre-subject (IP-adjoined) position, extraposition of PP₂ to a VP-adjoined position, and topicalization of VP₃; and as with (78), it remains to be shown that there is no well-formed derivation of this example. If NP scrambling out of PP does not occur first, the Barriers Condition is violated. If NP scrambling to IP applies first, PP extraposition to VP applies second, and VP topicalization applies third, the second step violates the Strict Cycle Condition because PP extraposition has ended up in a lower position than the preceding scrambling operation did. Finally, if the order of rule application is NP scrambling to IP > VP topicalization > PP extraposition, the last step does not conform to the demands imposed by strict cyclicity. So far, so good. However, upon closer inspection things are a bit more complicated. Consider the following derivation of (92), which must also be excluded in order to rule out the sentence as ungrammatical (as before, the initial D-structure representation is simplified in various respects):

(93) a. D-Structure Representation:
– hat der Fritz nicht [vp [pp da₁ mit]₂ gerechnet]₃
b. Scrambling of NP₁ to VP:
– hat der Fritz nicht [vp da₁ [vp t₁ mit]₂ gerechnet]₃]₃
c. Extraposition of PP₂ to VP:
d. Scrambling of NP₁ to IP:
– hat da₁ der Fritz nicht [vp [vp t₁ ′ [vp t₂ gerechnet]₂]₃ [pp t₁ mit]₂]₃
e. Topicalization of VP₃:
[vp [vp t₁ ′ [vp t₂ gerechnet]₂]₃ [pp t₁ mit]₂]₃ hat da₁ der Fritz nicht t₃

This derivation does not violate the Barriers Condition (da₁-scrambling out of PP applies before PP extraposition) or the Strict Cycle Condition (PP extraposition ends up in
the same minimal residue as the preceding scrambling operation). Of course, this result can be achieved only by chain interleaving – scrambling of NP₁ is split up into two operations (adjunction to VP followed by adjunction to IP). Hence, we might hope that this derivation violates economy constraints. However, although this would indeed be the case under Collins’ (1994) assumptions that I have abandoned, chain interleaving in (93) is not ruled out by Fewest Steps and Last Resort under present assumptions: Intermediate scrambling of NP₁ to VP is legitimate because the left-adjunction site of VP is a typical checking position for NP₁’s [scr] feature (this satisfies Last Resort), but not yet (in this case) an actual one (this satisfies Fewest Steps).

The crucial problem with (93) seems to be that both the PP and the NP that it dominates are adjoined to VP from different directions (via extraposition and scrambling, respectively). I will assume that such a thing is ruled out by the following condition:

(94) If α dominates β, α-adjunction to γ and β-adjunction to γ cannot be bidirectional.

The basic idea behind (94) is that PP and NP in (93) compete for VP as an adjunction site, and that only one of the two items can be the winner of this competition. Thus, (94) rules out chain interleaving in the derivation in (93) and thereby closes the gap created by the option of intermediate scrambling here. At present, the condition in (94) arguably has the character of brute force, and ideally, we would hope that it can be derived from deeper assumptions. I will show in chapter 5 (subsection 7.4.4) that (94) can indeed be made to follow from a revised version of Last Resort that incorporates Chomsky’s (1995) Minimal Link Condition (MLC). However, for the time being, I will adopt (94) as a constraint on movement, and briefly explore some of its consequences.

First note that (94) does not preclude multiple left-adjunction or multiple right-adjunction. Furthermore, it does not rule out a combination of left- and right-adjunction to some XP if the two (or more) items that are adjoined do not stand in a dominance relation in the pre-movement structure. This is shown in (95-a) for multiple scrambling to IP, in (95-b) for multiple extraposition to VP (cf. Haider (1994, 3)

35An alternative derivation to (93) that poses exactly the same problem is one in which PP extraposition in the second step ends up in a lower VP-adjointed position than the preceding NP scrambling operation does. This derivation would not violate the Strict Cycle Condition either (since both landing sites are in the same minimal residue). In this derivation, VP topicalization in the last step could move only a lower VP segment, thereby circumventing an unbound intermediate trace t₁'. However, what is said about the derivation in (93) in what follows immediately carries over to this derivation, so we can abstract away from it for present purposes.

36Given this reasoning, there is independent theory-internal evidence for not assuming the split INFL hypothesis in German; recall footnote 15 of chapter 2. If AGR₂P and TP qualify as additional adjunction sites, a derivation should be possible that differs from the one in (93) in that PP extraposition ends up in a higher (AGR₂P-) right-adjointed position, and subsequent topicalization could involve AGR₂P rather than VP. Such a derivation would not violate any constraints under present assumptions.
for the basic observation), and in (95-c) for a combination of scrambling and extraposition to VP.

(95) a. dass [NP dem Fritz]_1 [NP das Buch]_2 keiner [VP t₁ t₂ geben] that ART Fritz_{dat} the book_{acc} no-one_{nom} give wollte wanted to

b. [VP₃ [NP Einem Grammatiker]_1 t₂ aufgefallen] [CP₄ der das untersuchte] [CP₅ dass dieser Satz grammatisch ist]_1 ist erst letzte investigated that this sentence grammatical is is only last Woche t₃ week ‘Only last week has it occurred to a grammarian who investigated it that this sentence is grammatical.’

c. [VP₃ [PP Über die Liebe]_1 dieses Jahr [NP ein Buch]_2 gelesen] [CP₂ about the love this year a book read das interessant war]_1 hat noch keiner t₃ that interesting was has yet no-one

Second, this approach makes an interesting prediction. Consider a minimal variant of (92) in which da ends up in a scrambling position below the landing site of the PP, so that it goes along with the VP under topicalization. This sentence is generated by a derivation that differs from the one in (93) only in that scrambling of da to IP does not take place (i.e., da checks the [scr] feature in a VP-adjoined position). Ceteris paribus, we expect the resulting sentence to be ill formed. The sentence is given in (96); it does indeed seem to be fairly deviant.

(96)*[VP [VP Da₁ [VP t₂ gerechnet]_1],_2 [PP t₁ mit]_1],_2 hat der Fritz nicht t₃ there counted with has ART Fritz not

A derivation of (96) might proceed via (a) scrambling of NP₁ to a left-adjoined VP position, followed by (b) extraposition of PP₂ to a higher right-adjoined VP position, followed by (c) topicalization of the VP that now contains a remnant PP which in turn contains an unbound trace t₁. This derivation does not violate the Barriers Condition, the Strict Cycle Condition, or Fewest Steps/Last Resort. However, since NP₁ is dominated by PP₂ in the pre-movement structure, it does violate the prohibition against bi-directional adjunction in (94).⁷

To sum up, it has turned out again that extraposition does not induce an Anti-Freezing effect per se: PP extraposition does not create an island if it ends up in a

⁷(96) is severely deviant, but it might not be ill formed to the same degree as (92). I have no explanation for a possible contrast in the acceptability of these sentences, though.
higher position than the preceding movement that extracts out of PP does, as in (90), but it creates an island if it ends up in a lower position, as in (92).

5.2.3. *Infinitive Extraposition to VP: The Third Construction*

(97) instantiates the third construction in German:

\[
\text{dass die Claudia das Buch} _1 \text{t} _2 \text{nicht versucht hat } [\alpha \text{dem Peter } t _1 \text{zu geben }] _2 \\
\text{ART Claudia the book}_{\text{acc}} \text{ not tried has ART Peter}_{\text{dat}} \text{ give}
\]

I will assume along with den Besten & Rutten (1989) that examples like (97) involve a combination of (a) extraposition of an infinitival category \(\alpha \) and (b) NP scrambling out of the infinitive.

Evidently, this construction exhibits an Anti-Freezing effect, and this is to be expected if \(\alpha \)-extraposition can end up in a position that is higher than the one that the preceding NP scrambling operation ends up in (i.e., in an IP- or CP-right-adjoined position). Next, (98) shows that the infinitive can also be adjoined to VP, provided that VP undergoes topicalization:

\[
[\text{VP} _2 \text{Versucht } [\alpha \text{dem Peter das Buch} _1 \text{zu geben }] _3 \text{ hat die Claudia Tried ART Peter}_{\text{dat}} \text{ the book}_{\text{acc}} \text{ give has ART Claudia}
\]

\[
\text{t} _3 \text{nicht not}
\]

Now, consider (99), which is ungrammatical.

\[
[*[\text{VP} _2 \text{Versucht } [\alpha \text{dem Peter } t _1 \text{zu geben }] _3 \text{ hat die Claudia Tried ART Peter}_{\text{dat}} \text{ give has ART Claudia the}
\]

\[
\text{Buch} _1 \text{ nicht t} _3 \text{book}_{\text{acc}} \text{ not}
\]

Here, (a) NP scrambling out of the infinitive \(\alpha \) and (b) topicalization of a VP in which \(\alpha \)-extraposition has taken place occur in combination. Whereas these two operations are per se permitted (cf. (97) and (98), respectively), their combination is not; and

\(^{38}\) There is a bit more to be said about constructions involving a combination of scrambling from PP and topicalization of VPs that contain unbound PP traces. I return to this issue in section 7 below.

\(^{39}\) Den Besten & Rutten (1989) postulate that \(\alpha = \text{VP} \). As in the discussion of coherent vs. incoherent infinitives, I would like to remain uncommitted as to the categorial status of \(\alpha \) here. The only thing that is relevant in the present context is that \(\alpha \) does not block scrambling despite extraposition. Note in passing that the very existence of the third construction in German is not compatible with the standard view, according to which extraposition of an infinitive and transparency of the infinitive for scrambling are mutually exclusive (cf. Beck (1955/57), Stechow (1984), Grewendorf (1987), Sternefeld (1990), and Haider (1993), among others).
again, this follows from the analysis developed here – if \(\alpha \)-extraposition to VP applies before NP scrambling, the Barriers Condition is violated;\(^{40}\) if \(\alpha \)-extraposition to VP applies after NP scrambling, the Strict Cycle Condition is violated (or condition (94), depending on assumptions about the position and projection of negation).\(^{41}\)

Summarizing, it turns out that although “normal” cases of extraposition exhibit Anti-Freezing, extraposition may in fact induce Freezing effects under certain conditions – viz., if the landing site of extraposition is lower than the landing site of the preceding extraction operation. Given the interaction of the Barriers Condition, the Strict Cycle Condition (plus requirement (94)), and the combination of Fewest Steps and Last Resort (which rules out illicit chain interleaving), this is to be expected. From a more general point of view, it seems to me that the very existence of Freezing effects as they appear with extraposition to VP (cf. the ungrammatical examples in (78), (92), and (99)) poses a severe problem for analyses according to which V CP order in SOV languages is base-generated and not transformationally derived (recall the literature cited in subsection 4.2). Freezing effects clearly indicate movement, and I see no obvious way to accommodate the fact that V CP order creates an island for extraction in some contexts but not in others to an analysis in terms of base-generation of CP in its S-structure position.\(^{42}\)

\(^{40}\)This implies that left-adjunction to an extraposed infinitive is not a way to circumvent a barrier; cf. Grewendorf & Sabel (1994) for discussion.

\(^{41}\)Sentences like (i) are much better than, e.g., (99) (Daniel Büring (p.c.)), and this is evidently a problem if (i) has essentially the same structure as (99), i.e., if it must be analyzed as indicated:

\[
\begin{aligned}
\text{(i) ??}[\text{VP } t_2 \text{ Versucht } [\alpha t_1 \text{ zu schlagen }]_2 \text{ hat er } \text{ den Mann }_1 \text{ nicht } t_3 \\
\text{ tried to hit has he{\text{nom}} the } \text{ man}{\text{acc}} \text{ not}
\end{aligned}
\]

However, there is a crucial difference between (i) and (99) – in the former case (but not in the latter), the fronted VP is made up of two bare verb forms. I would like to suggest that the relative wellformedness of (i) is due to the (somewhat marginal) option of analyzing the sentence not via extraposition of an infinitival XP \(\alpha \) that contains an argument trace, but rather via verb raising, i.e., head movement. According to this view, the structure of (i) actually looks as in (ii):

\[
\begin{aligned}
\text{(ii) ??}[\text{VP } t_2 \text{ Versucht } [\text{ zu schlagen }]_2 \text{ hat er } \text{ den Mann }_1 \text{ nicht } t_3 \\
\text{ tried to hit has he{\text{nom}} the } \text{ man}{\text{acc}} \text{ not}
\end{aligned}
\]

In all relevant respects, then, (ii) behaves like the most ordinary cases of remnant VP topicalization, because there is no instance of \(\alpha \)-extraposition at all. Thus, a derivation of (ii) which proceeds in the order \textit{verb raising} \(\rightarrow \text{NP scrambling} \rightarrow \text{VP topicalization} \) does not violate any constraint – in particular, extraction takes place only from complement positions, and every movement operation ends up in a higher position than the preceding movement operation does.

\(^{42}\)Similar considerations apply with regard to analyses that view extraposition as a PF phenomenon; cf. footnote 21.
5.3. **Extraposition in SVO Languages**

Under the approach developed so far, we should also expect an Anti-Freezing effect with extraposition in SVO languages like English. And indeed, by and large, this prediction appears to be borne out. Thus, consider first an example involving a double object construction like (100).

(100) They explained \[VP \{ NP \{ this \} \{ V' \{ t \} \{ PP \{ to the students \} \} \} \] Larson (1988) argues that the direct object *this* is base-generated in SpecV, and the indirect object *to the students* in the complement position of V. The verb then undergoes raising out of the VP into the head position of a VP-shell or some other functional projection. More generally, under this approach mapping of arguments of a verb into syntactic representations is regulated by a thematic hierarchy according to which a THEME argument (like *this* in (100)) always precedes and asymmetrically c-commands a GOAL argument (like *to the students* in (100)) at D-structure in English. If this is so, examples like the ones in (101) strongly suggest that clausal extraposition has taken place – note that in both cases, CP is the THEME argument of the verbs involved and hence must be located in a position higher than and to the left of the indirect object at D-structure.\(^{43}\)

(101) a. They explained \[t_2 \{ PP \{ to the students \} \{ CP \{ that they should read these books \} \} \] b. John promised \[t_2 \{ PP \{ to Mary \} \{ CP \{ to leave \} \} \]

Interestingly, the extraposition structures in (101) do not block *wh*-extraction; rather, an Anti-Freezing effect arises. This is shown by the examples in (102):

(102) a. What \[t_1 \{ did they explain \{ t_2 \{ PP \{ to the students \} \{ CP \{ that they should read \} \} \} \} \] b. What \[t_1 \{ did John promise \{ t_2 \{ PP \{ to Mary \} \{ CP \{ to do \} \} \} \] This Anti-Freezing effect is accounted for given that (102-a) and (102-b) each involve a derivation in which *wh*-movement of *what* out of the direct object CP in its in situ position is followed by right-adjunction of CP to the matrix CP. Such a derivation ful-

\(^{43}\)Actually, Larson (1988; 1991, 123) draws a different conclusion. He argues that what is involved in sentences like the ones at hand is not CP extraposition, but rather a process of “Light Predicate Raising,” as shown in (i-ab).

(i) a. They \[V(') \{ explained to the students \} \{ CP \{ that they should read these books \} \{ t \} \] b. John \[V(') \{ promised to Mary \} \{ CP \{ to leave \} \{ t \} \]

I will reject such an analysis because it involves either movement of a V’ category or a non-structure-preserving rule of reanalysis which incorporates the indirect object into the verb so that a complex verb dominating an XP can undergo head movement to the left. Both options are precluded in the theory of movement adopted in chapter 2.
fills the demands imposed by the Strict Cycle Condition and the Barriers Condition. If these considerations are on the right track, the conclusion to be drawn is that CP extraposition in English regularly exhibits Anti-Freezing effects, just like its German counterpart, and, consequently, that the English data are amenable to the same kind of analysis.

6. Multiply Embedded CPs and Chain Interleaving

In this section, I want to address a consequence of the analysis that has been proposed here. This consequence concerns extraction from multiply embedded clauses in SOV languages like German, and it helps to differentiate between the two approaches to chain interleaving discussed above – i.e., Collins’ (1994) strict prohibition against chain interleaving (derived from the standard version of Fewest Steps) on the one hand, and the weaker prohibition against chain interleaving (derived from the interaction of revised versions of Fewest Steps and Last Resort) developed in subsection 2.3.3 above. In the following subsection (6.1), I will begin by considering the second theory of chain interleaving, which I would like to argue for, and then turn to the predictions made by Collins’ (1994) approach. Finally, in subsection 6.2, I will address

44 A qualification is in order here. Given the notion of barrier that I have adopted so far (cf. (16)), the THEME CPs in (102) are in fact predicted to be barriers in their in situ positions (SpecV), contrary to fact. Thus, to accommodate the definition of barrier to VP-structures of the type proposed by Larson (1988; 1991), a modification is necessary. For present purposes, it may suffice to replace the notion of “complement position” in the original definition (16) by the more liberal notion of “selected position,” where selected positions are either complement positions or VP-internal specifier positions:

(i) **Barrier (revised):**
 XP is a barrier for α iff there is an X^n (0 ≤ n ≤ P) such that (a), (b), and (c) hold:
 a. X^n includes α.
 b. X^n is not selected.
 c. X^0 is distinct from Y^0, where XP is selected by Y^0.

See Müller & Sternefeld (1994; 1995) for further discussion.

45 It seems, though, that the argument cannot be replicated with extraposition of NPs in English. In contrast to German, a combination of NP extraposition and wh-movement out of this NP does not seem to be possible in English; cf. (i) (from Lasnik & Saito (1992, 103); also see Wexler & Culicover (1980, 277ff)):

(i) ?*What did you give t_2 to John [XP a book about t_1]?

The illformedness of (i) does not follow under the system of assumptions developed here. Lasnik & Saito (1992) suggest that the ungrammaticality of (i) does not result from a violation of the Barriers Condition, but “is due to the crossing effect” which is known to restrict movement in English (but not in German). I will assume that something along these lines is correct (i.e., that examples like (i) do exhibit an Anti-Freezing effect which is nevertheless masked by an intervening factor that creates ungrammaticality). As noted by João Costa (p.c.) and Daniel Büring (p.c.), similar considerations apply in the case of PP extraposition in English. Clearly, then, the “crossing effect” must be implemented in such a way that NPs and PPs are subject to it, whereas CPs are not.
some consequences of the less strict prohibition against chain interleaving that I adopt.

6. Multiply Embedded CPs and Chain Interleaving

Thus far, I have derived the Anti-Freezing effect that occurs with CP extraposition in sentences like (103), where the landing site of wh-movement is in the clause of which a segment immediately dominates the extraposed CP:

\[(103) \text{ (Ich weiß nicht)} \text{ wen}_1 \text{ er t}_2 \text{ gesagt hat [CP } t'_1 \text{ dass Claudia t}_1 \text{ geküßt hat]}_2 \]

I know not whom he said has that Claudia kissed has

But now consider what the analysis developed here predicts for cases where the CP clause from which wh-movement takes place is more deeply embedded, as in (104).

\[(104) \text{ (Ich weiß nicht) [CP}_2 \text{ wen}_1 \text{ er gesagt hat [CP}_3 \text{ dass Peter denkt [CP}_4 \text{ dass Claudia t}_1 \text{ geküßt hat]}]}

Given that V CP order in SOV languages can be derived only by extraposition, as I have assumed throughout, the D-structure representation of (104) must look roughly as in (105).

\[(105) \ldots \text{ [CP}_2 \text{ – er [CP}_3 \text{ – dass Claudia wen}_1 \text{ geküßt hat }] \text{ denkt] gesagt hat]}

The task now is to show that there is a well-formed derivation of sentence (104) on the basis of (105). In order to escape from the most deeply embedded clause CP₄, wh-movement of wen₁ (‘whom(acc)’) must take place prior to CP₄ extraposition; otherwise, wh-movement will violate the Barriers Condition (a right-adjointed CP₄ is not in a selected position). Hence, we can disregard from the start any derivation in which wh-movement applying to wen₁ is not the first movement step. The question then is, Where does initial wh-movement of wen₁ end up?

A first possibility is that the wh-phrase wen is moved to the matrix SpecC position (i.e., SpecC₂) first, via three instances of wh-movement. Since all CPs are still in situ, locality requirements (in particular, the Barriers Condition) are met. Suppose further that the next movement operation is right-adjunction of CP₄ to CP₃, followed finally by CP₃ extraposition to CP₂. In this derivation, CP₄ extraposition in the second to last step violates the Strict Cycle Condition: Because of wh-movement to SpecC of CP₂, CP₂ is a cyclic node for CP₄ extraposition, but this movement affects only CP₃, and not CP₂, as would be required. Therefore, the derivation in (106), although compatible with locality constraints and economy constraints (neither Fewest Steps nor Last Resort is violated), is in conflict with strict cyclicity.

\[(106) \text{ a. Wh-Movement of ‘wen’ to SpecC of CP₄:}

\ldots \text{ [CP}_2 \text{ – er [CP}_3 \text{ – dass Claudia wen}_1 \text{ geküßt hat] denkt]}

Chapter 4. Anti-Freezing

b. Wh-Movement of ‘wen’ to SpecC of CP₄:
... [CP₂ – er [CP₃, ‘wen’₁ dass Peter [CP₄, t’₁ dass Claudia t₁ geküßt hat] denkt] gesagt hat]

c. Wh-Movement of ‘wen’ to SpecC of CP₂:
[CP₂, ‘wen’₁ er [CP₃, t’₁‘₁ dass Peter [CP₄, t’₁ dass Claudia t₁ geküßt hat] denkt] gesagt hat]

d. Extrapolation of CP₄ to CP₃:
[CP₂, ‘wen’₁ er [CP₃, t’₁‘₁ dass Peter t₄ denkt] [CP₄, t’₁ dass Claudia t₁ geküßt hat] gesagt hat]

e. Extrapolation of CP₃ to CP₂:
[CP₂, [CP₂, ‘wen’₁ er t₃ gesagt hat] [CP₃, t’₁‘₁ dass Peter t₄ denkt] [CP₄, t’₁ dass Claudia t₁ geküßt hat]]

Since (106-d) is the illicit movement step in (106) (CP₂ extrapolation violates the Strict Cycle Condition), one might try to reverse the two CP extrapolation operations, as in the following derivation:

(107) a. Wh-Movement of ‘wen’ to SpecC of CP₄:
... [CP₂ – er [CP₃, – dass Peter [CP₄, ‘wen’₁ dass Claudia t₁ geküßt hat] denkt] gesagt hat]

b. Wh-Movement of ‘wen’ to SpecC of CP₃:
... [CP₂ – er [CP₃, ‘wen’₁ dass Claudia t₁ geküßt hat] denkt] gesagt hat]

c. Wh-Movement of ‘wen’ to SpecC of CP₂:
[CP₂, ‘wen’₁ er [CP₃, t’₁‘₁ dass Peter [CP₄, t’₁ dass Claudia t₁ geküßt hat] denkt] gesagt hat]

d. Extrapolation of CP₃ to CP₂:
[CP₂, [CP₂, ‘wen’₁ er t₃ gesagt hat] [CP₃, t’₁‘₁ dass Peter [CP₄, t’₁ dass Claudia t₁ geküßt hat] denkt]

e. Extrapolation of CP₃ to CP₂:
[CP₂, [CP₂, ‘wen’₁ er t₃ gesagt hat] [CP₃, t’₁‘₁ dass Peter t₄ denkt] [CP₄, t’₁ dass Claudia t₁ geküßt hat]]

Again, all three wh-movement operations required by locality constraints apply first; this turns CP₂ into a cyclic node. Next, however, CP₃ (and not CP₄) undergoes extrapolation (to CP₃). This step does not violate strict cyclicity because it ends up in the minimal residue of the head of CP₂. The final step, however, right-joins CP₃ to CP₂. This step violates the Strict Cycle Condition because an adjunction site of an XP (CP₂, in this case) that is itself adjoined to another XP (CP₂) is not part of the minimal residue of the head of this latter XP; recall that under present assumptions a non-recursive notion of minimal residue must be adopted, as in (108) (= (84)):
Minimal Residue:
The minimal residue of a head X comprises X-Adj, SpecX, and XP-Adj, and nothing else.

Thus, extraposition of CP₄ in this derivation ends up in a position that is dominated by CP₂ but does not belong to the minimal residue of C₂, and the derivation is ill formed.

As a third possibility, consider the derivation in (109).

a. Wh-Movement of ‘wen’ to SpecC of CP₄:
 \[
 \ldots [\text{CP}_2 - \text{er} [\text{CP}_3 - \text{dass Peter } [\text{CP}_4 \text{ wen}_1 \text{ dass Claudia } t_1 \text{ geküßt hat }] \text{ denkt }] \text{ gesagt hat }]
 \]

b. Wh-Movement of ‘wen’ to SpecC of CP₃:
 \[
 \ldots [\text{CP}_2 - \text{er} [\text{CP}_3 \text{ wen}_1 \text{ dass Peter } [\text{CP}_4 t'_1 \text{ dass Claudia } t_1 \text{ geküßt hat }] \text{ denkt }] \text{ gesagt hat }]
 \]

c. Wh-Movement of ‘wen’ to SpecC of CP₂:
 \[
 [\text{CP}_2 \text{ wen}_1 \text{ er } [\text{CP}_3 t'_1 \text{ dass Peter } t_4 \text{ denkt }] \text{ gesagt hat }] [\text{CP}_4 t'_1 \text{ dass Claudia } t_1 \text{ geküßt hat }]
 \]

d. Extraposition of CP₄ to CP₂:
 \[
 [\text{CP}_2 [\text{CP}_2 \text{ wen}_1 \text{ er } [\text{CP}_3 t'_1 \text{ dass Peter } t_4 \text{ denkt }] \text{ gesagt hat }] [\text{CP}_4 t'_1 \text{ dass Claudia } t_1 \text{ geküßt hat }]
 \]

e. Extraposition of CP₃ to CP₂:
 \[
 [\text{CP}_2 [\text{CP}_2 \text{ wen}_1 \text{ er gesagt hat }] [\text{CP}_3 t'_1 \text{ dass Peter } t_4 \text{ denkt }]] [\text{CP}_4 t'_1 \text{ dass Claudia } t_1 \text{ geküßt hat }]
 \]

As in the derivations (106) and (107), wh-movement takes place to the ultimate landing site first, i.e., to the SpecC position of CP₂. Next, as in (106), CP₄ extraposition applies. However, this time, extraposition of CP₄ does not go to a right-adjunction site of CP₃, which would violate strict cyclicity, but rather to a right-adjunction site of CP₂, in accordance with strict cyclicity; finally, CP₃ extraposition to CP₂ applies. What is wrong with this derivation?⁴⁶ I think that what is wrong is that the movement operation in (109-d) (CP₄ extraposition to CP₂) involves non-clause-bound extraposition of CP₄ (skipping over CP₃), and this seems to be precluded on general grounds. Long-distance extraposition is commonly excluded by the Upward Boundedness Constraint (or Right Roof Constraint) that goes back to Ross (1967). For present purposes, the descriptive statement in (110) may suffice: for attempts to derive it from independently motivated constraints, see, e.g., Culicover & Rochemont (1990) and Müller &

⁴⁶Note that extraposition of CP₃ to CP₂ in the last step in (109) does not violate strict cyclicity. The reason is that although CP₂ is a cyclic node for extraposition of CP₃ and although this movement step ends up in a position that is lower than that of CP₄, the landing site of CP₃ is still part of the minimal residue of the head of CP₂, as required by the Strict Cycle Condition.
Chapter 4. Anti-Freezing

(110) **Upward Boundedness Constraint:**
Rightward movement must not cross a CP.

To sum up so far, it seems that the derivations in (106), (107), and (109) cannot generate the sentence in (104) without violating constraints. A common feature of all these derivations is that all wh-movement operations apply before all extraposition operations. I would like to contend that this view is in fact not correct and that a legitimate derivation of the string in (104) must take the following form:

(111) a. **Wh-Movement of ‘wen’ to SpecC of CP₄:**
\[
\ldots [CP₂ – er [CP₃ – dass Peter [CP₄ wen₁ dass Claudia t₁ geküßt hat] denkt] gesagt hat]
\]

b. **Wh-Movement of ‘wen’ to SpecC of CP₃:**
\[
\ldots [CP₂ – er [CP₃ wen₁ dass Peter [CP₄ t₁’ dass Claudia t₁ geküßt hat] denkt] gesagt hat]
\]

c. **Extraposition of CP₄ to CP₃:**
\[
[CP₂ – er [CP₃ wen₁ dass Peter t₄ denkt] [CP₄ t₁’ dass Claudia t₁ geküßt hat] gesagt hat]
\]

d. **Wh-Movement of ‘wen’ to SpecC of CP₂:**
\[
[CP₂ wen₁ er [CP₃ [CP₄ t₁’ dass Claudia t₁ geküßt hat] gesagt hat]
\]

e. **Extraposition of CP₃ to CP₂:**
\[
[CP₂ [CP₂ wen₁ er t₃ gesagt hat] [CP₃ [CP₄ t₁’ dass Peter t₄ denkt] [CP₄ t₁’ dass Claudia t₁ geküßt hat]]
\]

Here, wh-movement out of a CP precedes extraposition of that CP, in accordance with the Barriers Condition. Furthermore, each CP extraposition operation ends up in the minimal residue of the highest cyclic node (that has been created by preceding wh-movement), in accordance with the Strict Cycle Condition. In addition, the Upward Boundedness Constraint is respected because CP extraposition never skips over an intervening CP. Thus, this derivation exhibits a “seesaw” effect, in the sense that wh-extraction and CP extraposition alternate systematically. Of course, this seesaw derivation involves chain interleaving, and the question arises of whether this is permitted.

47The Upward Boundedness Constraint is also responsible for the fact that sentences like (i) are ungrammatical:

(i) *Ich weiß nicht [CP₂ wen er gesagt hat [CP₄ dass Claudia geküßt hat] [CP₃ dass Peter denkt]]
I know not whom he said has that Claudia kissed has that Peter thinks

(i) can only be derived via a derivation involving long-distance extraposition of CP₄. Note that the only difference between this derivation generating (i) and the one in (109) is that CP₃ extraposition in the final step ends up in a lower CP₂-adjoined position than the preceding operation applying to CP₄ in (109), and in a higher CP₂-adjoined position in (i).
Under the revised notions of Fewest Steps and Last Resort developed in chapter 2 and adopted here, it turns out that it is. The reason is that although there are several movement operations that apply to the wh-phrase, they are all of the same type (viz., wh-movement operations to a SpecC substitution position) and therefore a PUB effect, reducible to the interaction of Fewest Steps and Last Resort, does not arise.

With all this in mind, consider now the prediction that the approach to chain interleaving developed by Collins (1994) makes for sentences like (104). Recall that Collins (1994) adopts the standard definition of the Fewest Steps condition, according to which a derivation is blocked by a competing derivation if the latter one involves fewer operations; and recall that this implies that chain interleaving is generally precluded and that successive-cyclic movement must be handled in terms of the notion of Form Chain. From this it follows that a derivation like (111) can never be legitimate, because it crucially involves chain interleaving (applying to the wh-phrase) of a kind that cannot be avoided (i.e., explained away) by invoking Form Chain. The derivations in (106), (107), and (109), on the other hand, do not violate the standard Fewest Steps condition, assuming that the first three instances of wh-movement are conceived of as one Form Chain operation. However, we have just seen that these three derivations violate either the Strict Cycle Condition or the Upward Boundedness Constraint (other derivations in which all wh-movement is postponed to the end violate the Barriers Condition); the only candidate for a legitimate derivation is (111), which involves chain interleaving. Hence, under the present system of assumptions, we have yet another argument in favour of replacing the standard notions of Fewest Steps and Last Resort with those in (35) and (36) (repeated here in (112) and (113)), in addition to those arguments given in section 6 of chapter 2.

(112) **Fewest Steps:**
If two derivations D_1 and D_2 are in the same reference set and D_1 involves fewer checking operations than D_2, then D_1 is to be preferred over D_2.

(113) **Last Resort:**
α is raised to a position β only if β is a typical checking position for the lowest-ranked unchecked morphological feature of α.

More generally, we have (theory-internal) evidence that chain interleaving is not to be excluded on principled grounds (rather, it is ruled out only if it involves a PUB effect, reducible to the interaction of Fewest Steps and Last Resort) and that the concept of Form Chain not only is superfluous and conceptually problematic (as argued in subsection 5.1 of chapter 2), but actually makes wrong predictions in the case of wh-extraction from multiply embedded CPs in SOV languages with CP extraposition.

6.2. Other Cases of Chain Interleaving

Of course, the present, more variable approach to chain interleaving in terms of the revised notions of Fewest Steps and Last Resort differs in a number of other respects
Chapter 4. Anti-Freezing

from Collins’ (1994) strict approach that relies on the standard notion of Fewest Steps. In general, there are now several cases of – apparently illicit – chain interleaving that are no longer ruled out by economy. In most of these cases, it seems to me that an alternative explanation of the ill-formedness of the resulting derivation is readily available; but some cases prove to be a little bit more complicated.

By way of illustration, consider the following schematic derivation via chain interleaving of an ungrammatical example involving a Freezing effect (as before, linear ordering is irrelevant as such, but supposed to correspond to asymmetric c-command):

(114) a. \textit{D-Structure Representation:}
\[\ldots [\beta \ldots \alpha_1 \ldots]_2 \]

b. \textit{\(\alpha\)-Movement no.1:}
\[\ldots \alpha_1 \ldots [\beta \ldots t_1 \ldots]_2 \]

c. \textit{\(\beta\)-Movement:}
\[\ldots [\beta \ldots t_1 \ldots]_2 \ldots \alpha_1 \ldots t_2 \]

d. \textit{\(\alpha\)-Movement no.2:}
\[\ldots \alpha_1 \ldots [\beta \ldots t_1 \ldots]_2 \ldots t_1' \ldots t_2 \]

Suppose for the sake of the argument that \(\alpha\)-movement in the first and third steps ends up in the same kind of position, so that a PUB effect is avoided (i.e., Fewest Steps and Last Resort are fulfilled). Nevertheless, movement in (114) might be illegitimate. For instance, \(\alpha\)-movement in (114-b) might somehow fill an escape hatch or create a strict island (via the Barriers Condition) which then blocks \(\beta\)-movement in the following step. Similarly, \(\beta\)-movement in (114-c) might block an escape hatch or create a strict island for subsequent \(\alpha\)-movement in (114-d). But again, suppose that neither \(\alpha\)-movement nor \(\beta\)-movement in (114) creates a strict island and bars further extraction due to an unavoidable violation of some locality constraint. Among the movement types that seem to never create islands are left-adjunction (i.e., scrambling) operations (see Müller & Sternefeld (1993) vs. Lasnik & Saito (1992)) and right-adjunction (i.e., extraposition) operations. The property of not creating islands that is found with scrambling and extraposition is, of course, crucial for the very existence of Anti-Freezing effects of the type discussed up to now; otherwise, a sentence like, e.g., (115) that is derived by remnant VP topicalization following NP scrambling could never be well-formed:

(115) \[[CP \{VP t_1 \text{Gelesen} \}_2 \text{hat} \{NP \text{das Buch} \}_1 \text{keiner} t_2 \] \]

read has the book no-one

Thus, if all movement operations in (114) are instances of scrambling, we do not anticipate a violation of economy (Fewest Steps & Last Resort), locality (Barriers

48These island-creating properties of certain movement types are well known; see, e.g., the strict island- hood imposed on a clause by internal topicalization in the Germanic languages, as discussed by den Besten (1989), Rochemont (1989), and Vikner (1995), among many others.
6. Multiply Embedded CPs and Chain Interleaving

Condition), or cyclicity (Strict Cycle Condition – note that all movement ends up in a higher position than any preceding movement operation in (114)). Recall now from subsection 2.1.2 that scrambling of an XP creates a Freezing effect if XP contains a bound trace at S-structure. Above, I gave examples involving bound wh-traces in scrambled items, such as (7-b), which is repeated here as (116):

(116) *Wo_{1} meinst du [CP t'_{1} dass [PP t_{1} mit]_{2} keiner t_{2} gerechnet hat] ?

what think you that with no-one counted has

However, the following examples show that scrambling also creates a Freezing effect in the case of bound scrambling traces:

(117) a. *dass [NP den Aufsatz]_{1} mal wieder [VP t_{1} gelesen]_{2} keiner t'_{1} t_{2} that the article_{acc} once again read no-one_{nom} hat has

b. *dass darüber_{1} gestern [NP ein Buch]_{1} keiner t'_{1} t_{2} gelesen that about that yesterday a book_{acc} no-one_{nom} read hat has

c. *dass da_{1} manchmal [PP t_{1} mit]_{2} keiner t'_{1} t_{2} rechnen kann that there sometimes with no-one_{nom} count can

A derivation of, e.g., (117-a) via chain interleaving might look as in (118).

(118) a. D-Structure Representation:

dass mal wieder keiner [VP [NP den Aufsatz]_{1} gelesen]_{2} hat

b. NP_{1} Scrambling to VP:

dass mal wieder keiner [NP den Aufsatz]_{1} [VP t_{1} gelesen]_{2} hat

c. VP_{2} Scrambling to IP:

dass mal wieder [VP t_{1} gelesen]_{2} keiner [NP den Aufsatz]_{1} t_{2} hat

d. NP_{1} Scrambling to IP:

dass [NP den Aufsatz]_{1} mal wieder [VP t_{1} gelesen]_{2} keiner t'_{1} t_{2} hat

As it stands, the derivation in (118) does not violate any constraint. Locality requirements are met (extraction out of an XP takes place only if the XP is in situ in a complement – or selected – position), strict cyclicity is respected, and chain interleaving is permitted under present assumptions: The two instances of NP_{1} scrambling end up in positions of the same type (i.e., left-joined positions), so both movement operations applying to NP_{1} are permitted by Last Resort/Fewest Steps. Thus, at first sight it seems as though excluding a derivation like that in (118) is a problem in the

49(117-a) involves VP scrambling and would therefore have a marked status irrespective of the issue of Freezing; see footnote 14.
present approach – this derivation involves chain interleaving, but of a kind that is apparently permitted, in complete analogy to the *wh*-movement case (111) (or any other instance of successive-cyclic *wh*-movement, for that matter).

As a first step towards a possible solution, consider again an example like (43), repeated here as (119):

\[(119) \quad \text{*weil} \quad [\text{VP} \ t_1 \ \text{gelesen} \ t_2] \quad [\text{NP} \ \text{das Buch} \ t_1 \ \text{keiner} \ t_2 \ \text{hat}]
\]

because read the book no-one has

In subsection 3.1, I took this example to illustrate the illegitimacy of remnant scrambling in cases where the antecedent of the unbound trace has also undergone scrambling; cf. (120-a). A slightly more general way of stating this would be (120-b).

\[(120) \quad \text{a. There are no unbound scrambling traces in scrambled items.}
\]
\[
\text{b. There are no scrambling traces in scrambled items.}
\]

Clearly, if the descriptive generalization in (120-b) can be derived, both illicit remnant scrambling in (119) and the illicit cases of scrambling in (117) (with derivations as in (118)) are accounted for. If, on the other hand, only the generalization in (120-a) can be derived from independent assumptions, it seems as though the problem with the data in (117) persists. For the time being, let us assume that (120-b) does indeed follow in one way or another (I will address this issue in some detail in chapter 5).

If so, there is no problem with (117) anymore, even though chain interleaving in a derivation like (118) is not ruled out as such.

There are other cases of apparently illicit chain interleaving that take the general form of (114); but I would like to contend that they either involve a violation of locality, economy or cyclicity constraints as discussed so far or can be explained away, as in the case of (118).

Concluding this subsection, it has proven possible to account for illicit cases of chain interleaving in a derivation by the interaction of the revised versions of Fewest Steps and Last Resort argued for in chapter 2. The interaction of these constraints, however, is not fully equivalent to the approach pursued by Collins (1994) that rests on the standard notion of Fewest Steps. In particular, certain cases of chain interleaving that are precluded under the standard approach are now allowed; and I have tried to argue that this result is indeed a desirable one, given data such as (104) that involve successive-cyclic *wh*-movement from deeply embedded clauses in German.

Much more could be said about the interaction of extraposition and extraction in the present framework. For the time being, though, I will highlight only one further consequence that the analysis might have; I will argue that an otherwise unexpected Anti-Freezing effect can be accounted for by invoking the idea that invisible extrapo-
7. (Anti-) Freezing and String-Vacuous Scrambling

7.1. The Problem: Unexpected Anti-Freezing

Under the remnant movement approach, PP$_2$ in (121-a) and NP$_2$ in (121-b) occupy (IP-) left-adjoined positions as a result of a preceding scrambling operation that has removed these items from the VP:

(121) a. [VP t$_2$ Gerechnet], hat wie immer [PP damit]$_2$ keiner
counted has as always therewith no-one

b. [VP t$_2$ Gelesen], hat gestern [NP ein Buch darüber]$_2$ der Fritz
read has yesterday a book$_{acc}$ about that ART Fritz$_{nom}$

VP topicalization produces an Anti-Freezing effect, for reasons discussed at length. However, given what has just been said about the derivation in (118), we would expect a Freezing effect to show up if the sentences in (121) were to involve an additional scrambling operation that removes an item from the scrambled XP$_2$ (the R-pronoun da and the PP darüber, respectively). As shown in (122), this prediction is borne out:

(122) a. *[VP t$_2$ Gerechnet], hat da$_1$ wie immer [PP t$_1$ mit]$_2$ keiner t$_3$
counted there as always with no-one

b. *[VP t$_2$ Gelesen], hat darüber$_1$ gestern [NP ein Buch t$_1$]$_2$ der Fritz
read has about that yesterday a book$_{acc}$ ART Fritz$_{nom}$

Now, consider the examples in (123), which differ from their counterparts in (121) only insofar as PP$_2$ and NP$_2$ have undergone *string-vacuous* scrambling, according to present assumptions:

50Another interesting consequence of the present analysis of extraposition is related to binding theory. At first sight, it might look as though the hypothesis that right-adjunction can always go to any kind of XP faces empirical problems. Thus, Baltin (1983), Reinhart (1983), and Culicover & Rochemont (1990) claim that extraposition has binding-theoretic effects in English and that there is a difference between extraposition to VP and extraposition to IP in this respect. (Also see Fanselow (1987) and Grewendorf (1988) for the same kind of argument with respect to German.) Such a view is not compatible with the assumption that extraposition of some item α must end in a CP-adjoined position if, e.g., wh-movement out of α to a higher SpecC position is to take place. However, upon closer inspection it appears that the evidence from binding theory is by far not as decisive as one might assume (cf., e.g., the contrast between Reinhart’s and Culicover & Rochemont’s assumptions); moreover, as observed by Büring & Hartmann (1997), there is reason to believe that the base position is much more important than the derived (extraposition) position for the evaluation of binding options. For reasons of space and coherence, though, I will abstract away from these issues in what follows.
Before I try to tackle this problem, I would like to briefly focus on another peculiar property related to string-vacuous scrambling in remnant movement contexts.

7.2. Categorial Selectivity

It has often been observed (cf. Webelhuth (1987), Stechow & Sternefeld (1988), Frey & Tappe (1991), Haider (1993), and Müller (1995), among others) that scrambling in German is categorically selective in the sense that certain kinds of categories do not scramble easily. This holds, e.g., for predicates in general (see chapter 5 below). It also holds for indefinite pronouns that take the form of \(wh\)-pronouns. The restriction is shown in (125-a) for predicates and in (125-b) for indefinite \(wh\)-pronouns:

\[
\text{(125) a. } \text{dass [AP roh], der Karl das Fleisch t\textsubscript{1} gegessen hat that raw ART Karl\textsubscript{nom} the meat\textsubscript{acc} eaten has}
\]

\[
\text{b. } \text{dass Antje was\textsubscript{1} gestern t\textsubscript{1} gelesen hat that Antje\textsubscript{nom} something yesterday read has}
\]

For present purposes, it is immaterial why scrambling does not lead to a perfectly acceptable result in these contexts. The important thing is that ceteris paribus, we expect exactly the same intermediate status to arise in the case of remnant VP topicalization, where the antecedent of the unbound trace is in a scrambling position. If such scrambling is not string-vacuous, this prediction is borne out, as (126) shows:

\[
\text{(126) a. } \text{[VP t\textsubscript{1} Gegessen], hat der Karl [AP roh], das Fleisch t\textsubscript{2} eaten has ART Karl\textsubscript{nom} raw the meat\textsubscript{acc}}
\]
b. ??[VP t1 Gelesen]2 hat Antje was1 gestern t2 read has Antje something yesterday

However, as noted by Haider (1991, 29) and Jochen Geilfuß (p.c.), if scrambling is string-vacuous, the weak ban on scrambling of indefinite pronouns that have the form of *wh*-pronouns is lifted; cf. (127-b). It seems to me that the same goes for the weak prohibition against predicate scrambling; cf. (127-a):

(127) a. [VP t1 Gegessen]2 hat der Karl das Fleisch [AP roh]1 t2 eaten has ART Karlnom the meatacc raw
b. [VP t1 Gelesen]2 hat Antje gestern was1 t2 read has Antje yesterday something

To sum up so far, string-vacuous scrambling in remnant movement configurations fails to exhibit two properties that are usually associated with scrambling in German – it does not create a Freezing effect (even though it is not remnant movement by itself, i.e., even though the scrambled item does not contain an unbound trace), and it does not show categorial selectivity. It seems plausible to relate these two properties. In what follows, I will try to sketch a tentative solution to this problem.

7.3. String-Vacuous Scrambling as Extraposition

If the remnant movement approach is to be maintained in light of examples such as those in (124) (which are repeated here for convenience in (128)), it seems that there are two possible ways out.

(128) a. [VP t2 Gerechnet]3 hat da1 wie immer keiner [PP t1 mit]2 t3 counted has there as always no-one with
b. [VP t2 Gelesen]3 hat darüber1 gestern der Fritz [NP ein Buch t1]2 t3 read has about that yesterday ART Fritznom a bookacc

On the one hand, one might want to modify the theory of barriers and locality, to the effect that XP2 in (128) is not an island even though it occupies a left-adjoined scrambling position.51 On the other hand, one might try to show that string-vacuous scrambling is not the only option available for PP2 and NP2 in (128); rather, it might be the case that these items have undergone some other kind of movement that exempts them from inducing a Freezing effect. It is this latter strategy that I would like to

51Such an approach is pursued by den Besten & Webelhuth (1990, 87-91), who suggest that either scrambling does not create a barrier if it is highly local or, alternatively, all instances of remnant movement are reconstructed at LF and S-structure extraction is classified as legitimate if adjacency of XP2 and the head of a reconstructed VP can be accomplished at LF.
pursue here.

Note first that PP\textsubscript{2} and NP\textsubscript{2} in (128) occupy right-peripheral positions in their respective clauses. Hence, it could in principle be possible that these items are extraposed. Suppose that this is so and that the landing site is a CP-right-adjoined position. If that is so, the Anti-Freezing effect with movement of PP\textsubscript{2} and NP\textsubscript{2} in (128) is explained. (128-a), e.g., can have the following derivation:

(129) a. \textit{D-Structure Representation:}
 - hat wie immer keiner [\textit{VP} [\textit{PP} da\textsubscript{1} mit \textit{t} \textit{2} gerechnet \textit{t} \textit{3}]
 - hat da\textsubscript{1} wie immer keiner [\textit{VP} [\textit{PP} t\textsubscript{1} mit \textit{t} \textit{2} gerechnet \textit{t} \textit{3}]
 - extraposition of PP\textsubscript{2} to CP:
 - hat da\textsubscript{1} wie immer keiner [\textit{VP} t\textsubscript{2} gerechnet \textit{t} \textit{3} [\textit{PP} t\textsubscript{1} mit \textit{t} \textit{2}]
 - topicalization of VP\textsubscript{3}:
 - [\textit{VP} t\textsubscript{2} gerechnet \textit{t} \textit{3} hat da\textsubscript{1} wie immer keiner t\textsubscript{3} [\textit{PP} t\textsubscript{1} mit \textit{t} \textit{2}]

This derivation respects all the locality, economy, and cyclicity constraints adopted so far: Extraction of NP\textsubscript{1} from PP\textsubscript{2} takes place while PP\textsubscript{2} is still in situ (so the Barriers Condition is fulfilled); extraposition of PP\textsubscript{2} turns CP into a cyclic node, but subsequent VP topicalization ends up in the same minimal residue, in accordance with the Strict Cycle Condition.\footnote{For the sake of simplicity, I abstract away from the distinction between CP and TopP here. Since TopP is dominated by CP, PP extraposition in the second step must actually end up in a TopP-adjoined position, if nothing more is said. See chapter 6 for related remarks.}

If this analysis is on the right track, we can expect that minimally different cases in which we can see that there is no ambiguity between scrambling and extraposition, with only the former option being possible, should result in illformedness. Although the data are quite murky here and judgements are not solid, it seems to me that this prediction is borne out, at least as a strong tendency. To see this, consider first the sentences in (130), which are analogous to those in (128) and well formed:

(130) a. [\textit{VP} t\textsubscript{2} Rechnen können \textit{t} \textit{3} hat da\textsubscript{1} keiner [\textit{PP} t\textsubscript{1} mit \textit{t} \textit{2} count can has there no-one\textsubscript{nom} with]
 - hat da\textsubscript{1} keiner [\textit{VP} [\textit{PP} t\textsubscript{1} mit \textit{t} \textit{2} gerechnet \textit{t} \textit{3}]
 b. [\textit{VP} t\textsubscript{2} Lesen wollen \textit{t} \textit{3} hat darüber\textsubscript{1} keiner [\textit{NP} ein Buch t\textsubscript{1} \textit{2} read want to has about that no-one\textsubscript{nom} a book\textsubscript{acc}]

Here, the topicalized VP is headed by a modal verb that embeds the VP headed by the lexical verb; this latter VP contains an unbound trace of XP\textsubscript{2}. Nothing speaks against assuming that PP\textsubscript{2} and NP\textsubscript{2} are extraposed, and this accounts for the wellformedness of the sentences. Of course, the VPs headed by the lexical verbs can also undergo topicalization alone, thereby creating an unbound trace of XP\textsubscript{2}, as shown in (131):
7. (Anti-) Freezing and String-Vacuous Scrambling

But note that extraction from XP$_2$ has not taken place in (131). As soon as such extraction occurs, the resulting sentence is significantly degraded. Compare the sentences in (130) with those in (132):

(132) a. ??[VP t$_2$ Rechnen]$_1$, hat keiner [PP mit]$_2$ [VP t$_4$ können]$_3$
 count has no-one$_{nom}$ therewith can
b. ??[VP t$_2$ Lesen]$_1$, hat keiner [NP ein Buch darüber]$_2$ [VP t$_4$
 read has no-one$_{nom}$ a book$_{acc}$ about that
 wollen]$_3$
 want to

This conforms to expectations: If PP$_2$ and NP$_2$ are scrambled, this will invariably result in a Freezing effect; and if these items are extraposed, extraposition cannot possibly have ended up in a CP-adjoined position due to the intervening embedding verb that is the head of VP$_3$. Extraposition could only have ended up in a right-adjoined position of VP$_4$ (with the lower VP$_4$ segment subsequently undergoing topicalization); but in that case, a violation of the Strict Cycle Condition will occur for reasons discussed in subsection 5.2.2 – simultaneous right- and left-adjunction to VP$_4$ is excluded, and if XP$_1$ is scrambled to IP before XP$_2$ is extraposed to VP$_4$ (as required by the Barriers Condition), the Strict Cycle Condition is violated.

The same point can be made with instances of long-distance remnant topicalization. The examples in (133) show that successive-cyclic long-distance remnant topicalization is an option in German (see subsection 3.3.3 of chapter 5 for more discussion):

(133) a. [VP t$_2$ Gerechnet]$_1$, denke ich [CP t'$_3$ dass keiner [PP d$_4$ mit]$_2$ t$_3$ hat
 counted think I that no-one$_{nom}$ therewith has
b. [VP t$_2$ Gelesen]$_1$, glaubt sie [CP t'$_3$ dass keiner [NP ein Buch darüber]$_2$
 read thinks she that no-one$_{nom}$ a book$_{acc}$ about that
 hat]
 has

Here, the embedded clause is verb-final; the auxiliary hat stays in I. Given the presence of the auxiliary in I, XP$_2$ cannot possibly be right-adjoined to CP in these sentences; rather, XP$_2$ must have undergone either string-vacuous scrambling or local extraposition to a VP$_3$-adjoined position. This state of affairs predicts that PP$_2$ and NP$_2$ are islands for extraction in this construction; and as shown by the data in (134), this is indeed (by and large) the case:
Chapter 4. Anti-Freezing

If the presence of a verb-final head (that precludes the option of analyzing the sentence via extraposition to CP) is responsible for the illformedness of the examples in (134), it should be the case that V/2 movement in the embedded clauses turns these examples into legitimate ones. As shown by the data in (135), this is so:

(135) a. [VP t2 Gerechnet]3, denke ich [CP t1′ dass da1 keiner [pp t1 mit]2 hat counted think I that there no-one with has

b. [VP t2 Gelesen]3, glaubt sie [CP t1′ dass darüber1 keiner [np ein Buch read thinks she that about that no-one a book

Thus, by and large, it seems to me that by reanalyzing string-vacuous scrambling as extraposition to CP in examples like those in (124), the Anti-Freezing effect with movement of XP2 can be explained. This analysis raises a number of consequences, though, one of which I will now address.

Recall from subsection 7.2 that apparent cases of string-vacuous scrambling in remnant movement configurations do not exhibit categorial selectivity as normally occurs with scrambling; cf. the examples in (127). If string-vacuous scrambling can be reanalyzed as extraposition in these cases, the fact that restrictions on scrambling are apparently violated by the construction does not come as a surprise. However, it is also not the case that extraposition can affect any kind of category equally well. Thus, as noted in subsection 5.1.2, NPs can only undergo regular instances of extraposition in German if they are heavy (or focussed). Similarly, it turns out that secondary predicates and indefinite pronouns that take the form of wh-pronouns normally cannot undergo extraposition very well either. Thus, consider the contrast between the pair of sentences in (136), where regular extraposition is involved, and the pair of sentences in (137) (= (127)), where I have suggested that extraposition also occurs:

(136) a. dass der Karl das Fleisch t1 gegessen hat [ap roh]1 that ART Karl the meat eaten has raw

b. dass gestern Antje t1 gelesen hat was3 that yesterday Antje read has something

(137) a. [vp t1 Gegessen]3 hat der Karl das Fleisch t2 [ap roh]1 eaten has ART Karlnom the meatacc raw
7. (Anti-) Freezing and String-Vacuous Scrambling

b. \[VP \ t_1 \text{Gelesen} \ t_2 \text{hat} \text{Antje gestern} \ t_2 \text{wäs} \]

Under present assumptions, this means that the (im-) possibility of extraposition of some item \(\alpha \) cannot be an inherent property of \(\alpha \), but must be related to the syntactic context. Indeed, it seems that recent research according to which extraposition options are at least partly determined by phonological conditions (cf. in particular Truckenbrodt (1994), but also Büring & Hartmann (1997); also see the problem noted in footnote 22 above) might offer a clue as to why extraposition is severely degraded in (136), but possible in (137). I will not pursue the matter here, but it is clear that some account along the lines just indicated must be given for the contrast between (136) and (137) if the approach to unexpected Anti-Freezing with (apparent) string-vacuous scrambling in remnant movement configurations is to be successful.

As before, many questions are left open; in particular, it seems that the approach to (Anti-) Freezing and remnant movement developed here is still somewhat too permissive (which is ultimately due to the fact that the proposed system permits ample left- and right-adjunction).

53 Admittedly, this reasoning implies that the lack of categorial selectivity noted in subsection 7.2 could in principle also be reconciled with the idea that what is involved here is always string-vacuous scrambling. Under this view, however, one would have to motivate the idea that phonological factors are responsible for the weak ban on, e.g., predicate scrambling in normal contexts – a task that strikes me as harder than the one just envisaged.

54 Let me just mention one construction that is no longer blocked under the assumptions made in this section. Consider the sentences in (i):

(i) a. \[VP \{ VP \text{Da1} \ t_2 \text{gerechnet} \ t_2 \text{hat} \text{der} \text{Fritz} \text{nicht} \ t_3 \]
 \[
 \text{there} \quad \text{counted} \quad \text{has} \quad \text{ART} \quad \text{Fritz} \quad \text{not} \quad \text{with} \t_3
 \]
 b. \[VP \{ VP \text{Da1} \ t_2 \text{gerechnet} \ t_2 \text{hat} \text{der} \text{Fritz} \{ \text{pp1 mit} \ t_2 \text{ nicht} \ t_3 \]
 \[
 \text{there} \quad \text{counted} \quad \text{has} \quad \text{ART} \quad \text{Fritz} \quad \text{not} \quad \text{with} \t_3
 \]
 c. \[VP \{ VP \text{Da1} \ t_2 \text{gerechnet} \ t_2 \text{hat} \text{der} \text{Fritz} \text{nicht} \{ \text{pp1 mit} \ t_2 \text{ nicht} \ t_3 \]
 \[
 \text{there} \quad \text{counted} \quad \text{has} \quad \text{ART} \quad \text{Fritz} \quad \text{not} \quad \text{with} \t_3
 \]

Recall that a combination of PP extraposition and NP scrambling to the same VP, as in (i-a) (= (96)), is ruled out with the help of assumption (94). (i-b) is also excluded. Here, a scrambled PP contains a trace of an NP that has also undergone scrambling, which is impossible (see the following chapter for extensive discussion). However, (i-c) (which is taken from den Besten & Webelluth (1990, 82)) now poses a problem, given that right-peripheral categories like PP2 in (i-c) do not have to be analyzed in terms of string-vacuous scrambling (in which case the ungrammaticality would follow on a par with (i-b)), but can show up in their surface positions as a result of extraposition to CP. Thus, as it stands, (i-c) can have a derivation that does not violate any constraints: Scrambling of NP1 to VP is followed by right-adjunction of PP2 to CP (TopP), which in turn is followed by remnant VP topicalization. To solve this problem, additional assumptions appear necessary. Still, it should be noted that analogous constructions involving not NP scrambling from PP, but PP scrambling from NP are not as deviant; thus, the contrast that fails to show up (in a strong form, at least) in (i-bc) does occur in (ii-ab):

(ii) a. \[VP \{ VP \text{Da1} \ t_2 \text{gelesen} \ t_2 \text{hat} \text{ein Buch} \text{t2 kein} \text{er} \t_3 \]
 \[
 \text{about} \quad \text{read} \quad \text{has} \quad \text{a} \quad \text{book} \quad \text{no-one} \t_3
 \]
speculative nature of this section, and come to a conclusion.

8. Conclusion

Let me summarize the main findings of this chapter. First, and perhaps most importantly, the systematic Anti-Freezing effect that arises with typical instances of remnant movement is accounted for in a straightforward way without invoking construction-specific assumptions (e.g., about unbound traces). Given the derivational approach to movement developed in chapter 2, the non-occurrence of Freezing with remnant movement is exactly what we are led to expect. Second, it has turned out that the Anti-Freezing effect that regularly arises with extraposition (of CP, PP, and NP) in SOV languages is amenable to the same kind of analysis, given the hypothesis that right-adjunction is possible to any kind of XP, including CP. According to this view, extraposition is possible without inducing a Freezing effect because it can be remnant movement. Third, I have advanced some pieces of independent corroboration of the analysis. One particularly interesting prediction of the present approach is that extraposition is expected to create a Freezing effect if it is not remnant movement, i.e., if it adjoins in a lower position than the preceding extraction operation (e.g., to VP). This prediction was shown to be borne out. Fourth, it has turned out that the account of Freezing effects with “low” extraposition requires a modification of the notion of minimal residue, to the effect that only the positions X-Adj, XP-Adj, and SpecX are in the minimal residue of X (i.e., that there is no recursion); this modification was shown to be independently called for. Fifth and finally, I have argued that data involving successive-cyclic wh-movement from multiply embedded CPs in German show that chain interleaving is not per se excluded (as predicted under the standard notion of Fewest Steps); rather, it is excluded only if it would induce improper movement, i.e., a PUB effect (as predicted under the revised versions of Fewest Steps and Last Resort argued for in chapter 2, for independent reasons). One thing that I left open in this chapter is how the apparent ban on (many cases of) remnant scrambling is to be derived. I turn to this issue and to other movement type asymmetries that show up with remnant movement in the following chapter.

b. ?\[\text{VP } \text{Darüber}_{1} \text{ [VP } t_{2} \text{ gelesen }_{1}, \text{] } \text{hat } \text{keiner } t_{3} \text{ [NP } \text{ein } \text{Buch } t_{2} \text{]}\]

about that read has no-one a book

The contrast in (ii) is what we are led to expect under present assumptions (since NP₂ can be extraposed in (ii-b), but not in (ii-a)). Judgements on all these data are fairly subtle, though, and vary a lot from speaker to speaker, so that it is unclear what theoretical conclusions are to be drawn from this evidence.
Chapter 5

Remnant Movement Asymmetries

1. Introduction

This chapter addresses the third peculiar property of remnant movement that was noted in section 3 of chapter 1, viz., that not all kinds of movement may affect remnant categories in the same way. More specifically, upon first glance it looks as though whereas remnant topicalization and remnant wh-movement are possible, remnant scrambling and remnant left dislocation are not. Since all these movement types may perfectly well affect complete, i.e., non-remnant categories, this might be taken to indicate that the behaviour of remnant categories differs significantly from that of other categories and that construction-specific constraints blocking illicit cases of remnant movement are called for. However, I will argue that this is not the case: First, the movement type asymmetries with remnant movement can be shown to be only apparent – upon closer scrutiny, it emerges that any movement type can in principle affect remnant XPs and that any movement type can be blocked under certain circumstances (having to do with the position of the antecedent of the unbound trace). And second, the observed constraint on remnant movement can be made to follow from a general principle of Unambiguous Domination that covers bound and unbound traces alike (i.e., that does not apply specifically to remnant movement constructions) and that can be shown to be derivable, at least to a large extent, from a modification of Last Resort that is independently motivated because it integrates the residue of the Shortest Path Condition (viz., the Minimal Link Condition of Chomsky (1995)).

I proceed as follows: In section 2, the apparent remnant movement asymmetries (topicalization and wh-movement vs. scrambling and left dislocation) are laid out. Section 3 presents conflicting evidence in the guise of illicit examples of remnant wh-movement and legitimate instances of remnant scrambling and remnant left dislocation. Section 4 introduces the principle of Unambiguous Domination that accounts for the illegitimate cases of remnant movement discussed so far. Sections 5 and 6 contain some refinements of the proposed analysis, and section 7 finally shows how the main effects of Unambiguous Domination can be derived from a revised version of
2. The Phenomenon

2.1. Remnant Topicalization vs. Remnant Scrambling

From the discussion in the preceding chapters, it is clear that topicalization can affect remnant infinitives (coherent infinitives), remnant VPs, remnant NPs, and remnant APs. However, if one looks at minimally different examples involving scrambling of these remnant XPs, the result is ill formed.

2.1.1. Coherent Infinitives

This asymmetry between topicalization and scrambling has been observed for coherent infinitives (i.e., remnant infinitives from which scrambling has taken place) by a number of people, among them Fanselow (1991, 133; 1992), Grewendorf & Sabel (1994, 284ff), Frank, Lee & Rambow (1992, 152), Stechow (1992, 222ff), and Haider (1993, 234ff). Relevant examples that show this apparent contrast between topicalization and scrambling are given in (1) and (2):

(1) a. \[α_t_{1} \text{Zu lesen } \] hat [NP das Buch]_{1} keiner \ t_{3} versucht
to read has the book no-one tried
b. \[α_{t_{1} t_{2}} \text{Zu reparieren }]_{3} \text{hat der Frank dem Matthias}_{1}\ _{den Drucker}_{2} \ t_{3}
to fix has ART Frank ART Matthias_{dat} the printer_{acc}
versprochen
promised

(2) a. *dass \[α_{t_{1}} \text{zu lesen }]_{3} \text{[NP das Buch]}_{1} \text{keiner } \ t_{3} \text{versucht hat}
that to read the book_{acc} no-one tried has
b. *dass der Frank \[α_{t_{1} t_{2}} \text{zu reparieren }]_{3} \text{dem Matthias}_{1} \ _{den Drucker}_{2} \ t_{3}
that ART Frank to fix ART Matthias_{dat} the printer_{acc}
versprochen hat
promised has

As noted in subsection 3.3 of chapter 1, this asymmetry breaks down in the case of complete infinitives. Both topicalization and scrambling can affect the infinitive if it does not contain a trace that becomes unbound after movement; cf. (3) and (4).

(3) a. \[\alpha \text{Das Buch zu lesen]}_{3} \text{hat keiner } \ t_{3} \text{versucht}
the book_{acc} to read has no-one tried
2. The Phenomenon

b. [\(\alpha\) Dem Matthias den Drucker zu reparieren] hat der Frank t3
 ART Matthias_dat the printer_{acc} to fix has ART Frank_{nom} versprochen
 promised

(4) a. dass [\(\alpha\) das Buch zu lesen] keiner t3 versucht hat
 that the book to read no-one tried has

 b. dass [\(\alpha\) dem Matthias den Drucker zu reparieren] der Frank t3
 that ART Matthias_dat the printer_{acc} to fix ART Frank
 versprochen hat
 promised has

2.1.2. Remnant VPs

Now consider remnant VPs. Remnant VP topicalization is, of course, the construction
that Thiersch (1985) and den Besten & Webelhuth (1987) motivated remnant move-
ment for in the first place (cf. chapter 1). Some examples are given in (5):

(5) a. [\(\alpha\) VP t1 Gelesen] hat das Buch1 keiner t3
 read has the book no-one

 b. [\(\alpha\) VP Dem Peter t2 gegeben] hat die Claudia ein Buch2 t3
 ART Peter_dat given has ART Claudia_{nom} a book_{acc}

 c. [\(\alpha\) VP t1 t2 Gegeben] hat die Claudia dem Peter1 ein Buch2 t3
 given has ART Claudia_{nom} ART Peter_dat a book_{acc}

 d. [\(\alpha\) VP Dem Peter ein Buch gegeben] hat die Claudia gestern t3
 ART Peter_dat a book_{acc} given has ART Claudia yesterday

In (5-a) (cf. (1-a) from chapter 1), a VP that contains the trace of a scrambled di-
rect object is topicalized. (5-b) shows that in VPs headed by triadic verbs, a direct
object trace may occur unbound after topicalization. Furthermore, it can even be the
case that both arguments in a double object construction undergo scrambling prior to
VP-topicalization, as in (5-c). Finally, (5-d) instantiates a case of topicalization of a
complete, i.e., non-remnant, VP with two objects.

In contrast, scrambling of remnant VPs results in ungrammaticality; this is shown
in (6-a) through (6-c) (also see Grewendorf (1995, 1306-1307)).

(6) a. *dass [\(\alpha\) VP t1 gelesen] das Buch1 keiner t3 hat
 that read the book no-one has

 b. *dass [\(\alpha\) VP dem Peter t2 gegeben] die Claudia ein Buch2 t3 hat
 that ART Peter_dat given ART Claudia a book_{acc} has

 c. *dass [\(\alpha\) VP t1 t2 gegeben] die Claudia dem Peter1 ein Buch2 t3 hat
 that given ART Claudia ART Peter_dat a book_{acc} has

The strong illformedness of the examples in (6) is evidently due to the fact that an
unbound trace occurs in the scrambled VP. If a complete VP that does not contain an
object trace undergoes scrambling, as in (7), the resulting sentence improves significantly:

(7) dass [VP dem Peter ein Buch gegeben]_3, die Claudia gestern nicht t3, hat

Still, as indicated, (7) is far from being perfect. Rather (as was noted in footnote 14 of chapter 4), it has an intermediate status and is possible only if a certain intonation pattern is present, viz., what Jacobs (1982) calls I-topicalization ("intonational topicalization"). I-topicalization is typically characterized by a rising tone on the moved item (in this case, on the direct object immediately preceding the verb of the moved VP) and a falling tone on a constituent that follows the moved item but generally precedes the trace of the moved item (here, on the negation nicht ("not")).² At present it is immaterial why exactly VP scrambling (more generally, predicate scrambling; see the following subsection) is per se somewhat marginal in German and why it requires the I-topicalization intonation pattern to be acceptable at all (see Webelhuth (1987), Stechow & Sternefeld (1988, 46ff), Reis & Rosengren (1992), Haider (1993, 197ff), and Müller (1995, 153-158)). What is relevant, though, is that despite the intermediate status that is generally associated with all kinds of predicate scrambling in German, there is still a clear contrast to cases of remnant predicate scrambling as in (6); it is this contrast that is in need of an explanation.

2.1.3. Remnant APs

Let me now turn to APs. Note first that remnant APs can undergo topicalization in German:

(8) [AP Stolz t1]_2 ist der Fritz gestern [PP auf sein Kind]_1, nicht t2 gewesen

Again, however, remnant AP movement is impossible if the movement type affecting AP is scrambling. This is shown by the illformedness of (9-a) and (9-b):

(9) a. *dass [AP stolz t1]_2 der Fritz [PP auf sein Kind]_1, nicht t2 gewesen ist

b. *dass der Fritz [AP stolz t1]_2 nicht [PP auf sein Kind]_1, t2 gewesen ist

As was the case with VPs, AP scrambling in German has an intermediate status and requires the presence of an I-topicalization pattern to be acceptable at all (this shows

²Often, I-topicalization indicates reconstruction or "scope inversion," but this does not always seem to be the case. See Büring (1996) for extensive discussion.
that the restriction in question is one on predicates in general, and not simply on VPs; but the examples in (10), which involve scrambling of a complete AP, are much better than those in (9), which again strongly suggests that there is a specific constraint on remnant movement at work in (9) that overrides the marginality ascribable to predicate scrambling as such.3

(10) a. ?dass [AP stolz auf sein Kind] der Fritz nicht t2 gewesen ist that proude of his child ART Fritz not been is
b. ??dass der Fritz [AP stolz auf sein Kind] nicht t2 gewesen ist that ART Fritz proud of his child not been is

2.1.4. Remnant NPs

Finally, recall that topicalization of a remnant NP is possible in German:

(11) a. [NP Ein Buch t1] hat Antje [PP über die Liebe] t2 gelesen a book has Antje about the love read
b. [NP Ein Buch t1] hat [PP über die Liebe] niemand t2 gelesen a book has about the love no-one read

In both examples, a PP argument is extracted from an object NP. In (11-a) the PP has undergone scrambling to VP; in (11-b) it is adjoined to IP. In addition, the remnant NP is topicalized in both cases without inducing ungrammaticality.

In contrast to that, scrambling of a remnant NP invariably results in ungrammaticality. Consider (12):

(12) *dass niemand [NP ein Buch t1] gestern [PP über die Liebe] t2 gelesen that no-one a book yesterday about the love read
 hat has

Here, a remnant NP from which a PP has been extracted and adjoined to VP via scrambling is also adjoined to VP, producing illformedness. Similarly, IP-adjunction of a remnant NP is prohibited:

(13) *dass [NP ein Buch t1] niemand [PP über die Liebe] t2 gelesen hat that a book no-one about the love read has

The ungrammaticality of (13) cannot be due to the fact that an indefinite NP is scrambled in front of the subject – bare negative quantifiers in SpecI, unlike some other kinds of NPs in German, tolerate scrambling of an indefinite NP in front of the subject position. Thus, if an NP that does not contain an unbound trace is scrambled in the

3Notice also that I-topicalization does not help to improve the examples in (9) and (6).
same context, the result is fine:

\[(14) \text{ dass [NP ein Buch [PP über die Liebe]] niemand t}_{2} \text{ gelesen hat that a book about the love no-one read has}\]

Summarizing so far, a very simple generalization seems to emerge – remnant categories can be topicalized, but they cannot undergo scrambling. In the following two subsections, I consider two further movement types, viz., \(wh\)-movement and left dislocation, in their behaviour with respect to remnants.

2.2. Remnant Wh-Movement

As shown by the examples in (15), remnant NPs can undergo \(wh\)-movement to SpecC in German:

\[(15) a. \text{ [NP Was für ein Buch } t_{1}] \text{ hast du [PP über die Liebe] } t_{2} \text{ gelesen ? what for a book you have about the love read}\]

\[\text{This implies that the weak ban on predicate scrambling that creates an intermediate status in all cases of VP and AP scrambling does not extend to NPs, just as it did not affect coherent infinitives – the latter two categories function as arguments in the examples under discussion, not as predicates.}\]

\[\text{The prohibition against remnant scrambling is also active in languages like Japanese (cf. Saito (1992, 83), Kitahara (1994, 203-205), and Koizumi (1995, 185-194), among others) and Korean (Shin-Sook Kim (p.c.)). For reasons which will not concern me here (but cf. Müller & Sternefeld (1993; 1996)), Japanese and Korean, in contrast to German (see the discussion in subsection 4.2 of chapter 2), permit long-distance scrambling of arguments from finite clauses, as in the Japanese example (i):}\]

\[(i) \text{ [NP Sono hon-o]} \text{ John-ga [CP Mary-ga } t_{1} \text{ yonda-to]}_{2} \text{ itta (koto) that book_{acc} John_{nom} Mary_{nom} read-COMP said fact}\]

\[\text{It is also possible that a whole embedded CP undergoes long-distance scrambling in front of the matrix subject, as in the Japanese example (ii-a). However, what may never occur is a combination of long-distance scrambling of an NP from an embedded CP, followed by scrambling of the remnant CP in front of this NP, as in (ii-b) (both examples are taken from Kitahara (1994, 203)):}\]

\[(ii) a. \text{ [CP Mary-ga [NP sono hon-o]}_{1} \text{ yonda-to]}_{2} \text{ Bill-ga [CP John-ga t}_{2} \text{ itta-to]}_{2} \text{ omotteiru (koto) that book_{acc} read-COMP Bill_{nom} John_{nom} said-COMP think fact}\]

\[\text{b. [CP Mary-ga } t_{1} \text{ yonda-to]}_{2} \text{ [NP sono hon-o]}_{1} \text{ John-ga t}_{2} \text{ itta (koto) that book_{acc} John_{nom} said fact}\]

Thus, however one derives the illicit cases of remnant scrambling in German, it seems reasonable to postulate that cases like (ii-b) in Japanese (and Korean) should be excluded in the same way.

\[\text{Recall that these examples have already been briefly discussed in subsection 3.3 of chapter 1 and then, in somewhat more detail, in subsection 4.2.2 of chapter 3 (with respect to the Proper Binding Condition) and in subsection 3.1 of chapter 4 (with respect to Freezing). Recall also that the slight deviance of (15-b) was attributed in chapter 3 to a Specificity effect induced by the scrambling operation that removes the PP über die Liebe ('about love') from the definite which-NP.}\]
b. ?[\text{NP Welches Buch} t_1 \text{, hat [PP über die Liebe} t_2 \text{, niemand t_2 gelesen ?}}

Similarly, remnant APs can undergo \textit{wh}-movement, just as they can undergo topicalization. This is shown in (16):

(16) [\text{AP Wie stolz} t_1 \text{, ist der Fritz [PP auf sein Kind} t_2 \text{, gestern t_2 gewesen ?}}

Thus, the conclusion can be drawn that remnant \textit{wh}-movement in German patterns with remnant topicalization and not with remnant scrambling.

Given this state of affairs, an interesting prediction arises for cases of apparent clausal pied piping of infinitives with relativization in German, as in (17-a).

(17) a. ein Freund [\text{CP}_{dem_1} t_1 \text{, das Fahrrad zu reparieren der Fritz}]
a friend who_{dem_1} the bicycle_{acc} to fix ART Fritz_{nom}

b. ... [\text{CP}_{dem_1} t_1 \text{, das Fahrrad zu reparieren}] C der Fritz t_2 versprochen hat]
c. ... [\text{CP}_{dem_1 C} [\alpha_2 t_1 \text{, das Fahrrad zu reparieren}] der Fritz t_2 versprochen hat]

There is disagreement as to whether (17-a) should be analyzed in terms of genuine pied piping of the infinitive, i.e., as movement of a complete infinitive to the specifier of the relative clause CP, as in (17-b) (cf. van Riemsdijk (1985)), or in terms of a co-occurrence of scrambling of the infinitive to IP and movement of the relative pronoun to the specifier of the relative clause CP, as in (17-c) (cf. Grewendorf (1988)). With this in mind, consider (18-a):

(18) a. *ein Freund [\text{CP}_{dem_1} t_1 \text{, t}_3 \text{, zu reparieren das Fahrrad}_3 \text{, der Fritz}]
a friend who_{dem_1} to fix the bicycle_{acc} ART Fritz_{nom}

b. [\alpha_1 t_1 \text{, t}_2 \text{, Zu reparieren}] hat der Fritz dem Frank_1 \text{, das Fahrrad}_2

versprochen has ART Fritz_{nom} ART Frank_{dat} the bicycle_{acc}

promised

c. *dass [\alpha_1 t_1 \text{, t}_2 \text{, zu reparieren}] der Fritz dem Frank_1 \text{, das Fahrrad}_2

that to fix ART Fritz_{nom} ART Frank_{dat} the bicycle_{acc}

promised has

In (18-a), fronting of an incomplete infinitive takes place in the pied piping construction (i.e., of an infinitive that contains an unbound scrambling trace), and the result is ungrammatical (cf. van Riemsdijk (1985, 182) for the original observation). This is to
be expected if cases of apparent clausal pied piping in German involve scrambling, as proposed by Grewendorf (1988) (cf. (18-c)), but necessitates additional assumptions if real pied piping is involved, as suggested by van Riemsdijk (1985) – in the latter approach, remnant infinitive fronting in (18-a) is viewed as a \textit{wh}-movement (-like) operation, and it should therefore behave like other instances of specifier movement (such as topicalization, cf. (18-b)), rather than like scrambling.

2.3. Remnant Left Dislocation

Truckenbrodt (1992), elaborating on some pertinent remarks in Haider (1990, 100f), observes that whereas topicalization of remnant VPs is possible, left dislocation of remnant VPs is not. The illegitimacy of remnant VP left dislocation in German is shown in (19):

\begin{itemize}
 \item a. *[\text{VP t$_1$ Gelesen }], das hat das Buch$_1$ keiner t read that has the book no-one
 \item b. *[\text{VP Dem Peter t$_2$ gegeben }], das hat die Claudia ein Buch$_2$ t ART Peter$_{dat}$ given that has ART Claudia$_{nom}$ a book$_{acc}$
 \item c. *[\text{VP t$_1$ t$_2$ Gegeben }], das hat die Claudia dem Peter$_1$ ein Buch$_2$ t given that has ART Claudia$_{nom}$ ART Peter$_{dat}$ a book$_{acc}$
\end{itemize}

In these examples, there is left dislocation of remnant VPs, resulting in ungrammaticality; (20), on the other hand, shows that left dislocation of a complete VP (including two objects in this case) is possible:

\begin{itemize}
 \item (20) [\text{VP Dem Peter ein Buch gegeben }], das hat die Claudia gestern t ART Peter$_{dat}$ a book$_{acc}$ given that has ART Claudia yesterday
\end{itemize}

\footnote{Note that the left dislocation data in (19) differ from their topicalization counterparts in (5) only in that a resumptive pronoun \textit{das} (‘that’) is present in the former and absent in the latter. It seems to me that the asymmetry between topicalization and left dislocation that can be observed here casts serious doubts on attempts to reduce one movement type to the other in German, as is suggested, inter alia, by Koster (1978), Cardinalletti (1986), Zwart (1993), and van Hoof (1995) (partially for Dutch) – topicalization and left dislocation behave differently in German. That said, it should be noted that a strong asymmetry between topicalization and left dislocation with respect to remnant movement does not seem to show up in Dutch; consider, for instance, the following examples from Zwart (1993, 109):

\begin{itemize}
 \item i. [\text{VP t$_1$ Gekust }], heeft Jan Marie$_1$ niet t$_2$ kissed has John$_{nom}$ Marie$_{acc}$ not
 \item b. [\text{VP t$_1$ Gekust }], dat heeft Jan Marie$_1$ niet t$_2$ that has John$_{nom}$ Marie$_{acc}$ not
\end{itemize}

For the time being, I will abstract away from these data; but see footnote 32.}
2. The Phenomenon

This pattern is very similar to that found with VP scrambling (abstracting away from the intervening predicate scrambling effect). Indeed, left dislocation seems to behave exactly like scrambling in this respect. Thus, left dislocation of a remnant NP (as in (21-a), cf. the corresponding topicalization case in (11-a)), a remnant AP (as in (21-b), cf. topicalization in (8)), or a coherent infinitive (as in (21-c), cf. topicalization in (1-a)) is also impossible:

(21) a. *[NP Ein Buch t₁], das hat Antje [PP über die Liebe t₁] gelesen
 a book that has Antje about the love read
 b. *[AP Stolz t₁], das ist der Fritz gestern [PP auf sein Kind t₁], nicht t
 proud that is ART Fritz yesterday of his child not
 gewesen
 been
 c. *[α t₁ Zu lesen t₁], das hat [das Buch t₁] keiner t versucht
 to read that has the book no-one tried

As shown in (22), minimally different examples in which a complete NP, AP, or infinitive undergoes left dislocation are perfectly grammatical:

(22) a. [NP Ein Buch über die Liebe t₁], das hat Antje t gelesen
 a book about the love that has Antje read

8 In (5), (6) and (19), I have systematically ignored examples involving movement of a VP that contains only the verb and a direct object in double object constructions. Indeed, in this case, remnant scrambling is somewhat better than in (6-a) – (6-c) and is more on a par with (7). Similarly, as noted by Truckenbrodt (1992), remnant left dislocation of VPs containing only a verb and a direct object is fully well formed, and thus patterns with (20) rather than with the sentences in (19). Cf. topicalization in (i-a), scrambling in (i-b), and left dislocation in (i-c):

(i) a. [VP (t₁')] Ein Buch (t₁) gegeben t₁, hat die Claudia dem Peter₁ t₁
 a book acc given has ART Claudia ART Peter₁ det
 b. ?dass [VP (t₁')] ein Buch (t₁) gegeben t₁, die Claudia dem Peter₁ nicht t₁ hat
 that a book acc given ART Claudia ART Peter₁ det not has
 c. [VP (t₁')] Ein Buch (t₁) gegeben t₁, das hat die Claudia dem Peter₁ nicht t
 a book acc given that has ART Claudia ART Peter₁ det not

Taken at face value, this might be regarded as an indication that the VPs in (i-abc) do not contain a trace of the indirect object. On the other hand, if one assumes (following Larson (1988)) that dative-bearing indirect objects have undergone movement to a Case-position from a position that is asymmetrically c-commanded by the direct object position at D-structure, then the moved VPs in (i) must be genuine remnant XPs containing unbound traces, at least in the base position to which the indirect object is dative-moved in order to receive Case (if this position is VP-internal, as suggested by Larson). Under these assumptions, a problem would arise for the generalization that remnants cannot undergo scrambling or left dislocation in German. For the time being, I ignore these potential complications; I will return to examples like (i-b) and (i-c) in section 5 below and show that they do not pose a problem for the approach I am going to advance.
Chapter 5. Remnant Movement Asymmetries

b. [AP Stolz auf sein Kind], das ist der Fritz gestern nicht t gewesen
 proud of his child that is ART Fritz yesterday not been

c. [α, Das Buch zu lesen], das hat keiner t versucht
 the book to read that has no-one tried

Thus, remnant left dislocation in German patterns with remnant scrambling, and not with remnant topicalization and remnant wh-movement.

2.4. A Preliminary Generalization

To sum up so far, the following preliminary generalization suggests itself:

(23) Generalization (preliminary):
 Remnant XPs can undergo topicalization and wh-movement, but not scrambling or left dislocation.

According to (23), it is an inherent property of a movement type to either license or prohibit remnants. And indeed, attempts have been made to derive such apparent movement type asymmetries as they are documented in (23). Thus, e.g., Frank, Lee & Rambow (1992), Stechow (1992), and Grewendorf & Sabel (1994), all noting the contrast between topicalization and scrambling in the case of coherent infinitives, try to identify intrinsic properties of these two movement types that lead to wellformedness in the case of remnant topicalization and to illformedness in the case of remnant scrambling.\(^9\) Along the same lines, Truckenbrodt (1992), observing the asymmetry between remnant VP topicalization and remnant VP left dislocation, assumes that it is an inherent property of left dislocation not to permit remnant movement, whereas no such ban is active with topicalization.\(^10\)

However, notwithstanding some theory-internal problems with all these approaches that I will not go into here (cf. Müller (1993, 413–422)), I believe that the generali-

\(^9\)Both Stechow (1992) and Frank, Lee & Rambow (1992) suggest that the relevant factor is the Proper Binding Condition (see chapter 3) and that unbound traces in topicalized items can fulfill this condition (either via LF reconstruction, as in Stechow’s approach, or via chain-binding, as in Frank, Lee & Rambow’s approach), whereas unbound traces in scrambled items cannot. In contrast, Grewendorf & Sabel (1994) propose that the relevant factor is the notion of barrier, and they go on to develop a theory of locality according to which scrambled items are invariably barriers, whereas topicalized items may or may not be barriers, depending on their position, the lexical properties of the embedding predicate, etc.

\(^10\)The actual implementation of this approach relies again on the Proper Binding Condition, assumed to hold at LF; Truckenbrodt (1992) suggests that topicalized items are always reconstructed, so that unbound traces can be prevented at LF (cf. subsection 4.1 of chapter 3), whereas left dislocated items are never reconstructed, so that unbound traces created by remnant left dislocation remain at LF, in violation of the proper binding requirement.
The Phenomenon

The reason is that closer inspection reveals that the situation is more complicated: The ability or inability to affect remnant categories is in fact not an intrinsic property of a given movement type. A first piece of evidence that points in this direction arises under the Predicate-Internal Subject Hypothesis.

As noted, several approaches to the apparent movement type asymmetries rely on a version of the Proper Binding Condition (PBC). In chapter 3, I have argued that all versions of the PBC should be dispensed with, leaving only a semantically motivated residue of this condition, viz., the requirement that semantic variables are syntactically bound at LF (see subsection 4.3 of chapter 3). But irrespective of this, let me mention just one observation that casts doubt on any approach to the apparent movement type asymmetries that relies on something like the PBC. This observation is related to the behaviour of seemingly unbound anaphoric items, like the reflexive pronoun sich, in moved XPs (see especially Barsi (1984; 1986) and Saito (1989) for relevant discussion in this context). As shown in (i), sich can occur in a scrambled NP, AP, infinitive, or VP (note that (i-b) and (i-d) are degraded for independent reasons because they involve predicate scrambling):

(i)

a. dass [NP ein Buch über sich₁], niemand₁ t2 gerne lesen würde
that a book about REFL no-one happily read would
b. dass [AP stolz auf sich₁] der Fritz₁ nie t2 gewesen ist
that proud of REFL ART Fritz never been is

c. dass [α sich₁ zu waschen]₁ keinem₁ mehr t2 versucht hat
that REFL to wash no-one anymore tried has

d. ?dass [VP sich₁ dem Peter gezeigt]₁ letzte Woche die Claudia₁ t2 hat
that REFL ART Peterd,dat shown last week ART Claudia₁,com has

Thus, there is a striking contrast between unbound lexical anaphors and unbound traces in scrambled items. Assuming both anaphors and traces to be subject to the PBC, the contrast between the data in (i) and corresponding examples involving remnant scrambling is unexplained. (Note, however, that under the Predicate-Internal Subject Hypothesis, the seemingly unbound anaphor sich would be bound even at S-structure in (i-bcd); under this hypothesis, only the NP scrambling case in (i-a) would make the point. I return to this issue directly.)

Basically the same conclusion applies in the case of left dislocation – as with scrambling, the pertinent examples (cf. (19) & (21)) improve a great deal if an unbound anaphor replaces a trace in the XP which has undergone left dislocation:

(ii)

a. [NP Ein Buch über sich₁]₁, das hat der Fritz₁ t gelesen
that a book about REFL that has ART Fritz read

b. [AP Stolz auf sich₁]₁, das ist Antje₁ jetzt endlich t
that proud of REFL that is Antje now finally

c. [α Sich₁ zu waschen], das hat dann keiner₁ mehr t versucht
that REFL to wash that has then no-one anymore tried

d. [VP Sich₁ dem Peter gezeigt], das hat letzte Woche die Claudia₁ t
that REFL ART Peterd,dat shown that has last week ART Claudia

(Again, only (i-a) is relevant under the Predicate-Internal Subject Hypothesis.) Thus, quite independently of the objections raised against the PBC in chapter 3, the fact that unbound lexical anaphors behave differently than unbound traces with respect to the issue of being contained in scrambled or left dislocated items strongly suggests that something like the PBC cannot be the correct means of deriving movement type asymmetries in the case of remnants.
2.5. Movement Type Asymmetries and Predicate-Internal Subjects

Suppose that subjects are base-generated VP-externally, as suggested by Kitagawa (1986), Larson (1988), Sportiche (1988), Speas (1990), Koopman & Sportiche (1991), Chomsky (1995), and many others. Suppose furthermore that they are generated in the SpecV position. Under these two assumptions, it is evident that an example like (24) (= (12) from chapter 1) must contain an unbound subject trace – according to this view, John has undergone Case-driven movement to SpecI prior to VP topicalization (cf. Roberts (1990, 392) for relevant discussion).

(24) \[\text{VP}\ t_1 \text{Kicked the dog } t_2 \text{ John}_1 \text{ never has } t_2 \]

Thus, as noted by Huang (1993) and Bayer (1993), given the Predicate-Internal Subject Hypothesis, there is a complete analogy between topicalization of the passivized VP in (25) (= (16) from chapter 1) and topicalization of the active voice VP in (24) – in both cases, an unbound trace shows up in the topicalized VP; the antecedent of the trace has undergone Case-driven movement to SpecI in the previous step.

(25) \[\text{VP}\ t_2 \text{Criticized } t_1 \text{ by his boss } t_2 \text{ John}_2 \text{ has never been } t_1 \]

With this in mind, consider again a typical contrast between scrambling of an incomplete, remnant VP and scrambling of a complete VP in German, as in (26-a) (based on (6-a)) vs. (26-b) (where \(t_1 \) is the object trace, and \(t_2 \) the subject trace):\(^{12}\)

(26) a. *dass [\text{VP } t_2 t_1 \text{gelesen } t_3 \text{das Buch}_1 \text{keiner}_2 t_3 \text{hat read the book no-one has}]
 that
b. ??dass [\text{VP } t_2 \text{das Buch}_1 \text{gelesen } t_3 \text{keiner}_2 t_3 \text{hat read no-one has}]
 that

As indicated, under the Predicate-Internal Subject Hypothesis, both (26-a) and (26-b) contain an unbound subject trace at S-structure. In addition, (26-a) has an unbound object trace, in contrast to (26-b). Evidently, then, there can be no prohibition against remnant scrambling as such. If the trace that becomes unbound as a result of remnant scrambling is a subject trace created by Case-driven movement, remnant scrambling is possible in principle; if it is an object trace created by scrambling, remnant movement is impossible. Thus, the conclusion to be drawn from the data in (26) is that any approach that postulates that it is an intrinsic property of the movement type scrambling not to apply to remnant XPs is doomed to fail under the Predicate-Internal Subject Hypothesis.

The same is true for left dislocation, given the contrast between (27-a) (cf. (19-a)) and (27-b) (again, \(t_1 \) is the object trace, and \(t_2 \) is the subject trace):

\(^{12}\)As before, predicate scrambling as in (26-b) has an intermediate status and requires the presence of an I-topicalization intonational pattern – in this case, the rising tone is normally on Buch (‘book’), and the falling tone on keiner (‘no-one’).
3. Conflicting Evidence

To sum up so far, the idea that certain movement types (like scrambling and left dislocation) simply can never affect remnant XPs, as an intrinsic property, forces one to reject the Predicate-Internal Subject Hypothesis. This may or may not be a fatal result; however, I take it that it points to a more general problem that I will discuss in the following section. There, I show that not only subject traces (as postulated under the Predicate-Internal Subject Hypothesis) can show up unbound in scrambled and left dislocated remnants, but also object traces under certain conditions; moreover, it emerges that object traces sometimes cannot show up in \textit{wh}-moved (and topicalized) remnants, also in contrast to what we expect if these movement types systematically permit the creation of unbound traces in remnant XPs.

3. Conflicting Evidence

3.1. Remnant Scrambling is Sometimes Possible

In subsection 2.1.1, I gave sentences that involved illicit scrambling of a coherent infinitive, i.e., an infinitive from which scrambling has applied; relevant examples are given again in (28) ((28-b) = (2-a)).

\begin{enumerate}
\item[27] a. *[\text{VP} t_2^2 t_1 \text{Gelesen }], \text{das hat das Buch}_{1} \text{keiner}_{2} t \text{ read } \text{ that has the book } \text{ no-one}
\item[27] b. \text{[VP} t_2 \text{Das Buch gelesen }], \text{das hat keiner}_{2} t \text{ the } \text{book} \text{ read } \text{that has no-one}
\end{enumerate}

Interestingly, and completely unexpectedly under the generalization in (23), cases of remnant infinitive scrambling become acceptable if the antecedent of the unbound trace is not a full NP that has undergone scrambling, but rather a weak pronoun (cf. (29-a)) or a pronominal clitic (cf. (29-b)) in a Wackernagel (-like), i.e., pre-subject, position:

\begin{enumerate}
\item[(28)] a. *dass [\alpha t_1 \text{ zu lesen }], \text{keiner } [\text{ das Buch }], t_3 \text{ versucht hat that to read no-one the book} \text{tried has}
\item[(28)] b. *dass [\alpha t_1 \text{ zu lesen }], [\text{ das Buch }], \text{keiner } t_3 \text{ versucht hat that to read the book} \text{tried has}
\end{enumerate}

I take this as an indication that pronoun movement to a pre-SpecI position in German is not an instance of scrambling; rather, some other movement type seems to be involved. Indeed, it has sometimes been argued (see, e.g., Thiersch (1978), Cardinaletti & Roberts (1991), Schmidt (1992), Zwart (1993), and Cardinaletti & Starke (1995)) that pronoun movements of the kind shown in (29) do not qualify as instances of scramb-
ling but involve either A-movement to the specifier of some functional projection or head movement to a functional head. In what follows, I will assume that this view is essentially correct.

Thus, it seems that there is nothing wrong with scrambling of coherent infinitives per se. Rather, what appears to be the crucial factor is the relation between the position of the remnant XP and the position of the antecedent of the unbound trace: If both these items are in scrambling positions, ungrammaticality results (as in (28-a) and in (28-b)); if the remnant occupies a scrambling position and the antecedent of the unbound trace occupies some other position (e.g., a Wackernagel (-like) position), then the result is well formed, ceteris paribus (cf. (29)).

This view is reinforced by the contrast between remnant VP scrambling as in (30-a) (= (6-a) from subsection 2.1.2) on the one hand and remnant VP scrambling as in (30-b) and (30-c) on the other:

(30) a. *dass [\(\text{VP} \ t_1 \gelesen\) _3 das Buch _1 keiner _3 hat
that read the book no-one has
b. ??dass [\(\text{VP} \ t_1 \gelesen\) _3 es _1 keiner _3 hat
that read it no-one has

In the ill-formed sentence (30-a), both the remnant VP and the antecedent of the unbound trace das Buch (‘the book’) have undergone scrambling. In (30-b) and (30-c), however, only the remnant VP has undergone scrambling – the antecedent of the unbound trace is a weak pronoun or a clitic and thus occupies a different kind of position, by assumption. Therefore, the intermediate status of (30-b) and (30-c) again suggests that there is no general prohibition against scrambling of remnant XPs.

What exactly this functional projection related to Wackernagel-effects with pronouns looks like is not immediately relevant to the issue at hand, and I do not have any specific proposal to offer.

As before, I assume that the fact that (30-b) and (30-c) are not completely grammatical is due to the weak prohibition against predicate scrambling. Accordingly, I-topicalization is necessary in these examples.

In principle, we would expect the same improvement to arise with those cases of remnant scrambling where the antecedent of the unbound trace is not scrambled but extraposed. Indeed, I think there is a clear contrast between, e.g., (28-a), where NP\(_1 \) is scrambled, and (i-a), where NP\(_1 \) has undergone Heavy NP Shift, i.e., extraposition:

(i) a. ??dass [\(\alpha \ t_1 \zu lesen\) _3 keiner _3 hat [\(\text{NP} \ \) das letzte Buch [\(\text{CP} \ \) der Fritz darüber
that to read no-one tried has the last book that ART Fritz about that

written has

13 What exactly this functional projection related to Wackernagel-effects with pronouns looks like is not immediately relevant to the issue at hand, and I do not have any specific proposal to offer.

14 As before, I assume that the fact that (30-b) and (30-c) are not completely grammatical is due to the weak prohibition against predicate scrambling. Accordingly, I-topicalization is necessary in these examples.

15 In principle, we would expect the same improvement to arise with those cases of remnant scrambling where the antecedent of the unbound trace is not scrambled but extraposed. Indeed, I think there is a clear contrast between, e.g., (28-a), where NP\(_1 \) is scrambled, and (i-a), where NP\(_1 \) has undergone Heavy NP Shift, i.e., extraposition:
3. Conflicting Evidence

3.2. Remnant Left Dislocation is Sometimes Possible

A similar case can be made with left dislocation. Data involving illicit remnant VP left dislocation, such as (19-a), which is repeated here as (31-a), sharply contrast with examples like (31-b) and (31-c).

(31) a. */[VP t₁ Gelesen] das hat das Buch₁ keiner t
read
that has the book no-one
b. (?)[VP t₁ Gelesen] das hat es₁ keiner t
read
that has it no-one
c. [VP t₁ Gelesen] das hat’s₁ keiner t
read
that has-it no-one

Again, the only relevant difference between the well-formed examples of remnant VP left dislocation in (31-b) and (31-c) and the ill-formed example in (31-a) is that the direct object is a full lexical NP that has undergone scrambling in the latter case, and a weak or clitic pronoun that has undergone some other kind of movement in the former cases.¹⁶

b. ??dass keiner [t₁ zu lesen] versucht hat [NP das letzte Buch [CP das der Fritz darüber
that no-one to read tried has the last book that ART Fritz about that
verfaßt hat]],
written has

(i-a) is far from perfect, but as (i-b) shows, this fact is not related to remnant movement: If the infinitival occurs in situ, NP extraposition in this context has the same status.

Next, recall the hypothesis tentatively envisaged in section 7 of chapter 4, according to which string-vacuous scrambling in remnant movement constructions can be reanalyzed as an instance of extraposition. If nothing else is said, we are thus led to expect that there is a difference between sentences like (ii-a), which must involve two instances of scrambling, on the one hand, and sentences like (ii-b), which can involve a combination of scrambling and extraposition, and (ii-c), which must involve such a combination, on the other hand.

(ii) a. *Erneut hat [VP t₁ gerechnet [PP damit]₁, keiner t₁
again has counted therewith no-one
b. ??Erneut hat [VP t₁ gerechnet]₁, keiner [PP damit]₁
again has counted no-one therewith
c. ??dass [VP t₁ gerechnet]₁, keiner [PP damit]₁
that gerechnet no-one hat therewith

There are various potential intervening factors involved here, but by and large, this prediction seems to be borne out – (ii-b) and (ii-c) seem no worse than expected, given that they involve predicate scrambling and (the slightly marked phenomenon of) PP extraposition, and these examples are clearly less ill formed than (i-a). Thus, the data in (i-b) and (ii-b) & (ii-c) are compatible with the assumption that remnant scrambling is strictly ruled out only in case the antecedent of the unbound trace has also undergone scrambling, and lend further support to it. That said, it is not quite clear that these examples, given that they involve extraposition, actually have to exhibit an unbound trace t₁; cf. subsection 3.3.4 below.

¹⁶Note in passing that the data in (i-ab) exhibit the same contrast:
This observation can be replicated with coherent infinitives; see the contrast between (32-a) (= (21-c)) on the one hand (with the antecedent of the unbound trace located in a scrambling position), and (32-b) and (32-c) on the other (where the antecedent of the unbound trace is in a Wackernagel (-like) position):

(32) a. *[α
\[\alpha\ t_1\ Zu\ lesen\],\ das\ hat\ [\ das\ Buch\],\ keiner\ t\ versucht
to\ read\that\has\the\book\no-one\tried]

b. [α
\[\alpha\ t_1\ Zu\ lesen\],\ das\ hat\ es\< 1\>\ keiner\ t\ versucht
to\read\that\has\it\no-one\tried]

c. [α
\[\alpha\ t_1\ Zu\ lesen\],\ das\ hat’s\ keiner\ t\ versucht
to\read\that\has-it\no-one\tried]

Thus, however these contrasts in remnant left dislocation are ultimately accounted for (see below), the conclusion that can again be drawn for the time being is that the preliminary generalization in (23) is wrong: It cannot be an inherent property of left dislocation not to apply to remnant XPs.

So far, I have argued against (23) by showing that scrambling and left dislocation can in principle affect remnant categories. Let me now turn to the complementary prediction made by (23), viz., that topicalization and wh-movement may systematically affect remnant categories (as long as no independent constraints like those discussed in the previous chapter are violated). Again, this prediction will turn out to be wrong.

3.3. Wh-Movement of Remnants is Sometimes Impossible

3.3.1. Some English Data

In section 2, we saw that wh-movement may apply to remnant categories (NPs and APs) in German; cf., e.g., (15-a) and (16), which are repeated here:

(33) a. *[VP Gelesen\],\ das\ hat\ den\ Roman\< 1\>\ keiner\ t
read\that\has\the\novel\no-one\]

b. [VP t_1\ Gelesen\],\ das\ hat\ (?\)ihn/’n\< 1\>\ keiner\ t
read\that\has\him\no-one\]

This shows that it is not a special property of the pronoun es and its reduced form ’s to license otherwise impossible cases of remnant movement, but a more general property of weak (or clitic) pronoun movement. That said, it should be noted that certain instances of pronoun fronting do not fully succeed in lifting the ban on remnant left dislocation (or remnant scrambling, for that matter). In particular, remnant left dislocation and remnant scrambling appear to yield somewhat degraded results if the fronted pronoun is animate. I will leave open the question of what the nature of this apparent animacy effect is; cf. Cardinalletti & Starke (1995) for some relevant discussion.
b. [AP Wie stolz t₁] ist der [PP auf sein Kind] t₂ how proud is ART Fritz of his child yesterday been

In contrast to that, Barss (1986, 57) and Saito (1989, 187) observe that wh-phrases may not be remnants in English. To see this, consider first some examples involving movement of complete wh-phrases from a wh-island, as in (34):

(34) a. ??[NP Which book about Nixon] t₁ don’t you know [CP whether to read t₂] ?
 b. *[[NP Which picture of John] t₁ do you wonder [CP whether she likes t₂] ?

Wh-movement of a complete NP argument across a non-finite wh-island (as in (34-a)) gives rise only to a mild Subjacency-like effect in English (reducible to the Barriers Condition); see Chomsky (1986, 37), among others. Wh-movement of an argument from a finite wh-island (as in (34-b)) involves an additional tense effect that creates a somewhat stronger violation (see Frampton (1990, 69ff)). However, as noted by Barss and Saito, analogous examples involving wh-movement of a remnant wh-phrase, as in (35-a) (= (i) from footnote 20 of chapter 3) and (35-b), are severely ungrammatical in English, much more so than one would expect if only a Subjacency-like effect induced by an intervening wh-phrase were involved:

(35) a. *[[NP Which book about whom] t₁ don’t you know [CP who to read t₂] ?
 b. *[[NP Which picture of whom] t₁ do you wonder [CP who she likes t₂] ?

This effect is reminiscent of the situation found in German with scrambling and left dislocation that was discussed in section 2; accordingly, one might want to take the data in (35) to indicate that remnant wh-movement is impossible in English. If this is so, we now of course have conflicting pieces of evidence – the English data in (35)
appear to show that remnant wh-movement is impossible, whereas German data as in (33) seem to necessitate the assumption that remnant wh-movement is possible. Given such a situation, the first thing that comes to mind is that a parameter might be involved.

3.3.2. A Parameter?

Suppose that the contrast between the English and German data with respect to remnant movement is due to a parametric difference between these languages such that remnant wh-movement is simply never possible in English, whereas it is possible in German. If that is the case, we would expect German not to exhibit a contrast of the kind that shows up in (34) vs. (35) in English. However, although the German data are not as crystal-clear as one would want them to be (due to an intervening factor), this prediction turns out to be wrong.

Note first that the most striking contrast in the English data is that between (34-a) and (35-a), i.e., between the two cases in which the embedded wh-clause is non-finite. Unfortunately, however, there are no infinitival wh-clauses in German in the first place (see Tappe (1984), Giusti (1986), Wilder (1989), Lutz & Trissler (1992), and Sabel (1993), among others), so we cannot test whether a difference exists between remnant and non-remnant wh-extraction from infinitival wh-clauses or not. Thus, (36-a) (wh-movement of a complete NP across a non-finite wh-island) and (36-b) (remnant wh-movement across a non-finite wh-island) are indeed both ungrammatical, but this is independent of the issue of remnantness or even of long-distance wh-extraction, as shown by the illformedness of (36-c):

(36) a. *\[NP \text{Welches Buch über Benjamin} \] \text{weißt du nicht} \[CP \text{ob PRO t}_1 \]
 which book about Benjamin know you not whether
 zu lesen \] ?

Thus, unless one can prove that (ii) cannot be derived from (35-a) by LF operations, a semantic explanation of the illformedness of the sentences in (35) does not seem possible. Furthermore, note that the same asymmetry shows up in cases where the wh-phrase in the embedded clause does not belong to the restriction of the wh-phrase of the matrix clause. Thus, whose book differs from which book in that book does not belong to the restriction of the wh-operator (rather, there is an implicit restriction “is a person”); cf., e.g., Heim (1992), Stechow (1993; 1996). With this in mind, consider (iii-ab):

(iii) a. ??\[NP \text{Whose book about John} \] \text{don’t you know} \[CP \text{whether to read t}_2 \] ?
 b. *\[NP \text{Whose book about t}_1 \] \text{don’t you know} \[CP \text{who to read t}_2 \] ?

There is no semantic reason for who in (iii-b) to show up within NP$_2$ at LF (on the contrary, everything except whose must be reconstructed in NP$_2$); nevertheless, remnant wh-movement is impossible. To my mind, all this strongly suggests that a syntactic explanation for the illformedness of the sentences in (35) must be sought.
3. Conflicting Evidence

b. *[NP Welches Buch t₂] weißt du nicht [CP [PP über wen]₂ PRO t₁ zu lesen]?
 Which book know you not about whom to read

c. *Ich weiß nicht [CP [PP über wen]₂ PRO [NP ein Buch t₂] zu lesen]
 I know not about whom a book to read

Hence, the only way to test the hypothesis that a parameter is involved is to look at finite wh-clauses. Consider first (37):

(37) a.*[NP Welches Buch über die Liebe] fragst du dich [CP ob du t₂
which book about the love ask you REFL whether you
lesen sollst]?
 should read

b.*[NP Was für ein Buch über die Liebe] weißt du nicht [CP wann du
what for a book about the love know you not when you
t₁ t₂ lesen sollst]?
 should read

These examples involve wh-extraction of a complete NP from a finite wh-island. There is some variation among speakers, but in general, the resulting sentences are considered ungrammatical to a fairly strong degree in German, perhaps even more so than their English counterpart in (34-b) (see subsection 4.2.5 of chapter 2 for relevant discussion of this effect). Still, though, a sentence in which a remnant wh-phrase is extracted across a wh-phrase in the embedded SpecC position that is the antecedent of the unbound trace in the wh-remnant is judged to be even more deviant by most speakers (the contrast is, of course, particularly striking with those speakers that find the examples in (37) tolerable); this indicates that an additional principle is violated.

(38) *[NP Was für ein Buch t₁] fragst du dich [CP [PP über wen]₁ du t₂ lesen
what for a book about the love know you not when you read
sollst]?
 should

The contrast between (37-a)/(37-b) and (38) suggests that there is no parameter that distinguishes remnant movement in English from remnant movement in German – remnant wh-movement in German is also impossible if the antecedent of the unbound trace has undergone wh-movement.

This view is reinforced if we look at other Germanic languages, such as Danish. Violations of the Wh-Island Condition with wh-movement in the Scandinavian languages are somewhat weaker than in, say, German (see, e.g., Engdahl (1986)). Thus, wh-movement of an argument across a finite wh-island in a language like Danish is not impossible; this is shown in (39-a) (cf. Vikner (1995, ch. 2)). However, remnant wh-movement of the type in (38) in the same context is completely ungrammatical (cf. (39-b)), which strongly suggests an additional factor that is independent of wh-
204

Chapter 5. Remnant Movement Asymmetries

islands.\(^\text{18}\)

\[(39)\]

\begin{align*}
\text{a.}& \quad \text{?}[\text{NP} \quad \text{Hvad for en bog om kaerlighed} \quad \text{ved} \quad \text{du ikke [CP om du what for a book about love know you not whether you skal laese t2] ?}} \\
\text{b.}& \quad \text{*}[\text{NP Hvad for en bog om t1} \quad \text{ved} \quad \text{du ikke [CP [NP hvad]1 du what for a book about know you not what you skal laese t2] ?}}
\end{align*}

Returning now to German, we face a dilemma even within this language – data such as those in (33) seem to suggest that \(wh\)-movement may affect remnant categories in German, whereas data such as those in (38) seem to suggest that \(wh\)-movement may in fact not apply to remnant categories in the same language.

3.3.3. **Long-Distance vs. Short Remnant Movement?**

Since it does not seem practicable to assume that we are dealing with a case of parametric variation in the realm of remnant \(wh\)-movement here, let me pursue another hypothesis. This hypothesis rests on the idea that the well-formed remnant \(wh\)-movement data in (33) differ from the ill-formed remnant \(wh\)-movement data in (35), (38), and (39-b) in one respect – the \(wh\)-remnant has undergone short, i.e., clause-bound movement in (33), and long-distance movement in (35), (38), and (39-b). In fact, it turns out that almost all of the legitimate examples of remnant movement discussed up to now share the property that the remnant XP has not undergone long-distance movement from a finite clause. Thus, one might want to postulate a constraint on remnant movement, to the effect that remnant categories may never be separated from the antecedent of the unbound trace by an intervening finite clause boundary. The unbound trace, under this view, may not be "too far away" from its (non-c-commanding) antecedent. However, such a solution does not work either. As shown in (40), successive-cyclic long-distance \(wh\)-movement of remnant categories is possible in German:

\[(40)\]

\begin{align*}
\text{[NP Was für ein Buch t1]2 denkst du [CP t2 dass Antje [PP über die Liebe]1 what for a book think you that Antje about the love t2 gelesen hat] ?}
\end{align*}

Similarly, successive-cyclic long-distance topicalization of remnants is permitted in German. Consider long-distance topicalization of a coherent infinitive in (41-a) (cf. Grewendorf & Sabel (1994, 303)), of a remnant NP in (41-b), and of a remnant VP in

\(^{18}\)I am grateful to Sten Vikner (p.c.) for making me aware of this and providing the examples.
Thus, the generalization that remnant movement is always clause-bound is wrong and cannot be used to account for the contrast between (33) on the one hand and (35), (38), and (39-b) on the other.\footnote{Indeed, it is not even the case that remnant \textit{wh}-movement is per se more sensitive to \textit{wh}-islands than ordinary \textit{wh}-movement. Consider a sentence like (i):}

\begin{itemize}
\item[(i)] *\[NP \text{Was für ein Buch t₁} \ CP \text{ ob du über die Liebe t₂ lesen sollst ? }\]
\end{itemize}

It appears that for those speakers that permit \textit{wh}-extraction from a finite \textit{wh}-island in German at all, (i) is more on a par with (37-a) than with (38).
Chapter 5. Remnant Movement Asymmetries

3.3.4. Remnant Wh-Movement and Extraposition

If the hypothesis just formulated is correct and remnant wh-movement is systematically ruled out only if the antecedent of the unbound trace has also undergone wh-movement, we expect those instances of remnant wh-movement in English in which the antecedent of the unbound trace has undergone extraposition to be fine. This issue is discussed in Williams (1974, ch. 4) and Guéron & May (1984); a relevant example is given in (42):

(42) \[\text{NP How many pictures t}_1 \text{ } \text{t}_2 \text{ did you see \text{CP} \text{ that I took yesterday }?] \]

Suppose that the extraposed CP is in this position as a result of syntactic movement (extraction from NP and right-adjunction to XP). The question then is: In what position is the extraposed CP exactly, i.e., can it bind its trace \(t_1 \) that is included in NP\(_2\)? In chapter 4, I argued that extraposition may end up in any XP-adjoined position. For (42) this means in a VP-adjoined, an IP-adjoined, or a CP-adjoined position (abstracting away from a more fine-grained structure of IP). If the order of rule application is \(CP_1 \text{ extraposition } \succ \text{wh-movement of NP}_2 \), \(CP_1 \) can be in any of these positions.\(^{20}\) If, on the other hand, the order of rule application is \(\text{wh-movement of NP}_2 \succ \text{CP}_1 \text{ extraposition} \), then \(CP_1 \) must show up in the CP-right-adjoined position because of the Strict Cycle Condition.\(^{21}\) This means that there is a structural ambiguity as to the position of \(CP_1 \) in (42); whether an unbound \(CP_1 \) trace shows up within the fronted NP\(_2\) or not is unclear. This ambiguity does not yet disappear in a sentence like (43):

(43) \[\text{NP How many pictures t}_1 \text{ } \text{t}_2 \text{ do you think \text{CP} \text{ that John gave t}_2 \text{ to Mary } \text{CP} \text{ that I took yesterday }?] \]

Here, the wh-phrase NP\(_2\) from which extraposition has applied shows up in the SpecC position of the matrix clause; but again, there are two options. One possibility is that \(CP_1 \) is extraposed before \(\text{wh-movement of NP}_2 \). Since extraposition must always be clause-bound (the Upward Boundedness Constraint; cf. (110) from chapter 4), in this case subsequent \(\text{wh-movement} \) must be remnant movement, creating an unbound

\(^{20}\)Note that even if \(CP_1 \) is right-adjoined to CP, subsequent wh-movement will not violate the Strict Cycle Condition, as assumed here (cf. (52) from chapter 3). The reason is that both operations end up in the same minimal residue, viz., that of the matrix C node.

\(^{21}\)Given what has been said in chapter 4, one might assume that this latter derivation is not possible because extraction from NP\(_2\) would then take place at a point in the derivation at which NP\(_2\) is no longer in a selected position and therefore qualifies as a barrier. However, as was noted in footnote 13 of chapter 4, it seems that extraposition may freely escape from NPs even if these NPs are barriers in their in situ positions (e.g., in the case of subjects), in contrast to leftward movement types. Thus, regardless what explanation of this fact ultimately proves to be correct (see Baltin (1983), Culicover & Rochemont (1990), and Müller (1996)), there is a priori no reason why extraposition should not apply from an NP in SpecC, given that extraposition has a way of circumventing NP barriers that is not available for other movement types.
trace. The other possibility, though, is that first NP$_2$ undergoes long-distance wh-movement, and then CP$_1$ extraposition takes place in the matrix clause, right- adjoining CP$_1$ to the matrix CP, an option that seems real (see the last footnote); in that case, (43) could be analyzed without remnant wh-movement. It seems that examples like (44) avoid the structural ambiguity:

(44) [NP Which pictures t$_1$]$_2$ do you think [CP t$_2$ that no-one gave t$_2$ to Mary [PP$_1$ of any of her friends]]?

Suppose that licensing of polarity items like any depends on a combination of precedence and m-command in overt syntax (see Barss & Lasnik (1986) and Jackendoff (1990)). Then, any in (44) must be in the same clause as no-one at S-structure (Spell-Out); i.e., it must be in the most deeply embedded CP. But if this is so, wh-movement of NP$_2$ to the matrix SpecC position must take place later and must therefore involve remnant movement.

Much more would have to be said about this issue, and one might possibly make the point that the argument for remnant wh-movement in extraposition structures in English is not decisive. However, it is at least worth bearing in mind that there is an obvious difference in English between illicit traces in wh-phrases in examples like (35) (where the antecedent has undergone wh-movement, too) and licit traces in wh-phrases in examples like (42), (43), and (44) (where the antecedent has undergone extraposition); and this difference corresponds exactly to our expectations, given that remnant wh-movement is strictly blocked only if the antecedent of the unbound trace has also been wh-moved (and not if it has undergone some other kind of movement).

That said, let me now turn to the last kind of remnant movement discussed in section 2, viz., topicalization, and see whether the same effect shows up as with wh-movement, scrambling, and left dislocation.

22Note in passing that the English facts discussed in this subsection find close parallels in German.

23In fact, the analogy between remnant wh-movement & scrambling in German and remnant wh-movement & extraposition in English goes even further. It seems that remnant wh-movement in English may indeed apply across a (non-finite or finite) wh-island as long as the antecedent of the NP-internal trace is not wh-moved but extraposed. This is shown by the data in (i-a) (non-finite wh-island) and (i-b) (finite wh-island) (Steve Abney & Chris Wilder (p.c.)):

(i) a. ??[NP How many pictures t$_1$]$_2$ do you wonder [CP whether to give t$_2$ to Mary [CP that I took yesterday]$_1$]?
 b. ??I would love to know [CP [NP how many pictures t$_1$]$_2$ he wondered [CP whether he should show t$_2$ to his mother [CP that he took yesterday]$_1$]]

(i-ab) are no worse than their counterparts in which CP extraposition has not applied (i.e., there is no violation of a specific constraint on remnant movement in addition to the standard wh-island effect, which can be reduced to the Barriers Condition), and they are completely analogous to the German example (i) in footnote 19, where a combination of scrambling from NP and wh-movement of NP across a wh-island occurs.
3.4. Remnant Topicalization is Sometimes Impossible

In all the well-formed examples involving remnant topicalization that have been discussed so far, the antecedent of the unbound trace has undergone scrambling. Given the conclusions of the preceding subsections, it would not be surprising if remnant topicalization were impossible if the antecedent of the unbound trace had also undergone topicalization. And indeed, an example like (45) is completely ungrammatical:

(45) *[α t1 Zu lesen]2 glaube ich [TopP [NP dieses Buch], hat keiner t2 versucht]
to read think I this book has-no-one tried

Given the present system of assumptions (more precisely, the Barriers Condition, the Strict Cycle Condition, and the economy constraints Fewest Steps and Last Resort; see chapter 4), (45) must be derived by NP1 topicalization (out of the coherent infinitive) followed by α-topicalization across the embedded topic NP1 to the matrix SpecTop position. The illformedness of the resulting sentence at first glance seems to show that the same effect is at work as with the other movement types that were discussed in the preceding subsections. Unfortunately, though, there is an intervening factor with topicalization as in (45) that makes it impossible to determine whether this effect does indeed occur or not, i.e., whether there is a special constraint that bans remnant topicalization if the antecedent of the unbound trace has also undergone topicalization.

The intervening factor is the following: As was already noted in footnote 48 of chapter 4, it seems to be a robust fact about the Germanic languages that embedded topicalization induces a strict island for long-distance movement of any kind (cf. Zae nen (1980), den Besten (1989), Rochemont (1989), Vikner (1990; 1995), and Müller & Sternefeld (1993), among many others). Thus, consider the contrast in German between successive-cyclic topicalization in (46-a) and topicalization across an embedded topic in (46-b):

(46) a. [NP Dieses Buch], glaube ich [TopP t1 sollte man t1 lesen]
 this book think I should one read
 b. *[NP Dieses Buch], glaube ich [TopP man2 sollte t2 t1 lesen]
 this book think I one should read

Topicalization of a direct object as in (46-b) is far more ungrammatical than one would expect it to be if only a Subjacency-like violation were involved. Thus, regardless of what eventually accounts for the strict nature of topic islands (see the references just cited for proposals), it is evident that remnant topicalization as in (45) is ruled out in the same way. Accordingly, if there is a special prohibition against remnant topicalization in this context, it is blurred by the more general constraint that rules out any movement across an embedded topic, and therefore cannot be directly attested, unlike what was the case with wh-movement. Ultimately, this is so because topic islands, in contrast to wh-islands, are always strict and block extraction of any kind, irrespective of the properties of the moved item. On the other hand, this means that in the absence of any evidence to the contrary, we can safely assume that there is indeed a close paral-
lelism between topicalization and other movement types (scrambling, \(w_h\)-movement) and that an example like (45) would indeed be ungrammatical even if embedded topics did not turn the minimal clause they show up in into a strict island. Based on this, let me now turn to what I take to be the correct generalization underlying the data in sections 2 and 3.

3.5. Conclusion

The discussion of the preceding subsections has revealed that it is not an inherent property of a movement type to apply or not to apply to remnant XPs and create unbound traces; so, the preliminary generalization (23) is proved false. Rather, it seems that remnant scrambling is strictly prohibited only if the antecedent of the unbound trace has also undergone scrambling, and otherwise possible (if no other constraints of grammar are violated). Similarly, remnant \(w_h\)-movement turned out to be illegitimate if the antecedent of the unbound trace has also undergone \(w_h\)-movement, but not if the antecedent has undergone some other kind of movement. Thus, what we can minimally conclude from this is that whether or not remnant movement is possible does not depend only on (i) the position of the remnant XP, but also (ii) on the position of the antecedent of the unbound trace. More specifically, I would like to contend that the correct descriptive generalization covering all the relevant data from this and the previous section is (47), where “Y-movement” stands for \(w_h\)-movement, scrambling, topicalization, etc.

\[
(47) \quad \text{Generalization (final version):} \\
\text{Remnant XPs cannot undergo Y-movement if the antecedent of the unbound trace has also undergone Y-movement.}
\]

According to (47), there is a kind of non-identity requirement on remnant movement: Remnant XPs cannot undergo a certain type of movement if the antecedent of the unbound trace has undergone the same type of movement. Clearly, (47) implies that the topicalization example (45) is excluded irrespective of the strong islandhood of clauses with internal topicalization; it also presupposes that left dislocation and scrambling count as the same movement type for the purposes of (47).

Assuming that (47) is empirically correct, I will now try to derive this generalization.

24 Also see Takano (1993, 14), who has independently suggested a similar generalization.
4. Unambiguous Domination

4.1. The Principle

The first thing to note is that the generalization in (47) does not yet follow from any of the constraints on movement (locality, economy, and cyclicity) assumed so far; so, it appears as though a new constraint is called for. Given the generalization in (47), I would like to propose the principle in (48), which will serve as a constraint on remnant movement.

(48) Unambiguous Domination:
\[\text{An } \alpha\text{-trace must not be } \alpha\text{-dominated.} \]

Suppose that “\(\alpha\)-trace” means “trace with a (not necessarily c-commanding) antecedent in a position of type \(\alpha\)” and that “\(\alpha\)-dominated” means “dominated by a category in a position of type \(\alpha\)” (48) then predicts that a remnant XP may not occupy a position of a certain type if it contains a trace that has an antecedent in the same type of position. As for the set of positions that \(\alpha\) ranges over, I will assume, in line with the discussion in chapter 2 and afterwards, that (48) at least distinguishes between the landing sites in (49):

(49) a. SpecC: The landing site of \(w\hfill\)-movement at S-structure.
 b. SpecTop: The landing site of topicalization.
 c. XP-Left-Adj: The landing site of scrambling (\(X = V\) or I in German) and left dislocation (\(X = C\)) (see below).
 d. XP-Right-Adj: The landing site of extraposition.
 e. SpecF and F-Adj: The landing sites of weak pronoun movement and Wackernagel-cliticization in German (the nature of F is left open).
 f. SpecX: The landing site of (Case-driven) A-movement (\(X = I\) or V (see below), perhaps AGR\(O\) in some languages)

(48) then amounts to a requirement that if extraction from an XP has taken place, ending up in any of the six positions mentioned in (49),\(^{25}\) the remnant XP itself can only be moved to a position of one of the other five types.\(^{26}\)

\(^{25}\)Or rather, seven positions, given that weak pronoun movement and pronominal cliticization must be formally distinguished as indicated – a matter which, however, I do not take to be settled.

\(^{26}\)At this point, recall again the assumption made in chapter 2 (footnote 15), to the effect that AGR\(S\), T, and AGR\(O\) are merged into a single I node in German. If there were Case-driven object movement to SpecAGR\(O\) in German, and if this movement could apply at S-structure (as is sometimes argued), then there would be a problem for Unambiguous Domination – we would have to ensure that overt movement to SpecAGR\(O\) could not create representations that I have so far attributed to the effect of scrambling; otherwise, an account of illicit cases of remnant scrambling in terms of Unambiguous Domination would potentially be undermined (since the two positions in question would not be identical). Hence, the assumption that Case-driven movement to SpecAGR\(O\) does not exist in German is corroborated by the existence
Before I turn to an illustration of how (48) rules out illicit cases of remnant movement, the questions of what kind of constraint (48) is and where it applies must be answered. As it stands, the Unambiguous Domination requirement is a representational constraint, so the only domains of application that are a priori conceivable are S-structure and LF. At first glance, one might think that an LF application of (48) is out of the question, the reason being that LF movements like quantifier raising and wh-movement may destroy S-structure representations that exhibit remnant movement configurations that violate the Unambiguous Domination requirement. However, recall from sections 4 and 6 of chapter 3 that I have adopted the copy theory of movement, and that in a particularly strong form: Every instance of movement leaves a complete copy as a trace, and although copies (and parts of copies) are often not interpreted at LF, neither a full copy nor a part of one is actually deleted at LF. A consequence of this assumption (that was made in chapter 3 in order to deal with the fact that overt movement that is reconstructed is not blocked by Fewest Steps) is that no S-structure information gets lost on the way to LF. So, if there is a trace with an antecedent in, say, a scrambling position (e.g., in VP-Adj) that is dominated by a category (e.g., an NP) in another scrambling position (e.g., in IP-Adj), thus violating (48) at S-structure, then no LF operation will be able to remove that illicit configuration, and (48) will still be violated at LF. For this reason, I will assume that we can dispense with the assumption that Unambiguous Domination is an S-structure constraint and can take it to apply solely at LF. This is, of course, in line with the leading idea of the minimalist program that there are no constraints referring to S-structure and that S-structure itself is superfluous as a syntactic level of representation.

Given these assumptions about landing sites and the domain of application, it remains to be shown that the Unambiguous Domination requirement (48) makes the correct predictions for the data discussed so far.

27 A few remarks are in order. First, note that (48) can be straightforwardly reformulated as a derivational constraint, i.e., as a constraint on movement, not on (LF) representations; cf. (i).

(i) **Unambiguous Domination** (derivational version):

In a structure ... [A ... B ...] ... A and B may not undergo the same kind of movement.

The effect of (i) is basically identical to that of (48). I will nevertheless maintain the representational version of Unambiguous Domination in what follows; one should keep in mind, however, that nothing really hinges on this for the issues currently under discussion; but see section 7 below. Second, (48) is clearly too strong as it stands, since it generally precludes α-domination of an α-trace, no matter how deeply embedded the α-trace is in another category located in an α-position. (Similar conclusions apply in the case of (i).) In section 6, I will show that the requirement that an α-trace must not be α-dominated holds only in a certain local domain. Finally, (48) applies to all kinds of traces – bound and unbound, variables, anaphors, and X^0 traces. Presently, however, I am only concerned with unbound variables; the relevance of (48) for other kinds of traces is discussed in section 5 below.
4.2. Remnant Scrambling

Consider first scrambling of remnant categories, as depicted schematically in (50):

(50) \[\ldots [XP \gamma t_1 \ldots] [XP \ldots YP_1 \ldots] \ldots \]

By assumption, the remnant category \(\gamma \) is adjoined to VP or IP. Suppose first that YP has also undergone scrambling and thus occupies an adjunction position. (48) then requires that \(t_1 \), the trace of YP, must not be dominated by a category \(\gamma \) in a scrambling position. This rules out remnant scrambling in all the illicit cases we have seen so far (viz., scrambling of coherent infinitives in (2-a) and (2-b), scrambling of remnant VPs in (6-a) – (6-c), scrambling of remnant APs in (9-a) and (9-b), and scrambling of remnant NPs in (12) and (13)).

In contrast, suppose now that YP in (50) has not also undergone scrambling, but some other kind of movement, like, e.g., weak pronoun movement or cliticization, as in the examples in (29), (30-b), and (30-c). In this case, (48) does not rule out remnant scrambling – a trace of weak pronoun movement (or cliticization) is dominated by a remnant XP in a scrambling position, and the sentences are correctly predicted to be well formed (since no other constraint is violated).

Next, note that we would in principle also expect cases of remnant scrambling to be possible where the unbound trace is a trace left by some other movement type, like topicalization or \(wh \)-movement. But since scrambling is clause-bound in languages like German, and since there is in general no clause-internal adjunction site that would precede the landing site of either topicalization or \(wh \)-movement, the relevant constructions are all independently excluded. For instance, (48) does not per se rule out examples like those in (51), because here \(t_1 \) is dominated by an XP in an adjoined position, whereas the antecedent of \(t_1 \) occupies a SpecCP position:

(51) a. *dass \([_\alpha t_1 \text{ zu lesen }]_2 \text{ ich nicht weiß } [CP [welches Buch]_1 \text{ ich t2 that to read I not know which book I versuchen sollte] try should}

b. *Ich weiß nicht \([CP [_\alpha t_1 \text{ zu lesen }]_2 [CP [welches Buch]_1 \text{ ich t2 I know not to read which book I versuchen sollte] try should)

However, (51-a) involves long-distance scrambling from a finite clause and is thus ruled out by whatever accounts for the clause-boundedness of scrambling in German (see chapter 2). On the other hand, remnant scrambling to the embedded CP, as in (51-b), is ruled out because CP does not qualify as an adjunction site in German (with

\[\text{Coherent infinitives, of course, permit long-distance scrambling; but infinitives in German do not have a landing site for either } wh \text{-movement or topicalization.}\]
4. Unambiguous Domination

the exception of left dislocation structures; see below). 29

4.3. Remnant Wh-Movement

Next consider wh-movement of remnants, as in (52):

(52) ... \[CP \[\gamma \ldots t_1 \ldots \] \[C' \ldots YP_1 \ldots \] \]

Here, the remnant category \(\gamma \) is in a SpecC position. If YP also occupies a SpecC position, (48) is violated and ungrammaticality results – \(t_1 \) is dominated by an XP in SpecC, and its antecedent also occupies a SpecC position. This correctly rules out (35-a) and (35-b) in English, (38) in German, and (39-b) in Danish. If, on the other hand, YP is not in a SpecC position in (52), but rather in a scrambling position, wh-movement of a remnant category is predicted to be possible – the Unambiguous Domination requirement (48) is not violated, because \(t_1 \) is dominated by an element in a SpecC position and its antecedent occupies a scrambling (i.e., left-adjunction) position. This accounts for the wellformedness of examples like (15-a) & (15-b) (wh-movement of remnant NPs), (16) (wh-movement of a remnant AP), (40) (successive-cyclic long-distance wh-movement of a remnant NP), and (i) of footnote 19 (where wh-movement of an NP applies from a wh-island) in German. Similarly, if YP in (52) is an extraposed item that does not bind its trace, as is arguably the case in the English examples in (42), (43), and (44), Unambiguous Domination is respected, and remnant wh-movement is possible.

4.4. Remnant Topicalization

Let me now turn to topicalization of remnant categories. Given that topicalization is movement to SpecTop, remnant topicalization typically involves configurations such as the one depicted in (53):

(53) ... \[Top \[\gamma \ldots t_1 \ldots \] \[Top' \ldots YP_1 \ldots \] \]

Under the analysis of topicalization as substitution in SpecTop, we expect topicalization of remnants to be impossible if the antecedent of the unbound trace (YP in (53)) occupies a SpecTop position and possible otherwise (if no other conditions of grammar are violated). This prediction is borne out. Thus, we have seen that remnant topicalization as in (53) is allowed if YP has undergone scrambling; cf. topicalizati-

29 Thus, examples like (i) that involve adjunction of a complete XP to CP in German are also strongly ungrammatical:

(i) *dass ich nicht weiß \[CP \[NP dieses Buch \]_1 \[CP warum_2 \[IP ich t_2 t_1 lesen sollie]]\] that I not know this book_\text{acc} why I read should

Therefore, the ungrammaticality of (51-b) follows irrespective of the issue of remnant movement.
on of coherent infinitives in (1-a) and (1-b), topicalization of remnant VPs in (5-a) – (5-c), topicalization of a remnant AP in (8), topicalization of remnant NPs in (11-a) and (11-b), and long-distance topicalization of coherent infinitives and remnant NPs in (41-a) and (41-b). In contrast, topicalization of remnants is predicted to be illicit if the antecedent of the unbound trace itself occupies a SpecTop position, as in (45). However, as noted before, this result is more or less vacuous, since the relevant construction is ruled out on independent grounds: As soon as YP in (53) is in SpecTop, it blocks movement of any item across this position, regardless of whether the item is a remnant or a complete XP.

Still, there is a bit more to be said about remnant topicalization. Given that the landing sites of wh-movement and topicalization differ, as I have assumed throughout, it follows that remnant topicalization should not violate (48) if the antecedent of the unbound trace is wh-moved rather than topicalized. Again, the prediction is confirmed. To see this, recall first from subsection 4.2.5 of chapter 2 that although wh-clauses in general block long-distance wh-movement in German, this is not the case with topicalization from a wh-clause – in this case, only a weak Subjacency-like violation occurs with object movement (cf. Fanselow (1987) and others):

\[
\begin{align*}
\text{(54) a. } & |_{\alpha} \text{ Bücher zu lesen } |_{2} \text{ weiß ich nicht } [\text{CP warum sie } t_{3} \text{ versucht hat }] \\
& \text{books to read know I not why she tried has} \\
\text{b. } & |_{\alpha} \text{ Ein Buch über die Liebe } |_{2} \text{ weiß ich nicht } [\text{CP wieso Antje } t_{2} \\
& \text{a book about the love know I not why Antje} \\
& \text{gekauft hat}] \\
& \text{bought has}
\end{align*}
\]

Interestingly, remnant topicalization as in (55-a) & (55-b) is neither better nor worse than the examples in (54) (cf. also den Besten & Webelhuth (1990) and Fanselow (1992)):

\[
\begin{align*}
\text{(55) a. } & |_{\alpha} \text{ Zu lesen } |_{2} \text{ weiß ich nicht } [\text{CP was } t_{1} \text{ versucht hat }] \\
& \text{to read know I not what she tried has} \\
\text{b. } & |_{\alpha} \text{ Ein Buch } |_{2} \text{ weiß ich schon } [\text{CP worüber Antje } t_{2} lesen sollte} \\
& \text{a book know I PRT about-what Antje read should}
\end{align*}
\]

Given Unambiguous Domination in (48), this is to be expected. Topicalization of a coherent infinitive in (55-a) and of a remnant NP in (55-b) does not violate Unambiguous Domination because the unbound trace included in the topicalized items has an antecedent which occupies SpecC (and not SpecTop).\(^{30}\)

\(^{30}\)As observed by Longobardi (1985), examples like (i) are ungrammatical in Italian:

\[
\begin{align*}
\text{(i) } & \text{ *i} |_{\alpha} \text{ A sposare } t_{1} |_{2} \text{ non proprio } [\text{CP quale ragazza }]_{1} \text{ Gianni sarebbe disposto } t_{2} \\
& \text{to marry I really do not know which girl Gianni would be ready}
\end{align*}
\]
4. Unambiguous Domination

4.5. Remnant Left Dislocation

Finally, let me turn to left dislocation. Recall from the discussion of the examples in (19) and (21) that left dislocation of remnants is impossible if the antecedent of the unbound trace has undergone scrambling, i.e., adjunction. This result follows from (48) if we assume that left-dislocated XPs occupy a left-adjointed position, so that, in effect, left dislocation is formally indistinguishable from scrambling. I would like to suggest that left dislocation in German as in (56) involves the marked option of left-adjunction to CP, licit only because of co-indexing with a pronoun in the SpecC position (recall that CP is not a possible landing site for scrambling in German):

(56) (dass ich glaube) [CP den Fritz₁ [CP den₁ hat keiner t₁ gesehen]]
that I believe ART Fritz him has no-one seen

Under this assumption, a typical remnant left dislocation structure looks as in (57):

(57) ... [CP [γ₂ ... t₁ ...] [CP pronoun₂ ... YP₁ ... t₂ ...]] ...

Evidently, (i) closely resembles the German examples in (55) and hence should not violate Unambiguous Domination under current assumptions. However, the illformedness of (i) is accounted for if we assume that topicalization in Italian is to be analyzed like wh-movement (i.e., as movement to SpecC) and does not count as a movement type sui generis. (One might speculate that TopP is either completely absent here or merged with CP; the idea being that T is too “weak” to project a TopP on its own in the non-V/2 language Italian—note that in Müller & Sternefeld (1993) the existence of TopP in the Germanic languages is closely tied to the occurrence of V/2 phenomena.) Thus, if topicalization and wh-movement are formally indistinguishable in Italian, an α-trace is α-dominated in (i), in conflict with Unambiguous Domination. A similar conclusion might be drawn on the basis of data like (ii-a) in English:

(ii) a. *[to, Ready to marry t₁]₁, I wonder [CP who John is t₂]
b. ??[to, Give t₁ to Mary]₁, I really don’t know [CP [NP which book]₁ he did t₂]

However, examples like (ii-b) appear to behave more like topicalizations of complete VPs across a finite wh-island in English and thus suggest that only a Subjacency-like wh-island violation is involved with remnant VP topicalization in this language. In the present framework, this would imply that Unambiguous Domination can be met in (ii) after all and that (ii-a) must be explained differently. I will have to leave this problem open.

31Note in passing that the analysis in this subsection does not force a decision as to whether left dislocation is to be analyzed in terms of (exceptional) movement of the left-dislocated item or via base-generation—i.e., whether t₂ is a trace of γ₂ or (only) of the co-indexed pronoun. For the sake of concreteness, I will assume the former. It goes without saying that left dislocation raises a number for further questions that I will have to leave unanswered in this study. To name just a few: It is unclear why exactly a co-indexed pronoun lifts the ban on left-adjunction to CP in German, and why only a co-indexed pronoun can do so (and not some arbitrary other item). Furthermore, an articulated analysis of left dislocation would have to clarify the question of whether the pronoun in SpecC is the partial Spell-Out of a chain-internal copy trace, or a resumptive element that is inserted after the movement operation has taken place. See Chomsky (1977), Cinque (1977; 1990), Koster (1978, 1991f), and Cardinali (1986) for relevant discussion. Also, see section 7 below, where the movement analysis of left dislocation does in fact become relevant.
Now, if the left-dislocated XP \(\gamma \) in (57) occupies a left-adjoined position, it follows that left dislocation behaves exactly like scrambling with respect to remnants. Thus, the examples in (19) and (21) are now excluded – if the antecedent of the unbound trace YP occupies a scrambling position, the trace may not be dominated by a category in a left-adjoined position due to the Unambiguous Domination requirement.\(^{32}\) On the other hand, if YP occupies another kind of position, as in the grammatical cases involving weak pronoun movement or pronominal cliticization that were discussed in subsection 3.2 (cf. (31-b), (31-c), (32-b), and (32-c)), Unambiguous Domination is respected, and grammaticality results, as desired.

Note next that left dislocation can apply long-distance in German:

\[
\text{(58) [Dieses Buch zu lesen], das denke ich dass man t versuchen sollte } \\
\text{ this book to read that think I that one try should }
\]

Given that long-distance left dislocation is possible, (48) makes an interesting prediction. Unbound traces in remnants which have undergone long-distance left dislocation should be able to take an antecedent in a SpecC position, but still not in a scrambling position. As expected, ungrammaticality results in the case of long-distance left dislocation if the antecedent of the unbound trace has undergone clause-bound scrambling; cf. (59):

\[
\text{(59) a. * [Dieses Buch zu lesen], das denke ich dass man [NP dieses Buch] t versuchen sollte } \\
\text{ this book to read that think I that one this book try should }
\]

\[
\text{ b. * [Dieses Buch zu lesen], das weiß ich nicht warum man [NP dieses Buch] t versuchen sollte } \\
\text{ this book to know I not why one this book try should }
\]

In (59-a) the antecedent of the unbound trace occupies a scrambling position, and the trace \(t_1 \) included in the left-dislocated remnant XP violates principle (48): It is dominated by a category in a left-adjoined position and its antecedent is also located in a left-adjoined position. Basically, the same situation holds in (59-b) – here, left dislocation across a \(wh \)-island has applied, \(t_1 \) again violates (48), and the sentence

\(^{32}\)To account for the Dutch data reported in footnote 7, we would have to motivate the hypothesis that the position occupied by \(\gamma_2 \) in (57) counts as different from scrambling positions – an enterprise that does not strike me as necessarily futile in light of the fact that Dutch scrambling behaves differently from German scrambling in a number of respects (e.g., as noted in footnote 12 of chapter 1, Dutch scrambling is strictly order-preserving, i.e., argument NPs are not actually subject to permutation). Thus, if Dutch scrambling were movement to designated specifier positions, as has sometimes been argued, while left dislocation would still involve left-adjunction to CP, we would expect that remnant left dislocation is much more liberal than remnant scrambling in this language.
is strongly ungrammatical, more so than one would expect if only a Subjacency-like effect were involved. (Recall from the discussion of (54) that extraction of a \([-\text{wh}]\) element from a \(\text{wh}\)-island in German typically results in a mild violation.)

Now, given the option of left dislocation applying long-distance in German, it seems that remnant left dislocation should in principle be possible if the antecedent of the unbound trace is located in a non-scrambling position like SpecC. Here, the data are rather murky, and judgements are not very clear. But it seems that examples like (60) are indeed better than those in (59), which follows directly from the assumptions made so far:

\[(60)^\star[_{\alpha} \text{Zu lesen }], \text{das \(\alpha\) nicht was} \text{man \(\alpha\) versuchen sollte}
\]

\[
\begin{align*}
&\text{to read that know I not what one try should} \\
&\text{Still, examples like (60) strike speakers as somewhat worse than analogous sentences involving topicalization, as in (55-a) and (55-b). This, at first glance, is unexpected – Unambiguous Domination is found in (60) as it is in (55). However, it appears that an independent factor intervenes in (60), as compared to (55). (61) shows that left dislocation across a \(\text{wh}\)-island is in general worse than the corresponding topicalization case for some reason (which is not clear to me).}
\end{align*}
\]

\[(61)^\star[_{\alpha} \text{Dieses Buch zu lesen }], \text{das \(\alpha\) nicht warum man \(\alpha\) versuchen sollte}
\]

\[
\begin{align*}
&\text{this book to read that know I not why one try should} \\
&\text{Thus, all in all, the predictions made by the Unambiguous Domination requirement (48) for remnant movement are confirmed by long-distance left dislocation.}
\end{align*}
\]

4.6. Conclusion

Summarizing so far, I have argued that the principle of Unambiguous Domination, as formulated in (48), explains remnant movement asymmetries in a relatively straightforward way. Thus, it has turned out that what at first looked like a peculiar movement restriction on scrambling (viz., the impossibility of moving a remnant XP) does not have to be accounted for by invoking construction-specific assumptions; on the contrary, the ban on remnant scrambling has been shown to have parallels in other movement types – there is evidence that \(\text{wh}\)-movement and left dislocation may not apply to remnants either under certain circumstances, which are predicted correctly by the condition (48).

It seems that one could stop here. Nevertheless, I think that more must be said about the empirical range and the conceptual status of the principle of Unambiguous Domination in (48). In particular, three remaining questions should be answered, viz.:

1. Does the Unambiguous Domination requirement apply to all kinds of traces (unbound and bound, variables, anaphors, and \(X^0\) traces)?

2. In which local domain does the Unambiguous Domination requirement hold?
3. Why does the Unambiguous Domination requirement hold?

I will address these questions in turn in the following three sections.

5. Trace Types and Unambiguous Domination

First, let us try to figure out exactly which kinds of traces obey the Unambiguous Domination requirement (48). As it stands, this condition applies not only to unbound traces but also to bound traces. However, so far we have only encountered positive evidence for Unambiguous Domination with respect to unbound traces (in other words, with remnant movement). It remains to be shown that Unambiguous Domination does not produce unwanted consequences for the distribution of bound traces. Furthermore, all the traces I have been concerned with so far are traces of A-bar movement, i.e., variables. Again, however, (48) is formulated in a more general way and also covers traces of A-movement (anaphors) and traces of head movement (X0 traces). Let me first turn to the issue of bound vs. unbound traces, next treat the problem of variables vs. anaphors, and then turn to X0 traces.

5.1. Bound vs. Unbound Traces

Suppose that the Unambiguous Domination requirement (48) does indeed apply to bound traces, too; this clearly is the null hypothesis. The principle then implies that bound scrambling traces may not be contained in scrambled XPs, that bound traces of topicalization may not occur in topicalized XPs, that bound traces of wh-movement cannot be dominated by wh-phrases in SpecC, and so forth. These predictions are indeed borne out. Consider, for instance, German examples like (62-a) and (62-b):

(62) a. *dass [NP den Aufsatz]1 mal wieder [VP t1 gelesen]2 keiner t2 hat that the articleacc once again read no-one has

b. *dass darüber1 gestern [NP ein Buch t1]2 keiner t2 gelesen hat that about that yesterday a bookacc no-one read has

In (62-a) an NP has been scrambled out of a VP which has itself been scrambled, and the result is completely ungrammatical; in particular, it is far more deviant than we would expect if only the general prohibition against predicate scrambling mentioned above were involved. In (62-b) a PP is scrambled from an NP which has itself undergone scrambling to a position in front of the subject. Since PP scrambling from NP is possible with a verb like lesen (‘read’) if the NP is located in situ, the ungrammaticality of (62-b) must be due to the fact that the NP has undergone scrambling.

In the same way, topicalization from a topicalized NP or VP is illicit in German, as shown by the examples in (63):

(63) a. *[pp Über die Liebe], glaube ich [NP ein Buch t1]2 hat Antje t2 gelesen about the love believe I a book has Antje read
Next, *wh*-movement from an NP which has itself been *wh*-moved is impossible in German ((64-a) = (13-b) from chapter 4):

(64) a. *Worüber hast du gesagt [CP [NP was für Bücher t₁]₂] du t₂ gelesen about what have you said what for books he read hat [] ?

b. *[pp Über wen]₁ fragst du dich [NP was für ein Buch t₁]₂ du t₂ about whom ask you REFL what for a book you lesen solltest ?

And finally, left-adjunction (i.e., scrambling) from a VP which has undergone left dislocation results in strong ungrammaticality in German. This is shown in (65):

(65) *dass er [NP das Buch]₁ sagt [VP t₁ gelesen], das habe t keiner that he the book₃ acc says read that has[subj] no-one

In the examples in (62) through (65), Unambiguous Domination is violated, and the sentences are indeed ungrammatical. Thus, it appears that the assumption that bound traces must be dominated unambiguously does not produce unwanted consequences.³⁴ On the other hand, it is a fact that most of the configurations now excluded by Unambiguous Domination are ill formed anyway because they involve Freezing effects. Thus, they receive an account that is identical to that given for examples such as those in (66) (cf. the data in subsection 2.1 of chapter 4):

(66) a. *Worüber hat [IP [NP ein Buch t₁]₂ [IP keiner t₂ gelesen]] ?

about-what has a book₃ acc no-one read

³³That there is no difference between bound and unbound *wh*-traces in this respect in German is also noted by Grewendorf (1994, 41).

³⁴It seems that a bit more would have to be said about Japanese, though. In this language, unbound scrambling traces in scrambled items are not permitted, just as in German (cf. subsection 2.1 above). However, there are contexts in which bound scrambling traces in scrambled items are permitted, in violation of Unambiguous Domination. In what follows, I will abstract away from this apparent instance of language-specific variation. See, however, Sauerland (1996) for an interesting attempt to derive this difference between German and Japanese by a modification of the approach to Unambiguous Domination effects developed in section 7 below; Sauerland’s basic strategy is to exploit the idea that the [scr] features of German and Japanese might differ with respect to interpretability, an assumption that I do not make here.
Chapter 5. Remnant Movement Asymmetries

b. *[PP Über wen]_1, denkst du [NP ein Buch t₁]_2, sollte man mal t₂ lesen?
 about whom think you a book should one once read

c. *Darüber₁ fragte sie sich [NP was für ein Buch t₁]_2, sie t₂ lesen sollte
 about-that asked she REFL what for a book she read should

In (66-a) there is an illegitimate combination of *wh*-extraction from NP and NP scrambling; in (66-a) an illicit combination of *wh*-extraction from NP and NP topicalization occurs; finally, (66-b) illustrates the islandhood of *wh*-moved NPs for PP topicalization. In all these cases, the Unambiguous Domination requirement in (48) is fulfilled, because the positions occupied by XP₂ and XP₁ are different. But, as shown in some detail in chapter 4, the examples in (66) are ruled out because there is no well-formed derivation that respects cyclicity, locality, and economy constraints. Thus, a derivation of a sentence like, e.g., (66-a) in which *wh*-extraction of PP₁ follows scrambling of NP₂ violates the Barriers Condition; if the two movement operations apply in reverse order (i.e., *wh*-movement from NP precedes NP scrambling), the Strict Cycle Condition is not respected; and, finally, if (66-a) is the result of chain interleaving – extraction of PP₁ to a VP-adjoined position (i.e., scrambling), followed by scrambling of NP₂ to the pre-subject position, followed by *wh*-movement of PP₁ to SpecC –, the derivation is excluded because it involves a PUB effect (scrambling followed by *wh*-movement, applying to one and the same item), reducible to the interaction of Fewest Steps and Last Resort according to the approach developed in section 6 of chapter 2.

It seems that this analysis of Freezing effects straightforwardly extends to the examples in (62) – (65), and that the Unambiguous Domination requirement can therefore be assumed to hold for bound traces as well, but vacuously so. However, this conclusion might be premature. Consider an example like (62-a), where NP scrambling has taken place from a scrambled VP:

(67) *dass [NP den Aufsatz t₁, mal wieder [VP t₁ gelesen]_2, keiner t₂ hat
that the article,acc once again read no-one has

If VP scrambling follows NP scrambling, the Strict Cycle Condition is violated. If, on the other hand, NP scrambling follows VP scrambling, the Barriers Condition is not fulfilled. However, there is a third derivation that does not seem to be excluded under the approach to Freezing developed in chapter 4, and this was in fact noted as a potential problem in subsection 6.2 of that chapter. This derivation involves chain interleaving as in (68) (= (118) from chapter 4):

(68) a. D-Structure Representation:
 dass mal wieder keiner [VP [NP den Aufsatz t₁, gelesen]_2, hat
b. NP₁ Scrambling to VP:
 dass mal wieder keiner [NP den Aufsatz t₁, [VP t₁ gelesen]_2, hat
5. Trace Types and Unambiguous Domination

5.2. Anaphors vs. Variables

5.2.1. Case-Driven Movement to SpecI

As it stands, (48) is a constraint on all traces, but so far I have discussed only examples involving variables, i.e., traces of A-bar movement. The question is: Is there evidence that Unambiguous Domination restricts the occurrence of traces of A-movement, i.e., anaphors? Note first that (48) does not preclude topicalization or wh-movement (indeed, any kind of A-bar movement) of a remnant XP when the antecedent of the unbound trace is located in an A-position. And indeed, as was noted in chapter 1 already, constructions of this type can be found in English (see Thiersch (1985, 13), Barss (1986, 35)).

c. VP_2 Scrambling to IP:
 dass mal wieder $[\text{VP}_1 \text{gelesen}]_2$ keiner $[\text{NP} \text{den Aufsatz}]_1 \text{t}_2$ hat

d. NP_1 Scrambling to IP:
 dass $[\text{NP} \text{den Aufsatz}]_1$ mal wieder $[\text{VP}_1 \text{gelesen}]_2$ keiner $'_2 \text{t}_2$ hat

Here, NP first undergoes local scrambling to VP; then, VP is scrambled; and finally, NP is scrambled to the position immediately following the complementizer. Since chain interleaving in this case involves two identical types of positions, it is permitted by Fewest Steps and Last Resort. In particular, intermediate adjunction of NP to VP in the first step is not excluded as a PUB effect, because this movement ends up in a position that is a potential checking position for the [scr] feature (this satisfies Last Resort) but does not actually result in checking of this feature (in accordance with the demands imposed by Fewest Steps). Thus, it seems that in order to rule out derivations like the one in (68), more must be said. And more is indeed said by the Unambiguous Domination requirement – this condition is violated in the derivation in (68) (as well as in the derivation in (i) in the last footnote). Thus, if these considerations are on the right track, the principle of Unambiguous Domination even finds independent corroboration in the case of bound traces and not just with unbound traces.

35A similar point can be made with the derivation in (i):

(i) a. D-Structure Representation:
 dass mal wieder keiner $[\text{VP} \text{[NP den Aufsatz}]_1 \text{gelesen}]_2$ hat

b. VP_2 Scrambling to IP:
 dass mal wieder $[\text{VP} \text{[NP den Aufsatz}]_1 \text{gelesen}]_2$ keiner t_2 hat

c. NP_1 Scrambling to VP:
 dass mal wieder $[\text{VP} \text{[NP den Aufsatz}]_1 \text{[VP t}_1 \text{gelesen}]_2$ keiner t_2 hat

d. NP_1 Scrambling to IP:
 dass $[\text{NP} \text{den Aufsatz}]_1$ mal wieder $[\text{VP} \text{t}_1 \text{gelesen}]_2$ keiner t_2 hat

Here, NP scrambling takes place after VP scrambling, but since there is an additional intermediate operation of NP adjunction to VP, the Barriers Condition is not violated.
409), Browning (1987, 362ff), Saito (1989, 199), Höhle (1991, 170ff), Huang (1993, 105ff), and others. Consider (69) (= (25)) first:

(69) \[
\text{VP Criticized t}_2 \text{ by his boss } \text{1}, \text{John}_2 \text{ has never been } \text{t}_1
\]

Here, a remnant VP has undergone topicalization, stranding the subject NP John that had undergone Case-driven movement, and the result is well formed, as predicted by Unambiguous Domination. Under the Predicate-Internal Subject Hypothesis, the same conclusion of course applies with any kind of VP topicalization in English, as shown in (70) (= (24) from subsection 2.5 above):

(70) \[
\text{VP t}_1 \text{ Kicked the dog } \text{1}, \text{John}_1 \text{ never has } \text{t}_2
\]

Next, consider an English example like (71), where wh-movement applies to a remnant AP, leaving behind the subject that has undergone Case-driven raising to SpecI (also, cf. footnote 10 in chapter 1 for putative counterexamples raised in Saito (1989) and Lasnik & Saito (1992)):

(71) \[
\text{AP How likely t}_1 \text{ to win the game } \text{2}, \text{Mary}_1 \text{ t}_2 \text{ ?}
\]

Again, Unambiguous Domination does not rule out this combination of movement types, and again this result is empirically desirable. Similarly, topicalization and wh-movement in German can apply to XPs in such a way that an unbound trace is created which has an antecedent in SpecI. This is shown for topicalization in (72-a) and for wh-movement in (72-b):36

(72) a. \[
\text{Sich t}_1 \text{ dumm vorkommen } \text{ sollte der Fritz}_1 \text{ sicherlich nicht REFL stupid strike-as should ART Fritz}_{anom} \text{ certainly not not}
\]

b. \[
\text{Wie t}_1 \text{ dumm } \text{ ist sich der Fritz}_1 \text{ vorgekommen } \text{ how stupid is REFL ART Fritz}_{anom} \text{ struck-as}
\]

Unbound traces in remnant XPs which have undergone scrambling are also not prohibited in German if they have an antecedent in an A-position (and not in a scrambling position; see above). This is shown in (73):

(73) \[
\text{dass } \text{sich so richtig t}_1 \text{ dumm vorgekommen } \text{ der Fritz}_1 \text{ noch nicht ist REFL so really stupid struck-as ART Fritz}_{anom} \text{ not yet is}
\]

36 See Sternefeld (1985; 1991a) for evidence that vorkommen (‘strike as,’ ‘appear’) is a raising verb in German. Note also that the direct wh-movement analogue of (72-a) is somewhat worse than (72-b):

(i) \[
\text{Wie t}_1 \text{ dumm vorkommen } \text{ ist sich der Fritz}_1 ? \text{ how stupid struck-as is REFL ART Fritz}_{anom}
\]

I contend that the deviance of (i) has nothing to do with remnant movement but rather is due to the difficulty of understanding the bracketed items as a wh-phrase; i.e., it appears that (for some speakers) (i) involves illicit pied piping; cf. Webelhuth (1992, 116ff) and Lutz & Trissler (1992).
Examples like (73) are far from perfect; however, they have the intermediate status that arises in the case of predicate scrambling throughout, irrespective of the issue of remnant movement.

For the sake of completeness, let me point out that the same predictions as in English arise under the Predicate-Internal Subject Hypothesis. If subjects are base-generated VP-internally, then (74) must involve the generation of an unbound trace:

\[
\text{[VP } t_1 \text{ Geschlafen }]_2 \text{ hat der Fritz}_1 \text{ nicht } t_2
\]

slept has ART Fritz\text{nom not}

Remnant movement in this configuration meets the Unambiguous Domination requirement (48), since the landing site of the remnant VP and the subject NP differ. The same goes for cases of “complete” VP scrambling; cf. (26-b), repeated here as (75):

\[
\text{??dass [VP } t_2 \text{ das Buch}_1 \text{ gelesen }]_3 \text{ keiner, } t_3 \text{ hat that the book read no-one has}
\]

If VP\text{3} contains an unbound subject trace in (75), the latter does not violate Unambiguous Domination because SpecI and an IP-adjointed position are formally different.

Thus, an occurrence of unbound anaphoric traces in remnant categories that have undergone topicalization or wh-movement is what we expect under (48), and this expectation is indeed fulfilled.\(^{37}\)

Summarizing so far, condition (48) does not rule out A-bar movement of a remnant category if the trace included in the remnant has an antecedent in a SpecI position. This is a welcome result; however, we end up with exactly the same result if we assume that unbound anaphoric traces do not obey the Unambiguous Domination requirement in the first place. Thus, an interesting question is whether there is any positive evidence for (48) in the case of anaphoric traces. Relevant configurations would look as in (76),

\[\text{(i) a. [VP Ein Außenseiter gewonnen }]_2 \text{ hat da noch nie an outsider}\text{nom won has there yet never} \]

\[\text{b. [VP Ein Außenseiter } t_1 \text{ gewonnen }]_2 \text{ hat das } t_2 \text{ da noch nie an outsider}\text{nom won has that}\text{acc} \text{ there yet never} \]

Personally, I find these examples deviant (which would follow if subjects must undergo Case-driven movement at S-structure in German or if they are base-generated in a VP-external position in the first place), but it is at least worth noting that under the assumption that subjects are base-generated VP-internally and may stay in situ at S-structure, the judgements that Haider attributes to (i-ab) are compatible with Unambiguous Domination. See Haider (1990; 1993), Frey & Tappe (1991), Fanselow (1992), Truckenbrodt (1992), and literature cited in these works for further discussion of the issue at hand.

\(^{37}\)It has sometimes been argued, on the basis of the Predicate-Internal Subject Hypothesis, that subjects in German, unlike subjects in English, do not have to raise to SpecI overtly; see in particular Haider (1990; 1993). If this is so, it should be possible to topicalize a sequence consisting of, e.g., an intransitive verb and its subject NP. Given what has been said so far, it should even be possible to topicalize a transitive verb and its subject, leaving the object behind in a scrambling position. Relevant examples that illustrate these cases are (i-a) and (i-b) (both examples, together with their evaluation, are taken from Haider (1990, 97)):
where a remnant XP \(\gamma \) has undergone movement to an A-position, e.g., SpecI, and also contains a trace with an antecedent in an A-position.

\[(76) \quad *[IP \ [\gamma \ldots t_1 \ldots]]_2 \ldots [IP \ YP_1 [r \ldots t_2 \ldots]]_2\]

If the Unambiguous Domination requirement also holds for traces of A-movement, (76) is ruled out. But notice that (76) is independently ruled out, irrespective of whether XP is a remnant or not, since it involves a standard super-raising configuration. The conclusion to be drawn from this is that the case of remnant A-movement with an unbound A-trace is completely analogous to the case of remnant topicalization with an unbound topic trace discussed in subsection 4.4: The evidence from unbound traces of Case-driven movement is fully compatible with the Unambiguous Domination requirement, but this condition turns out not to be necessary in order to capture all the relevant data – topicalization of remnants and non-remnants (in fact, any kind of movement) across a topic is ruled out independently, and so is A-movement of remnants and non-remnants across a filled A-position.

5.2.2. Dative Movement

Consider now some data involving double object constructions in German for which I have not yet provided an explanation (cf. footnote 8):

\[(77) \quad a. \ \text{dass [VP (t'_1) ein Buch (t_1) gegeben] die Claudia dem Peter} \]
\(\quad \text{that a book}_{\text{acc}} \ \text{given ART Claudia ART Peter}_{\text{dat}} \)
\(\quad \text{(nicht) t}_3 \ \text{hat} \)
\(\quad \text{not has} \)
\(\quad b. \ [VP (t'_1) Ein Buch (t_1) gegeben], das hat die Claudia dem Peter} \)
\(\quad \text{a book}_{\text{acc}} \ \text{given that has ART Claudia ART Peter}_{\text{dat}} \)
\(\quad \text{(nicht) t} \)
\(\quad \text{not} \)

(77-a), in which a remnant VP which contains the direct object and V is scrambled, is much better than the corresponding example in which a remnant VP which contains the indirect object and V, or V alone, is scrambled (cf. the data in (6)); it is deviant only to the extent that predicate scrambling usually is. In (77-b) a remnant VP consisting of the direct object and V is left dislocated, and the result is fine, in contrast to left dislocation of the indirect object and V, or of V alone (cf. the examples in (19)). Thus, minimally contrasting pairs are (77-a) & (78-a) (= (6-b)) and (77-b) & (78-b) (= (19-b)):

\[(78) \quad a. \ *\text{dass [VP dem Peter t}_2 \ \text{gegeben], die Claudia ein Buch}_2 \ \text{t}_3 \ \text{hat} \)
\(\quad \text{that ART Peter}_{\text{dat}} \ \text{given ART Claudia a book}_{\text{acc}} \ \text{has} \)
\(\quad b. \ *[\text{VP Dem Peter t}_2 \ \text{gegeben], das hat die Claudia ein Buch}_2 \ \text{t}} \)
\(\quad \text{ART Peter}_{\text{dat}} \ \text{given that has ART Claudia}_{\text{nom}} \ \text{a book}_{\text{acc}} \)
5. Trace Types and Unambiguous Domination

This follows directly if we assume that in German indirect objects bearing dative Case are base-generated in the specifier position of a VP-shell that dominates the “real” VP, i.e., the one that is projected by the main verb. In (77-a) and (77-b), under this view, the smallest VP (containing only the direct object and the verb) has undergone movement, and a trace of the indirect object is not present. Such an approach is pursued by Truckenbrodt (1992). On the other hand, it is argued in Müller & Sternefeld (1994) and Müller (1995, ch. 4) that dative-bearing indirect objects in German have undergone (Case-driven) dative movement (dative shift) from a position asymmetrically c-commanded by the direct object to the specifier of a VP-shell. Under this assumption, an anaphoric trace t_1 is obligatorily present in the fronted VPs in (77). However, t_1 cannot violate the Unambiguous Domination requirement in (77-a) and (77-b), because its antecedent occupies the specifier position of the VP-shell, whereas the remnant VP is either scrambled (in (77-a)) or left-dislocated (in (77-b)). The question arises of whether or not t'_1 is also present in (77) (this trace would occupy the specifier of the VP-shell, i.e., the landing site of dative movement) – in other words, whether the VP-shell has been moved or only the lower VP. Indeed, if the VP-shell has been moved in (77), the antecedent of this trace (i.e., dem Peter) would have to occupy a scrambling position. But then, Unambiguous Domination would be violated. Hence, I conclude that what has undergone movement in (77) is not the VP-shell, with an unbound scrambling trace and a bound trace of dative movement, but only the lower VP, with merely an unbound trace of dative movement, as schematically depicted in (79) (where “DO” stands for direct object, and “IO” stands for indirect object):

(79) ... $[\text{VP}_2 \ \text{DO} \ t_1 \ V$, $\text{VP}_1 \ \text{IO}_1 \ [\text{VP}_2 \ \text{Neg} \ [\text{VP}_2 \ t_3] \ [V -]]]$...

To sum up, the fact that the sentences in (77), unlike their counterparts in (78), do not violate Unambiguous Domination follows both under an analysis where indirect object NPs bearing dative Case are base-generated in a higher position than direct objects bearing accusative Case and under an analysis where indirect object NPs bearing dative Case have undergone dative movement.

5.3. X^0 Traces

Unambiguous Domination permits unbound X^0 traces to occur in moved remnant XPs; so, if nothing else is violated, such constructions are expected to be possible throughout. In what follows, I will briefly discuss a number of phenomena where the postulation of unbound head traces does indeed seem unavoidable.
5.3.1. VP Topicalization and Unbound V Traces in German

As observed by Fanselow (1991, 104; 1993, 66) and Lenerz (1995, 1267), German permits sentences like those in (80).\(^{38}\)

(80)

a. (ich glaube) \[\text{Top}^p \text{PP mit dem Ball } \text{ins Gesicht } \text{hat er ihr geworfen}]

b. (ich glaube) \[\text{Top}^p \text{NP Kindern } \text{Bonbons } \text{gibt man besser nicht}]

c. \[\text{PP Im Mai } \text{NP jeden Tag } \text{der Anette } \text{einen Brief } \text{hatte er lieber nicht schicken sollen nach Hamburg}]

d. \[\text{NP Die Borussia } \text{in der Führung } \text{hatte Effenberg besser nicht schicken sollen nach Hamburg}]

e. \[\text{Adv Vortrefflich } \text{NP die Figuren } \text{führte der berühmte französische Diplomat Charles Maurice Talleyrand}]

f. \[\text{Adv Hilflos } \text{PP auf dem Platz } \text{irrt Möller umher hilflos umher wandered Möller about}]

Since the prohibition against multiple topicalization in German is well established, Fanselow (1991; 1993) concludes that the fronted items in examples of this type must be part of one single constituent – a VP with an empty V head. Given this state of affairs, the most straightforward analysis of these examples looks as is shown for (80-b) in (81), where V-raising out of the VP (in this case, via I to C, in order to fulfill the V/2 requirement with topicalization in German) has taken place prior to VP topicalization:\(^{39}\)

\(^{38}\)I am grateful to Jochen Geilfuß (p.c.) for originally making me aware of this construction. Sentences like those in (80) do not seem to be accepted by all speakers of German. Haider (1990, 103; 1991, 28) and Sabel (1995, 140), e.g., find analogous examples ungrammatical. I have nothing to say about this apparent dialectal (or idiolectal) variation. Note incidentally that (80-d) is taken from an SDR J football broadcast, March 1996; (80-e) can be found in Henscheid (1983, 144); and (80-f) is from a football commentary in the newspaper Frankfurter Rundschau (August 19, 1996).

\(^{39}\)Cf. Fanselow (1991). It should be noted, though, that this is not actually Fanselow’s (1993) analysis. In this follow-up work, he assumes that the fronted VP has an empty V head, which, however, is not a trace of the verb.
5. Trace Types and Unambiguous Domination

(81) \[\text{TopP } [\text{VP} \ [\text{NP} \text{Kindern }] \ [\text{NP} \text{Bonbons } t_1] \ [\text{Top} \text{gibt}_1] \text{ man besser nicht } t_2] \]

The antecedent of the unbound verb trace \(t_1 \) is in a head position, but \(t_1 \) is not dominated by a category in a head position (VP is in a topic position). Hence, Unambiguous Domination does not rule out (81), and the wellformedness of the sentence is expected.\(^{40}\)

A slight digression might be in order here. V-raising out of VP is clearly crucial in this approach to data like those in (80). However, whereas this assumption is uncontroversial (indeed, hardly avoidable) in the case of (81) (and (80-d), (80-e), and (80-f)), it is not quite as straightforward in the remaining two examples in (80); in these cases, it is a non-finite verb form (a participle, as in (80-a), or an infinitive, as in (80-c)) that must have undergone raising out of the VP. Here, I will not try to present a detailed analysis of these kinds of head movement (and of the apparent optionality that is involved); it may suffice to point out that these movement operations have indeed been suggested for independent reasons in the literature.\(^{41}\)

By the same reasoning, we are led to the conclusion that finite verbs in verb-final clauses at least have the option to move out of the VP at S-structure in German, given the wellformedness of examples like (82):

(82) \[\text{[VP}_2 \ [\text{NP} \text{Kindern }] \ [\text{NP} \text{Bonbons } t_1] \text{ denke ich } [\text{CP } t'_2 \text{ dass man besser nicht } t_2 \text{ gibt}_1] \]

Here, VP\(_2\) has undergone topicalization as in (80-b), but this time, it is moved long-distance, and the finite verb is not in V/2 position but shows up at the end of the embedded clause. This shows that finite verbs must be able to leave the VP at S-structure in German even if they do not end up in V/2 position. If we make the further assumption that movement of finite verbs to a right-peripheral I node at S-structure is in fact obligatory in German (in contrast to raising of participles and infinitives), this

\(^{40}\)Initially, one might think that the same phenomenon might show up with cases like (i), i.e., that NP\(_1\) and NP\(_2\) are not scrambled separately in front of the subject here, but rather that (i) instantiates VP scrambling, with the verb having left its own projection and undergone raising to I.

(i) \[\text{dass } [\text{NP} \text{Kindern }] \ [\text{NP} \text{Bonbons } t_1] \text{ besser keiner gibt that children} \text{dat \text{ sweets}acc \text{ better no-one}nom \text{ gives}} \]

However, it is unlikely that an analysis of (i) in terms of VP scrambling can be correct. The reason is that whereas nothing precludes multiple scrambling of NPs here (scrambling does not create an island and, being adjunction, can be iterated), (i) should have an intermediate status if it were derived by VP scrambling (recall the weak ban on predicate scrambling in German) and should only be possible with an I-topicalization intonation pattern (which is not the case).

\(^{41}\)See, e.g., Sternewald (1995) for arguments in support of the idea that participles can raise to a functional head Part in German.
might also provide a key to the solution of a well-known problem that is posed by the contrast in (83) (see Zwart (1993, 108) and Sabel (1995, 13-14), among others):

(83) a. \[VP \ t_1 \text{Gelesen} \ t_2 \text{denke ich} \ [CP \ t'_2 \text{dass das Buch}_1 \text{keiner} \ t_2 \text{hat}] \]
 read think I that the \text{book}_{acc} \text{no-one}_{nom} \text{has}

b. *[\alpha \text{Las} \ t_2 \text{denke ich} \ [CP \ t'_2 \text{dass das Buch}_1 \text{keiner} \ t_2 \text{]}]
 \text{read think I that the \text{book}_{acc} \text{no-one}_{nom} }

As shown in (83), remnant VP topicalization can apply long-distance with participles as heads (abstracting away from the possibility that VP in (83-a) might be reanalyzable as a higher functional projection; see the last footnote), but remnant topicalization may never apply with finite verbs as heads. Assuming obligatory V-to-I raising of finite verbs in German, there are only two possibilities as far as the nature of \(\alpha \) in (83-b) is concerned: Either \(\alpha \) is an \(\text{X}^0 \) category (a complex I node), in which case movement is barred by the prohibition against moving an \(\text{X}^0 \) category into an XP position (see subsection 2.1 of chapter 1), or \(\alpha \) is an IP, with traces of the object and the subject. In the latter case, the structure of (83-b) is (84):

(84) *[\text{IP} \ t_3 \text{t}_1 \text{Las} \ t_2 \text{denke ich} \ [CP \ t'_2 \text{dass das Buch}_1 [\text{IP keiner}_3 \text{t}_2 \text{]}]]
 \text{read think I that the \text{book}_{acc} \text{no-one}_{nom} }

Here, NP\(_1\) and NP\(_3\) have undergone scrambling to IP prior to raising of the lowest IP segment. As such, this derivation does not violate Unambiguous Domination or any of the constraints discussed in chapter 4 (Barriers Condition, Strict Cycle Condition, etc.). However, it is an instance of IP topicalization, which is known to be systematically impossible in German, even with complete categories; cf.:

(85) *[\text{IP} \text{Keiner} \text{das Buch} \text{las} \ t_1 \text{denke ich} \ [CP \ t'_1 \text{dass t}_1 \text{]}]
 \text{no-one}_{nom} \text{the \text{book}_{acc} \text{read think I that} }

Thus, whatever ultimately turns out to be responsible for the prohibition against IP topicalization in German will also cover ill-formed examples such as (84) -- assuming that there is indeed obligatory overt V-to-I raising in German.

After this detour, let me now return to the main topic of this subsection, which is to accumulate evidence for unbound \(\text{X}^0 \) traces in remnant XPs.

5.3.2. \textit{VP Topicalization and Unbound V Traces in French}

Essentially the same situation as in the German examples in (80) arises in French, as shown by Dekydtspotter (1992, 128). A relevant example is given in (86):

(86) ... et \ [VP \ t_1 \text{sa tirade soigneusement} \] \text{elle énonça}_1 \text{t}_2
 and \text{her part carefully she recited}

Given that only one constituent can undergo fronting to the pre-subject position in (86), we can again conclude that the fronted item must be a VP with a missing V head. French permits overt V-raising out of VP (see Emonds (1978), Pollock (1989),
Chomsky (1991; 1993), and many others), so the existence of examples like (86) conforms to expectations under present assumptions: The unbound V trace \(t_1 \) in (86) does not violate Unambiguous Domination because it is not dominated by an \(X^0 \) category.

5.3.3. VP Movement and Unbound V Traces in English

If English differs from French in that a finite main verb does not leave its VP at S-structure (see the literature just cited), the prediction is that a construction that is analogous to (86) will not be found in English, independently of the issue of remnant movement and Unambiguous Domination. As shown by (87), this prediction is borne out:

(87) *[VP, \(t_1 \) The article carefully] John read1 \(t_2 \)

(87) is ruled out not by Unambiguous Domination (which is fulfilled), but by whatever precludes overt V raising out of VP in English.\(^{42}\)

That said, there is a construction in English where a finite main verb does indeed appear to have undergone raising out of the VP and into a pre-subject position, viz., the locative inversion construction. And in this case, remnant VP movement does indeed appear to be possible, as noted by Rochemont & Culicover (1991), who discuss examples like (88):

(88) [VP, \(t_1 \) Into the room nude] walked1 John \(t_2 \)

The exact details of the analysis of (88) are disputable and not generally agreed on; but the postulation of two movement operations, one of which is remnant movement,

\(^{42}\)A complication arises in the form of double object VPs, as in (i):

(i) *[VP, \(t_1 \) John (\(t_V \) a book) he did not give1 \(t_3 \)]

At first sight, one might assume that (i) is amenable to the same analysis as (87). However, given Larson’s (1988; 1990) approach to double object constructions, there is an additional VP2-internal trace of the verb present in (i), viz., \(t_V \). According to this view, VP2 is a VP-shell, and \(t_V \) is the head of the lower VP. Thus, one might assume that what has undergone topicalization in (i) is not VP2, but only the lower VP3, as in (ii):

(ii) *[VP, \(t_1 \) John (\(t_V \) a book) he did not [VP, give1 \(t_3 \)]]

As it stands, (ii) violates neither the Unambiguous Domination condition (48) nor the requirement that a finite main verb in English must not leave VP (\(\text{give} \) is still within the VP-shell). Note, however, that the ungrammaticality of (ii) is a well-known problem in a Larsonian approach to double object constructions (see, e.g., Larson (1988; 1990) and Johnson (1991) for discussion); furthermore, it is strongly reminiscent of the problem posed by the immobility of small clause complements in English (see Williams (1983) and Stowell (1991), among many others), as in (iii):

(iii) *[SC, John foolish] I would never consider \(t_1 \)

The general consensus seems to be that the ill-formedness of (ii) and (iii) is due to Case-theoretic reasons. For present purposes, it may suffice to leave it at that.
seems unavoidable. If this is so, the question arises of whether Unambiguous Domi-
nation licenses the unbound V trace created by remnant movement, and given that the
landing sites of VP₂ and V₁ are formally different, it does, as required.

5.3.4. VP Scrambling and Unbound V Traces in Japanese

Koizumi (1995, 170) argues that sentences like (89) in Japanese cannot be derived by
deletion operations like Gapping or Right Node Raising (assuming the latter to be an
instance of leftward deletion; see Wilder (1996)), but must be derived by Across-the-
Board raising of the verb out of VP:

(89) Mary-ga [VP₁ John-ni ringo-o 2-tu t₄] to [VP₂ Bob-ni banana-o 3-bon
Mary_{nom} John_{dat} apple_{acc} 2-CL and Bob_{dat} banana_{acc} 3-CL
t₄] ageta₄ (koto)
gave fact

Suppose that this is correct. Then, as Koizumi (1995, 173) observes, cases where the
conjoined VPs (VP₁ and VP₂) undergo long-distance scrambling, thereby stranding
the verb in the embedded clause, must be instances of remnant VP scrambling; cf.:

(90) [VPₖ [VP₁ John-ni ringo-o 2-tu t₄] to [VP₂ Bob-ni banana-o 3-bon t₄]]
John_{dat} apple_{acc} 2-CL and Bob_{dat} banana_{acc} 3-CL
Nancy-ga [CP Mary-ga t₆ ageta₄ to] omotteiru (koto)
Nancy_{nom} Mary_{nom} gave that believe fact

Clearly, the position of the antecedent of the unbound trace(s) t₄ in (90) and the po-
sition of the scrambled VPₖ are not identical. Hence, Unambiguous Domination is
respected, and the construction is permitted.

5.3.5. Unbound N Traces in German

The examples involving unbound X⁰ traces that have been discussed so far have all
involved V traces and remnant VP movement. In principle, we should expect to find
analogous cases with unbound N traces. Indeed, there are constructions in German
that involve topicalization of two internal arguments of N, with N itself remaining
within IP. These constructions turn out to be amenable to exactly the same analysis as
the data in (80). As a prerequisite for the analysis, let us briefly consider the internal
structure of an NP with two internal arguments, such as (91-a):

(91) a. [NP ein Buch von Fritz über die Liebe]
 a book by Fritz about the love

43I assume here that the two conjoined VPs form a larger VP constituent, perhaps with to ('and') as the head.
5. Trace Types and Unambiguous Domination

b. \[NP \text{ ein } [N_n \text{ Buch von Fritz } \overline{\text{über die Liebe}}] \]
c. \[NP \text{ ein Buch}_1 [NP \text{ von Fritz } [N_n \text{ t}_1 \overline{\text{über die Liebe}}]] \]

On the basis of evidence from binding theory (as employed for VP-structure in Barss & Lasnik (1986) and Larson (1988)), Haider (1993, 23) argues that complex NPs of the type in (91-a) cannot be analyzed as in (91-b), but must have an NP-shell structure as in (91-c), with raising of the head noun \textit{Buch} into the empty head of the NP-shell:

Linear precedence corresponds to asymmetric c-command among the internal arguments in (91). If this is correct, the sequence \textit{von Fritz \overline{über die Liebe}} in (91) is an NP headed by the trace of the head noun. As such, it should in principle (i.e., if lexical and structural constraints on extraction from NP are met) be movable, thereby creating an unbound X0 trace of category N. As shown by (92), this prediction is borne out:

(92) \[NP \text{ Von Fritz } [N_n \text{ t}_1 \overline{\text{über die Liebe}}]_2 \text{ hat er noch } [NP \text{ kein Buch}_1 \text{ t}_2] \text{ gelesen} \]

5.3.6. Unbound N Traces in French

Clitics in the Romance languages are another case in point. Consider the following example, which is due to Dekydtspotter (1992, 128):

(93) \[NP \text{ Une photo } [N_2 \text{ t}_1 \overline{\text{ fut prise t}_2}] \text{ en } [1 \text{ de it was taken}] \]

Here, a combination of NP$_2$ raising to SpecI and cliticization of \textit{en}$_1$ to I takes place, resulting in a grammatical structure. A derivation in which cliticization precedes A-movement of NP$_2$ does not violate any of the constraints assumed so far; in particular, it does not violate the Unambiguous Domination requirement because NP$_2$ and the clitic \textit{en}$_1$ do not occupy the same type of position.\footnote{Note incidentally that a reverse combination of movement operations (i.e., A-movement preceding cliticization) would in fact not violate the Strict Cycle Condition as formulated in (52) in chapter 3, even though it involves lowering. The reason is that the only cyclic node created by lowering out of SpecX to X-Adj that is relevant for an item in an X-adjoined position is XP itself; however, X-Adj is part of the minimal residue of XP. Thus, the only constraint that would be violated in this derivation is the Barriers Condition.}

5.3.7. Unbound N Traces in Italian

The same picture emerges with cliticization in Italian. As noted by Longobardi (1985), Cinque (1990), Rizzi (1990), and Grewendorf & Sabel (1994), a combination of remnant XP movement and cliticization out of XP is systematically available in this language. Consider, e.g., (94) (taken from Cinque (1990, 176)), where head movement of the object clitic precedes remnant VP topicalization:
Similarly, head movement (cliticization) may precede remnant *wh*-movement, as in (95) (which is taken from Grewendorf & Sabel (1994, 303)):

(95) \[\text{AP} \text{Quanto} \text{affezionata} \ t_1 \ gLi_1 \ eLa_3 \ \text{ritenevate} \ t_3 \ t_2 \ ? \]

how much affectionate him-dat her-acc (you) believe

‘How affectionate to him do you believe her to be?’

Neither of these examples violates Unambiguous Domination, and given that other principles of grammar (especially locality, cyclicity, and economy constraints) are not violated either, their wellformedness is expected.

Of course, there are many more constructions where one might argue that an unbound *X*\(^0\) trace is involved; but the general picture should be clear by now: Unbound *X*\(^0\) traces can never violate Unambiguous Domination if they are created by a remnant XP movement operation since the landing sites of XP movement and *X*\(^0\) movement are always of different types. The question then is: Under which circumstances can *X*\(^0\) traces actually violate Unambiguous Domination?

5.3.8. *X*\(^0\) Traces that Violate Unambiguous Domination

Consider (96), a typical incorporation structure that may either be the result of overt head movement, i.e., adjunction to *X*\(^0\) in the syntax (in which case *t*\(_Y\) is present), or the result of a base-generated complex head (in which case *t*\(_Y\) is absent); as before, linear order is not important in this schematic representation:

(96) \[... \{Z \ Y \ Z\} ... (t_y) \]

As noted by Baker (1988) and Chomsky (1991), among many others, it is generally not possible to move *Y* out of the complex head *Z* in such a configuration (but see Roberts (1991) for a different view). This follows directly from the Unambiguous Domination requirement. Suppose that *Y* moves in (96), as shown in (97):

(i) a. \[\text{NP} \text{Kolik} \ t_1 \ jich_1 \ t_2 \ spi \ ve \ sklep\v{e} \ ? \]

how many of them sleep in cellar

b. \[\text{NP} \text{Pět} \ t_1 \ jich_1 \ dáme \ t_2 \ do \ sklepa \]

five of them we will put to cellar

The unbound traces *t*\(_1\) here clearly fulfill Unambiguous Domination.
In this case, t'_Y is an X^0 trace dominated by an X^0 category (i.e., by an item in an X^0 position), and ungrammaticality is expected to arise, as desired. Next, consider what happens if the lower Z segment undergoes head movement in the configuration in (96):

(98) *... Z ... [Z Y t_Z ... (t_Y)]

Here, t_Z is an X^0 trace dominated by an X^0 node (the higher Z segment), so under a strict reading of Unambiguous Domination, this principle is still violated, just as it is violated in (97), and ungrammaticality is predicted to arise. Again, I take this result to be justifiable. To sum up, then, it follows from Unambiguous Domination that excorporation is never possible.

This view yields some interesting consequences for constructions involving separable prefixes in German. These kinds of particles are characterized by the fact that they must show up adjacent to V (i.e., realized as a single phonological word) in V-final clauses (cf. (99-a)) but must be left behind by V/2 movement (cf. (99-b)):

(99) a. dass er die Tür zumacht that he the door shut-makes

b. Dann macht$_1$ er die Tür zu t_1

then makes$_1$ he the door shut

Suppose that separable prefixes are base-generated as heads of intransitive PPs (as assumed in chapter 1; cf. Emonds (1976) and Kayne (1985), and Grewendorf (1990) and Stechow (1992) for German). It then follows that zu (‘shut’) in (99-b) must be stranded in its base position (i.e., PP-internally) and cannot have undergone incorporation to V and be stranded there – in that case, V/2 movement applying to $macht$ (‘makes’) would create a structure like (98) which is ruled out by Unambiguous Domination. As for V-final structures like (99-a), there are two possibilities. It could be the case that the complex phonological word zumacht is a result of optional overt P-incorporation into V; alternatively, complex word formation might indeed be a phonological process here, operating under P/V adjacency, and P stays in situ at S-structure.

Under these assumptions, there is a priori no reason why a separable particle (being a PP) should not be able to undergo fronting alone. Similarly, we expect to find cases of remnant VP topicalization with an unbound V trace that differ from the examples in (80) that were discussed in subsection 5.3.1 above in that an NP and an intransitive PP (i.e., a particle) show up in the remnant VP. As observed by Uli Lutz (p.c.) (also see Stechow & Sternefeld (1988, 476) and Sabel (1995a, 15)), these constructions do indeed occur in German.\footnote{Many more examples can be found that instantiate the general form of (100-a) and (100-b); see, e.g., the data given in Paul (1919, 86) and Behagel (1932, 255). However, it should also be noted that many other verb-particle combinations do in fact not permit these constructions. Compare, e.g., the data in (i) (cf.
(100) a. \([_{\text{PP}} \text{Zu~hatten~er~die~Tür}~t_1~gebracht~}\] shut has he the door\textsubscript{acc} made

b. \([_{\text{VP}} \text{Die~Tür~zu~hatten~er~t_2~gebracht}_1}\] the door\textsubscript{acc} shut has he made

To sum up the evidence for Unambiguous Domination to be gained from data involving X0 traces: Unbound V traces and N traces that are created by XP movement seem to occur in abundance across languages, which is expected by Unambiguous Domination. However, Unambiguous Domination rules out bound X0 traces that are created by excorporation. Thus, given that this result is desirable, we can conclude that there is indeed positive evidence for Unambiguous Domination to be gained from the consideration of X0 traces.

6. A Local Domain for Unambiguous Domination

Further amendments to Unambiguous Domination are not only possible but are indeed necessary upon closer inspection. So far, (48) does not mention a local domain in which variables must fulfill the Unambiguous Domination requirement. With this in mind, consider the bound traces in (101):

(101) a. \([_{\text{NP}} \text{Wessen~Frage~}_{\text{γ}}~\text{wenn~du~}_{\text{t_1}~\text{gesehen~hast~}}~\text{hat~}_{\text{t_2~dich~}}~\text{geärgert~?}}]\] whose question whom you seen have has you annoyed

b. \([_{\text{?Wieder~hat~}_{\text{γ~dass~den~Fritz~}_{\text{t_1~mögen~}}~\text{keiner~}_{\text{t_2~bezeifelt~}}~\text{has~}}~\text{that~Fritz~}_{\text{all~}}~\text{like~no-one~doubted~}}]\] again has that ART Fritz\textsubscript{acc} all\textsubscript{nomin} like no-one doubted

c. \([_{\text{NP~Die~Behauptung~}_{\text{γ~keiner~}_{\text{habe~}}~\text{t_1~davon~gewußt~}}~\text{ist~}_{\text{t_2~}}~\text{ist~}}]\] the claim no-one has\textsubscript{subj} of-that known is natürlich falsch of course wrong

In (101-a) \(t_1 \) has a \(wh \)-antecedent in a Spec\(C \) position and is dominated by a complex \(wh \)-NP which also occupies a Spec\(C \) position, thereby violating the Unambiguous Do-

Fanselow (1993, 69)); also, recall the discussion in subsection 2.4 of chapter 1.

(i) a. \(*_{\text{?PP~An~}_{\text{1~sollte~man~die~Anette~lieber~nicht~mehr~}_{\text{t_1~rufen~}}~\text{up~should~one~ART~Anette\textsubscript{acc}~better~not~anymore~call~}}}\]

b. \(*_{\text{?VP~[NP~Die~Anette~an~}_{\text{t_1~sollte~man~lieber~nicht~mehr~}_{\text{t_2~rufen~}}~\text{ART~Anette\textsubscript{acc}~up~should~one~better~not~anymore~call~}}]}\]

Thus, the conclusion that lexical variation plays a role here seems unavoidable. What this variation is due to, however, is unclear to me (but it seems that the issue of semantic transparency of the verb-particle concatenation might be relevant – the semantics of the complex verb can be compositionally determined in (100), but not in (i)).
6. A Local Domain for Unambiguous Domination

mination condition. Nevertheless, the sentence is well formed. Similarly, t_1 in (101-b) is a scrambling trace (with *den Fritz* as antecedent) and is dominated by a CP which has itself undergone scrambling. Again, the result is acceptable, contrary to what one would expect given (48). The same situation can be found in (101-c) – t_1 has an antecedent in a topic position and is dominated by a complex NP which has also undergone topicalization; still, ungrammaticality does not arise.

Basically the same kind of problem shows up with respect to unbound traces. Consider the following examples:

(102) a. ??[NP Welche Behauptung [γ t_1 zu lesen wisse sie nicht mehr] γ_2 ist t_2 falsch?]

b. Wieder hat [NP die Behauptung [γt_1 zu lesen habe keiner das Buch$_1$]

(102-a)

represents a case of an unbound trace of *wh*-movement which is ultimately dominated by a *wh*-phrase in SpecC. Nevertheless, this example is just as grammatical as, say, (55-a), which more or less corresponds to a non-embedded occurrence of γ in (102-a). Similarly, the unbound trace of scrambling in (102-b) may eventually be dominated by a category which has itself undergone scrambling, apparently in violation of (48).48

In order to reconcile the wellformedness of the examples in (101) and (102) with the assumptions so far, it looks as though a notion of locality must be introduced in (48), such that the traces in (101) and (102) are subject to the Unambiguous Domination requirement only within the local domain γ. To be concrete, I would like to suggest that the relevant domain be defined as follows:

(103) **Chain Domain:**

The chain domain of a trace t is the set of categories (irreflexively) included in the minimal node that dominates both t and its chain antecedent.

As can easily be verified, the chain domain of the variables t_1 in the examples in (101) and (102) is γ (or slightly smaller than γ) throughout. Within γ, however, these traces fulfill the Unambiguous Domination requirement. In conclusion, (48) should be modified as follows:

48 As noted before, due to the strict nature of topic islands there are no unbound traces of topicalization. Thus, an example involving an unbound trace which would be analogous to (101-c) cannot be constructed.
Chapter 5. Remnant Movement Asymmetries

7. Deriving Unambiguous Domination

7.1. The A-Over-A Principle

Finally, let me turn to the third question posed at the end of section 4: Why does the Unambiguous Domination requirement hold? First, let us ask whether the Unambiguous Domination requirement in its representational formulation respects minimalist requirements or not. Arguably, it does: Although, as noted in section 4, its effects are exclusively S-structure ones, the copy theory of movement (that was adopted for independent reasons in chapter 3) makes it possible to assume that Unambiguous Domination holds at LF. Moreover, the formulation in (48) does not involve any non-basic, derived notions: The constraint talks about dominance, traces, and position types, and all these concepts are externally motivated.\(^{49}\)

Still, certain aspects of Unambiguous Domination are reminiscent of other constraints that have been suggested over the years. This becomes particularly clear when we consider the derivational formulation of this principle that was given in (i) in footnote 27 and is repeated here in (105):

(105) **Unambiguous Domination** (derivational version):

In a structure ... \[[A ... B ...]\] ..., A and B may not undergo the same kind of movement.

Closer scrutiny reveals that (105) is basically a version of the A-over-A principle (see Chomsky (1964) and Ross (1967)), which can be formulated as follows:\(^{50}\)

(106) **The A-Over-A Principle**:

If, in a structure ... \[[A ... B ...]\] ..., A and B belong to the same category, and a movement rule \(\gamma\) may affect that category, \(\gamma\) can only apply to A, not to B.

Thus, the crucial difference is that under the A-over-A principle A and B compete for movement if they belong to the same category type, whereas under Unambiguous Domination they compete for movement if they target the same kind of landing site. Now, as is well known since Ross (1967), the A-over-A principle cannot be maintained as

\(^{49}\)A potential caveat is that the notion of chain domain that has turned out to be crucial (cf. the definition of Unambiguous Domination in (104)) might not meet the requirement of independent motivation; but see the discussion of domains in Chomsky (1993; 1995).

\(^{50}\)This formulation is not Chomsky’s original one. Rather, it is devised so as to make the similarity to (105) as clear as possible.
such because it is both too strong and too weak.51 The conclusion I would like to draw from this is that the kinship of Unambiguous Domination and the A-over-A principle is suggestive in the sense that one may want to look for an independent reason for why Unambiguous Domination holds; but the A-over-A principle by itself cannot yet be this independent reason. Another candidate is (what is left of) the Shortest Path Condition.

7.2. The Shortest Path Condition, the Minimal Link Condition, Last Resort, and Superiority

Recall the transderivational Shortest Path Condition that was discussed in chapters 2 and 3 above (in subsections 3.3 and 6.2, respectively). The condition is repeated here (= (35) from chapter 2):

\textbf{Shortest Path Condition:}

If two derivations D_1 and D_2 are in the same reference set and the movement paths of D_1 are shorter than the movement paths of D_2, then D_1 is to be preferred over D_2.

Thus far, I have discussed three applications of this condition, viz., (a) Yo-Yo movement in Ewe (cf. Collins (1994)), (b) Freezing effects with A-movement in English (cf. Chomsky (1995)), and (c) Superiority effects in English (cf. Chomsky (1993), Kitahara (1993), and others). As regards (a) and (b), I have argued that the Shortest Path Condition is superfluous because its work is done by the Strict Cycle Condition, which is independently motivated. As regards (c), I have concluded that due to its transderivational nature, the Shortest Path Condition is not compatible with the hypothesis that wh-in situ items obligatorily undergo raising to a $\text{SpecC}_{[+\text{wh}]}$ position at LF – a hypothesis that I maintain throughout this monograph. However, I have not presented an alternative account of the Superiority effect.

Chomsky (1995, 296-297) suggests dispensing with the transderivational Shortest Path Condition in favour of a simple derivational condition that nevertheless maintains the underlying concept. This condition is called Minimal Link Condition (MLC), and Chomsky assumes that it is part of the operation $\text{Move} \alpha$ itself, in contrast, I will assume that the MLC is incorporated into the Last Resort condition.

51The standard example given in Ross (1967/1986, 11-12) in order to show that the A-over-A principle is too strong is this:

(i) the reports $[\text{NP}_1 \text{ which }]$ the government prescribes $[\text{NP}_3 \text{ the height of }]$ $[\text{NP}_4 \text{ the lettering on }]$ $[\text{NP}_5 \text{ the covers of } t_1]$

Here, NP_1 is affected by relativization even though it is embedded in NP_4, which is embedded in NP_3, which in turn is embedded in NP_5. Given the A-over-A principle, only NP_2 should be allowed to undergo relativization (which, of course, it can), and not any of the other NPs (which, however, also can).
Chapter 5. Remnant Movement Asymmetries

The basic idea is that given a structure like that in (108), in which \(\alpha \) has an unchecked feature of type \(F \) and \(\beta \) can check off \(\alpha \)'s \(F \) feature, raising of \(\alpha \) to \(\beta \) is blocked if \(\gamma \) is closer to \(\beta \) and is also equipped with an unchecked \(F \) feature.\(^{52}\)

(108) \(... \beta \ldots \left[... \gamma \ldots \left[... \alpha \ldots \right] \ldots \right] \ldots \)

Recall the revised version of Last Resort developed in section 6 of chapter 2 and assumed thereafter (= (134) from chapter 2):

(109) Last Resort:
\[\alpha \text{ is raised to a position } \beta \text{ only if } \beta \text{ is a typical checking position for the lowest-ranked unchecked morphological feature of } \alpha. \]

By adding a version of Chomsky’s (1995, 296-297; 311) derivational Minimal Link Condition (MLC), we obtain the following formulation of Last Resort:

(110) Last Resort:
\[\alpha \text{ is raised to a position } \beta \text{ only if (a) and (b) hold:} \]
\[a. \beta \text{ is a typical checking position for the lowest-ranked unchecked morphological feature } F \text{ of } \alpha. \]
\[b. \text{ There is no } \gamma \text{ with an unchecked } F \text{ feature that is closer to } \beta. \]

For the time being, let us assume that “closeness” is understood in terms of length of paths (as defined in subsection 7.1 of chapter 3), such that \(\gamma \) is closer to \(\beta \) than \(\alpha \) is if the path from \(\gamma \) to \(\beta \) is shorter than the path from \(\alpha \) to \(\beta \); I will return to this issue. Then, as can be easily verified, this formulation of the Minimal Link Condition in (110-b) does not say anything about Yo-Yo movement in Ewe or Freezing effects with A-movement. However, Superiority effects now follow from Last Resort.\(^{53}\)

To see this, consider again some typical examples, as in (111) and (112):

(111) a. I wonder [\(CP \) who\(_1 \) C [\(IP \) t\(_1 \) bought what\(_2 \)]]
\[*I \text{ wonder [\(CP \) what\(_2 \) C [\(IP \) who\(_1 \) bought t\(_2 \)]]} \]

(112) a. Whom\(_1 \) did John persuade t\(_1 \) [\(CP \) to visit whom\(_2 \)] ?
\[*\text{Whom\(_2 \) did John persuade whom\(_1 \) [\(CP \) t\(_2 \) to visit t\(_2 \)] ?} \]

Assuming that Case-driven movement has applied before \(wh \)-movement in all these examples, including the object movement cases (in apparent violation of Procrastinate; cf. Branigan (1992) and Chomsky (1995)), the (a)-requirement of Last Resort in

\(^{52}\)This idea is identical in all relevant respects with the notion of feature-based relativized minimality that is developed and extensively argued for by Fanselow (1991, 76ff); also, compare Ferguson & Groat (1994).

\(^{53}\)Compare, however, the cautious remarks in Chomsky (1995, 387: note 69).
(110) is respected throughout.54 However, the (b)-requirement of Last Resort in (110) is violated by the derivations that create (111-b) and (112-b): In these cases, overt movement of the lower wh-XP\textsubscript{2} (what\textsubscript{2} and whom\textsubscript{2}, respectively) to C\textsubscript{[+wh]} is prohibited because there is an intervening item that is closer to C\textsubscript{[+wh]} and that also has an unchecked [+wh] feature (who\textsubscript{1} and whom\textsubscript{1}, respectively). Note that this MLC-based approach to Superiority phenomena is not susceptible to the criticism raised above against the approach in terms of a transderivational Shortest Path Condition. The reason is that the approach in terms of Last Resort in (110) is compatible with the assumption that wh-phrases undergo movement to SpecC\textsubscript{[+wh]} at LF. Consider, e.g., the LF of a sentence like (111-a), which is given in (113):

\begin{equation}
\text{(113)} \quad \text{I wonder [CP what\textsubscript{2} [CP who\textsubscript{1} C [IP t\textsubscript{1} bought t\textsubscript{2}]]]}
\end{equation}

The wh-object what\textsubscript{2} can move across the intervening wh-subject who\textsubscript{1} to the minimal residue of C\textsubscript{[+wh]} (more specifically, to a CP-left adjoined position, given the assumptions in section 5 of chapter 4) without violating Last Resort, because although who\textsubscript{1} is closer to C\textsubscript{[+wh]} than what\textsubscript{2} is before what\textsubscript{-}movement takes place, the subject wh-phrase no longer has an unchecked [+wh] feature and for this reason does not block raising of the wh-object.

At this point, the question arises of what all this has to do with the main goal of this section, which is to try to derive the effects of Unambiguous Domination from independently motivated principles. I turn to this in the next subsection.

\section*{7.3. Unambiguous Domination and Last Resort}

\subsection*{7.3.1. The Idea}

It has been suggested by Kitahara (1994, 185 & 201-205), Fox (1995), and Koizumi (1995, 186-187) that the generalization in (47) (i.e., remnant XPs cannot undergo Y-movement if the antecedent of the unbound trace has also undergone Y-movement), and therefore (most of) the effects of the Unambiguous Domination requirement, can be derived from something like the MLC in (110-b).55 In what follows, I would like

54Also, recall from subsection 3.4.1 of chapter 2 that I have assumed that the [+wh] features of wh-phrases are always weak – abstracting away from Bulgarian-type languages, it is the strength or weakness of C that creates cross-linguistic variation. As for English, I have suggested that the [+wh] feature of C, which is [+Interpretable] (i.e., does not disappear after checking), is strong to start with, but becomes weak after checking. If this is so, Procrastinate cannot serve to differentiate between legitimate and illegitimate wh-movement in (111) and (112).

55The actual implementation of this idea differs somewhat from author to author. Thus, Kitahara (1994, 185) proposes an economy constraint called “Restrict” that incorporates a statement akin to (110-b); Fox (1995) suggests that the generalization in (47) be derived by a transderivational Shortest Move condition; finally, Koizumi (1995, 187) formulates (110-b) as part of the operation Attract/Move, just like Chomsky (1995, 297).
to tentatively develop an approach to Unambiguous Domination along these lines. The approach builds on Kitahara’s, Fox’s, and Koizumi’s basic insight and develops it further in a specific direction within the system of assumptions adopted so far.

First, recall the derivational version of Unambiguous Domination in (105), which is repeated once more:

\[\text{(114) Unambiguous Domination (derivational version):} \]
\[\text{In a structure } ... [A ... B ...] ..., A and B may not undergo the same kind of movement.} \]

We can re-interpret the statement that “A and B may not undergo the same kind of movement” in this structure as “A and B may not check the same kind of feature.” Furthermore, recall from section 6 that a local domain has proved necessary for Unambiguous Domination – illformedness results only when the target position of B is outside A (if B moves A-internally, this is compatible with Unambiguous Domination). In the structural environment recognized by (114), this means that the category that might check off the common feature of A and B must be outside A in order for Unambiguous Domination to become relevant at all; schematically, this is shown in (115) (with A replaced with γ, B replaced with α, and the category that checks off the feature F that triggers movement of both γ and α given as β, all for reasons of uniformity):

\[\text{(115) } ... \beta ... [\gamma ... \alpha ...] ... \]

The crucial observation now is that in this context γ is invariably closer to β (in terms of length of path) than α is, the simple reason for this being that α is dominated by γ. Hence, we obtain exactly the same result as in the typical Superiority configuration in (116), where γ is closer to β than α is not because γ dominates α, but because γ asymmetrically c-commands α:56

\[\text{(116) } ... \beta ... [\gamma [... \alpha ...] ...] ... \]

Given the revised Last Resort condition in (110), we expect that just as γ must move before α does in (116), γ-movement must precede α-movement in (115) if γ and α have the same unchecked feature F. Let us now see how the effects of Unambiguous Domination can be derived from Last Resort (in interaction with other constraints). I will begin by considering remnant scrambling.

7.3.2. Last Resort and Remnant Scrambling

Remnant scrambling must be systematically excluded if the antecedent of the unbound trace has also undergone scrambling, but not otherwise. A relevant pair of examples is

56 As before, linear precedence by itself is not important in this configuration but is assumed to reflect asymmetric c-command relations.
7. Deriving Unambiguous Domination

repeated in (117) (cf. (28-a) and (29-b)):

(117) a. *dass [\(\alpha\) t\(_1\) zu lesen]\(_3\) keiner [das Buch]\(_1\) t\(_3\) versucht hat that to read no-one the book\(_{acc}\) tried has

b. dass [\(\alpha\) t\(_1\) zu lesen]\(_3\) ’s\(_1\) keiner t\(_3\) versucht hat that to read it\(_{acc}\) no-one tried has

The initial (i.e., pre-movement) structure of the illegitimate case of coherent infinitive scrambling in (117-a) looks roughly as in (118) (again, for the sake of simplicity, I abstract away from linear order and pretend that heads like I and V are left-peripheral in German):

(118) \(\ldots X_{[scr]} \ldots Y_{[scr]} \ldots [\alpha_{[scr]} \ldots NP_{[scr]} \ldots] \ldots\)

Suppose that \(X = I, Y = V, X\) asymmetrically c-commands \(Y,\) and both heads can check off a \([scr]\) feature in their respective minimal residues. By assumption, \(\alpha\) (= the coherent infinitive in (117-a)) and \(NP\) (= das Buch in (117-a)) are equipped with a \([scr]\) feature that must be checked off by overt movement. It now turns out that under Last Resort in (110) (in particular, under the MLC in (b)), there is no legitimate derivation left, given the theory of movement developed so far. The argument goes as follows:

Clearly, the coherent infinitive \(\alpha\) in (118) is closer to \(X\) than the \(NP\) included in \(\alpha\) is; it is also closer to \(Y\) than \(NP\) is. Thus, any derivation in which \(NP\) moves first in (118) to either \(X\) or \(Y\) will violate Last Resort. Hence, we know that \(\alpha\) must move first to either \(X\) or \(Y\). Suppose \(\alpha\) moves to \(X\) (= I), in accordance with Last Resort. Since the \([scr]\) feature of \(\alpha\) is now checked, Last Resort does not per se preclude scrambling of \(NP\) in the second step. The only remaining landing site for this movement is the minimal residue of \(Y\) (= V); but this is a position that is lower than the landing site of the preceding movement operation. Hence, what we have here is an illicit case of lowering in the syntax, excluded by the Strict Cycle Condition and the Barriers Condition (cf. chapters 3 & 4). Next, consider the reverse application of movement; i.e., \(\alpha\) moves first again (as required by Last Resort), but this time it ends up in \(Y\). In the second step, \(NP\) moves out of \(\alpha\) to \(X\), again in accordance with Last Resort. This derivation does not violate the Strict Cycle Condition. However, it violates the Barriers Condition. Recall from chapters 2 and 4 that XPs in derived positions are invariably barriers; at the point in this derivation at which \(NP\) extraction out of \(\alpha\) applies, \(\alpha\) is no longer in a complement position and is therefore a barrier that blocks subsequent movement. Thus, given the interaction of the revised Last Resort condition (incorporating the MLC), the Strict Cycle Condition, and the Barriers Condition, it follows that a structure like that in (118) cannot end up in a well-formed sentence (if \(NP\) moves out of \(\alpha\) to either \(X\) or \(Y\)).

Consider now legitimate cases of remnant scrambling, as in (117-b). Here, the pre-movement structure is as in (119). The main difference to (118) is that \(NP\) does not have a \([scr]\) feature to check off, but rather a “clitic” feature that one might abridge as
Chapter 5. Remnant Movement Asymmetries

(119) ... X_{[scr]} ... Y_{[cl]} ... [\alpha_{[scr]} ... NP_{[cl]} ...] ...

Here, NP is the closest category to the host Y that has an unchecked [cl] feature; \(\alpha \) does not intervene simply because it does not have a [cl] feature (let alone an unchecked one). Hence, Last Resort does not require that \(\alpha \)-movement precedes movement of NP (i.e., this time we are not forced into a violation of the Barriers Condition or the Strict Cycle Condition). So, NP moves first, cliticizing onto Y, and \(\alpha \) moves second, adjoining to XP; and this does not violate any of the constraints adopted so far, as desired.

One might think that this approach may explain facts about remnant scrambling but runs into problems as soon as ordinary cases of multiple scrambling are taken into account, because it wrongly excludes multiple scrambling along the same lines as Superiority configurations with \(wh \)-movement. To see that this is not so, consider a typical case of multiple scrambling in German (= (95-a) from chapter 4):

(120) dass [NP dem Fritz \(^1 \), [NP das Buch \(^2 \) keiner \([\text{vp} t_1 \ t_2 \text{geben} \]
that ART Fritz,dat the book,acc no-one,ron give
wollte wanted to

The structure before scrambling is as in (121); the relevant difference to (118) is that although the first NP asymmetrically c-commands the second NP, neither dominates the other.

(121) ... X_{[scr]} ... Y_{[scr]} ... NP_{1[scr]} ... NP_{2[scr]} ...

Since NP\(_1\) (the dative NP) is closer to X and Y than NP\(_2\) (the accusative NP) is, Last Resort requires that NP\(_1\) moves first, before NP\(_2\). But this has no negative consequences: Unlike what is the case with \(wh \)-movement in English, there is more than one potential landing site for scrambling in German. Furthermore, scrambling does not erect an island for another, subsequent scrambling operation. Therefore, NP\(_1\) may first adjoin to YP, and NP\(_2\) may then adjoin to XP in the second step (the reverse combination in which NP\(_1\) adjoins to XP and NP\(_2\) then adjoins to YP is precluded by the Strict Cycle Condition). Similarly, what is permitted under present assumptions is that a head like, e.g., Y in (121) may be able to check off more than one [scr] feature. In that case, both NP\(_1\) and NP\(_2\) can move to the minimal residue of Y, adjoining there in any order; the only way that Last Resort restricts these movements is by demanding

\(^{57}\) I assume here that the [scr] feature and the [cl] feature are checked on different heads. However, in principle nothing depends on this – the conclusions would be the same in a language (or construction) where [scr] and [cl] are checked by one and the same head.
that NP₁ move first.⁵⁸

To sum up so far, the revised Last Resort condition in (110) interacts with other constraints of the theory of movement adopted here in such a way that the restrictions on remnant scrambling fall out directly, apparently without negative consequences for other cases of scrambling (but see below). These results carry over immediately to remnant left dislocation (which I have analysed as left-adjunction to CP, i.e., as an operation that is formally indistinguishable from scrambling) – assuming, that is, that left dislocation is derived via movement of the left-dislocated item; cf. footnote 31. Let me next turn to remnant topicalization.

7.3.3. Last Resort and Remnant Topicalization

Consider first some well-formed cases of remnant topicalization, such as (122-a), where an unbound scrambling trace shows up (= (1-a)), and (122-b), where the unbound trace has a w̲h̲-antecedent in a SpecC position (= (55-a)).⁵⁹

(122) a. [α₃ t₁ Zu lesen]₁ hat [NP das Buch]₁ keiner t₃ versucht
to read has the book no-one tried

b. ??[α₃ t₁ Zu lesen]₂ weiß ich nicht [CP was₁ sie t₂ versucht hat]
to read know I not what she tried has

The pre-movement structures look roughly as in (123-a) and (123-b), respectively:

(123) a. ... Topₚₜop ... Y[scr] ... [αₚₜop] ... NP[scr] ...] ...
b. ... Topₚₜop ... C[+w̲h̲] ... [αₚₜop] ... NP[+w̲h̲] ...] ...

As indicated, the features of the α-internal NP and of α itself are different. Hence, even though α is closer to Y/C than NP in both cases, Last Resort permits derivations where NP moves to Y/C first, and α-raising to Top takes place after that. Since this kind of derivation does not conflict with any other condition (e.g., the Barriers Condition, the Strict Cycle Condition, and the Fewest Steps condition are all respected), nothing precludes remnant topicalization in (122).

The case is different with sentences like (124) (= (45)):

(124) *[α₃ t₁ Zu lesen]₁ glaube ich [Topₚ NP dieses Buch]₁ hat keiner t₂ versucht]
to read think I this book has no-one tried

Here, the pre-movement structure looks as follows:

⁵⁸However, it seems that in order to derive an S-structure representation in which NP₁ is adjoined to X and NP₂ is adjoined to Y in (121), more must be said, e.g., that NP₁ with an unchecked [scr] feature that is in the minimal residue of Y does not count as closer to Y than NP₂ in situ anymore (cf. Chomsky (1995, 356)).

⁵⁹As noted before, (122-b) is not actually fully grammatical, but its intermediate status is due to a Subjacency-like Barriers Condition violation and hence independent of remnant movement.
Both α and the α-internal NP have an unchecked \[top\] feature. Last Resort as in (110) therefore requires that α move first. If α moves to Top$_1$, as in (124), subsequent topicalization of NP to Top$_2$ involves illicit lowering and thus creates a violation of the Strict Cycle Condition (and an additional violation of the Barriers Condition). If, on the other hand, α moves to Top$_2$ first (an option that is also permitted by Last Resort), subsequent topicalization of NP (which then must end up in the minimal residue of Top$_1$) violates the Barriers Condition: α is invariably a barrier at the point where extraction of NP applies. This explains why a sentence like (126) is impossible (also see (63)):

(126) *\[NP \text{ Dieses Buch } \], glaube ich \[TopP[\alpha \ t_1 zu lesen \ t_2 versucht \] this book think I to read has one tried

Thus, the approach to Unambiguous Domination effects in terms of the revised Last Resort condition in (110) makes correct predictions for remnant topicalization. However, as was already noted above, the illformedness of examples like (124) and (126) would follow independently of the issue of remnant movement. Thus, due to the strict nature of topic islands in German, (124) would be impossible even if α were to undergo some other kind of movement. Similarly, (126) would come out as ungrammatical if NP$_1$ were affected by some other movement type, e.g., wh-movement. In other words, although the revised Last Resort condition does not make wrong predictions as far as remnant topicalization options are concerned, it seems that we do not really need it in this domain – assuming the earlier version of Last Resort (cf. (109)), the illformedness of (124) and (126) would still follow (from whatever accounts for the fact that there is no movement across a filled SpecTop position in German, and from the fact that bound traces are subject to Freezing effects, as shown in chapter 4).

7.3.4. Last Resort and Remnant Wh-Movement

Finally, let me turn to wh-movement. A well-formed case of remnant wh-movement in German is repeated in (127) (= (15-a)):

(127) \[NP \text{ Was für ein Buch } t_1 \], hast du \[PP \text{ über die Liebe } \ t_2 gelesen ? \] what for a book have you about the love read

The pre-movement structure is this:

(128) ... C[+wh] ... Y[scr] ... [NP[+wh] ... PP[scr] ...] ...

NP is closer to both C and Y than PP is, but the unchecked movement features of NP and PP are different ([scr] vs. [+wh]). Therefore, Last Resort does not force us to move NP first (which would invariably result in a Barriers Condition violation and also in a Strict Cycle Condition violation); rather, PP may move to Y first, thereby checking its [scr] feature, and NP may then move to C, checking the [+wh] feature, in accordance
with the Barriers Condition, strict cyclicity, etc.60

The canonical ill-formed cases of remnant \textit{wh}-movement in English and German are repeated in (129-a) and (129-b) (= (35-a) and (38)):

(129) a. *\([NP\text{ Which book about } t_1 \text{ } t_2 \text{ don’t you know } [CP \text{ who}_1 \text{ to read } t_2]?\)

b. *\([NP\text{ Was für ein Buch } t_1 \text{ } t_2 \text{ fragst du dich } [CP \text{ [PP über wen] du \text{ ,} t_2 \text{ what for a book ask you REFL about whom you lesen sollst]?}]\)

The initial structure before \textit{wh}-movement has the following form:

(130) ... \(C_1[+w/h] \ldots C_2[+w/h] \ldots [NP[+w/h] \ldots XP[+w/h] \ldots] \ldots\)

Now, Last Resort in (110) demands that NP moves first – NP is closer to both C nodes than XP is and has the same unchecked movement feature. If NP moves to \(C_1\), as in the examples in (129), subsequent XP extraction is lowering and is precluded by the Strict Cycle Condition and the Barriers Condition. Thus, there is no derivation of these sentences that respects both Last Resort and the combined Strict Cycle Condition/Barriers Condition. On the other hand, suppose that NP in (130) moves not to \(C_1\) but to \(C_2\), followed by XP extraction to \(C_1\). Again, the Last Resort condition forces a violation of the Barriers Condition in this case (though not of the Strict Cycle Condition), and the result is expected to be ill formed. Relevant examples are given in (131-a) for English and in (131-b) (= (64-a)) for German:61

(131) a. *\([NP\text{ Who}_1 \text{ don’t you know } [CP \text{ [NP which book about } t_1 \text{ } t_2 \text{ to read } t_2]?}\)

b. *\([CP \text{ [NP was für Bücher } t_1 \text{ } t_2 \text{ er } t_2 \text{ gelesen hat]?}]\)

Thus, on the basis of (130), Last Resort forces a derivation of a sentence like (131-a) in which \textit{wh}-movement of NP precedes \textit{wh}-movement of XP (= \(\textit{who}_1\)), in violation of the Barriers Condition. However, if the two movement operations were to apply in reverse order (i.e., \(\textit{who}_1\) first raises to the matrix Spec\(C_1\) position, and NP\(2\) subsequently moves to the embedded Spec\(C_2\) position), we would independently predict a violation of the Strict Cycle Condition. This means that as with the topicalization

60Similar considerations apply in the case of combinations of remnant \textit{wh}-movement and extraposition in English, as discussed in subsection 3.3.4.

61A remark concerning the status of (131-a) in English is due. It is sometimes assumed that examples that are structurally analogous to the one at hand are better than, e.g., (129-a). If so, this could not be accounted for under present assumptions. However, since the contrast is at best a very subtle one, and since no such contrast shows up in German, I think that the approach developed here is not directly threatened by these judgements of sentences like (131-a).
example in (126), the revised Last Resort is not actually necessary in order to rule out the sentences in (131)–these examples are excluded as involving Freezing effects along the lines of what has been said in chapter 4, irrespective of whether both moved items undergo the same movement operation or not.

To sum up so far, the revised Last Resort condition in (110) that integrates an independently motivated derivational shortest path requirement, the MLC (cf. the discussion of Superiority effects in English), correctly predicts the restrictions on remnant movement that are the main topic of this chapter. It does so by allowing only derivations that violate other principles, viz., the Barriers Condition and the Strict Cycle Condition. Thus, recall from chapter 4 that remnant movement may “normally” trigger Anti-Freezing effects; now, given the approach developed here in terms of the revised Last Resort condition, it turns out that remnant movement may indeed sometimes have to induce a Freezing effect – this is so if the remnant XP and the item that is included in it have the same kind of unchecked movement feature. As with the Unambiguous Domination requirement, it turns out that there are a few redundancies with bound traces, in the sense that constructions that are ruled out by the (b)-requirement of Last Resort in (110) would be ruled out anyway, e.g., by the Strict Cycle Condition; but I do not believe that these redundancies are particularly troublesome.

More generally, then, if this approach is viable, it looks as though we can dispense with Unambiguous Domination. However, it should be noted that there are a number of problems that have to be solved before the enterprise of deriving Unambiguous Domination from Last Resort can be viewed as fully successful. I turn to this issue in the following subsection, noting the problems but not attempting to present full-fledged solutions. In addition, I also address a possible further modification of Last Resort that allows us to derive the constraint on bi-directional adjunction (94) of chapter 4.

7.4. Problems and Consequences

7.4.1. Locality/Last Resort Interactions

The first question we may ask ourselves is how the revised Last Resort condition in (110) that integrates the MLC interacts with the theory of locality adopted so far. The revised Last Resort condition is repeated in (132):

(132) \[
\text{Last Resort:} \\
\alpha \text{ is raised to a position } \beta \text{ only if (a) and (b) hold:} \\
\text{a. } \beta \text{ is a typical checking position for the lowest-ranked unchecked morpho-logical feature F of } \alpha. \\
\text{b. There is no } \gamma \text{ with an unchecked F feature that is closer to } \beta.
\]

The Barriers Condition is violated in the examples in (133) which involve a \textit{wh}-island violation with an argumental \textit{wh}-phrase and which have an intermediate (Subjacency-like) status ((133-a) = (33-b) from chapter 2):
The first thing to note is that we do not want these examples to be ruled out by Last Resort for a very simple reason: Locality violations that arise in the derivation lead to weak ungrammaticality, and only locality violations that persist at LF result in full ungrammaticality. Given that the moved item is an argument that has established an “offending” intermediate trace, the intermediate status of (133-a) and (133-b) is derived under the Barriers Condition (cf. subsection 3.2.5 of chapter 2). However, in order to account for the strong degree of ungrammaticality that arises with Unambiguous Domination effects, it is a prerequisite that violations of Last Resort are always strong. So, Last Resort must not rule out the sentences in (133). Fortunately, this result does indeed follow.

Thus, suppose that what happens in (133-a) is this: First, NP$_3$ moves to SpecC$_2$ (without actually checking the [+wh] feature); since the presence of whether blocks the use of SpecC$_1$ as an escape hatch (see Chomsky (1986)), NP$_3$ moves directly to the matrix clause SpecC position in the next step, where it checks off its [+wh] feature, in violation of the Barriers Condition. Note that neither of these movement operations violates Last Resort. The reason is that both movement operations end up in typical checking positions for an unchecked [+wh] feature and, more importantly in the present context, that in each case of wh-movement, the moved wh-item is closer to the target C position than any other wh-item with an unchecked [+wh] feature is (whether does not have an unchecked [+wh] feature).

A similar result is obtained in the case of (133-b). The pre-movement structure of this sentence looks as in (134):

(134) \[C_0[+wh] \ldots C_1[+wh] \ldots [NP \text{ who } I_4[+wh] \ldots C_2 \ldots [NP \text{ which book } I_3[+wh] \]

Again, NP$_3$ moves to the typical [+wh] feature checking position SpecC$_2$ first, but does not yet check off its [+wh] feature (since CP$_2$ is a declarative clause). Second, NP$_4$ undergoes local movement to the specifier of C$_1$, thereby checking off its [+wh] feature. And finally, NP$_3$ moves from the SpecC$_2$ position to the matrix SpecC$_0$ position, checking off its [+wh] feature there. This derivation does not violate Last Resort since NP$_4$ does not count as an intervening element (for the purposes of the MLC) anymore after its [+wh] feature has been checked.

62 The same conclusion can be drawn on the basis of (strong) PUB effects as they are discussed in section 6 of chapter 2; recall that in that case, too, the Last Resort condition was relevant.

63 At least, this is so if we ensure that NP$_4$ does not count as closer to C$_2$ than NP$_3$ in (134) – more generally, it must be guaranteed that only XP$_2$, and never XP$_1$, can undergo movement to the minimal residue of a head Z in a structure like (i), even if the path from XP$_1$ to Z is shorter than the path from XP$_2$.
Nevertheless, these considerations lead to an undesirable prediction of Last Resort for sentences like those in (135) in English:

(135) a. ??Which car$_1$ did John tell you [cp how$_2$ (t$_1'$) to fix t$_1$ t$_2$] ?
 b. *How$_2$ did John tell you [cp which car$_1$ to fix t$_1$ t$_2$] ?

The pre-movement structure of both these examples is depicted schematically in (136):

(136) ... C$_1$[+w/h] ... C$_2$[+w/h] ... which car$_1$[+w/h] ... how$_2$[+w/h]

Suppose that how is adjoined to VP, i.e., base-generated in a higher position than which car. In that case, it can undergo successive-cyclic movement to the minimal residue of C$_1$ without violating Last Resort; in the next step, which car moves to SpecC$_2$, again satisfying Last Resort but violating the Strict Cycle Condition. Hence, the resulting S-structure representation, viz., (135-b), is impossible. In this case, the effect of Last Resort is unproblematic, since the sentence is indeed completely ungrammatical.

Suppose next that how moves to the minimal residue of C$_2$ in the first step, again an option permitted by Last Resort. In that case, subsequent long-distance movement of which car violates the Barriers Condition; the result is (135-a).

However, a problem is now emerging: The offending trace created by this raising cannot be t$_1$ – given Chomsky & Lasnik’s (1993) account of argument/adjunct asymmetries in terms of uniform chains and Fewest Steps (that was assumed above in chapter 2), an intermediate trace t$_1'$ that induces the locality violation and can (in fact, must) itself be deleted on the way to LF is needed in (135-a). I have not committed myself to any specific hypothesis about what kind of position which car raises to before undergoes wh-movement, but it seems clear that this position is higher than the VP-adjoined position initially occupied by how (a possibility envisaged above was that this position is SpecTop, available as an intermediate landing site of wh-movement in infinitives). Under this assumption, it must actually be which car, not how, that is wh-moved first.

\[Z: \]

(i) ... XP$_1$ [... Z ... [... XP$_2$...] ...] ...

In other words, Last Resort must not accidentally force illicit lowering that is then excluded as a violation of the Strict Cycle Condition. To accomplish this result, we have to revise the (b)-requirement of (132) as in (ii):

(ii) There is no γ with an unchecked F feature that is closer to and c-commanded by β.

For reasons of simplicity, I will abstract from this modification in what follows, but I will tacitly presuppose it.

\[64\]

But of course, the revised Last Resort condition is not necessary to achieve this result; a reverse combination of movement operations in (135-b) would have involved a violation of locality requirements, with the SpecC$_2$ position blocked and strong ungrammaticality arising because long-distance adjunct movement is involved.
7. Deriving Unambiguous Domination

because of Last Resort. As before, two options arise. On the one hand, *which car* may move to the embedded SpecC$_2$ position, and *how* subsequently raises to the matrix SpecC$_1$ position, thereby creating the S-structure representation in (135-b). This sentence is strongly ill formed, and this follows because of a Barriers Condition violation with adjunct movement. On the other hand, however, *which car* may also move to the matrix SpecC$_1$ position first, followed by movement of *how* to the embedded SpecC$_2$ position in the second step. This derivation creates (135-a) which, as we have seen, has an intermediate status. Unfortunately, though, the best derivation that generates it (i.e., a derivation that respects Last Resort) still violates the Strict Cycle Condition, and therefore we would expect (135-a) to be completely ungrammatical, contrary to fact. In sum, it seems that in order to solve this problem, we have to make sure that movement of *how* to SpecC$_2$ may precede movement of *which car* to SpecC$_1$. This can be accomplished in one of two ways: Either the revised Last Resort condition in (132) has to be given up, or the notion of closeness must be modified in such a way that *which car* does not count as closer to C$_1$ and C$_2$ than *how* is even though it is located in a higher position (at the relevant stage in the derivation).

The same problem shows up independently of considerations related to argument/adjunct asymmetries with sentences like (137):

(137) ??Whom$_1$ don’t you know [CP$_3$, how$_2$ to tell t$_1$ [CP$_4$, t’$_2$ to fix the car t$_2$]] ?

The initial structure of this sentence before any wh-movement operation looks as in (138):

(138) ... C$_0[+wh]$... [C$_3[+wh]$... whom$_1$... [C$_4$... how$_2$...] ...] ...

The adjunct *how$_2$* is generated in CP$_4$, below *whom$_1$*, which is generated in CP$_3$. First, *how$_2$* moves to C$_4$. But then, Last Resort demands that *whom$_1$* moves next, and *how$_2$* can move only afterwards. To create the string in (137), movement of *whom$_1$* must end up in the minimal residue of C$_0$; but then, subsequent raising of *how$_2$* to SpecC$_3$ violates strict cyclicity. Therefore, we incorrectly predict strong ill formedness in (137), due to either a Strict Cycle Condition violation or a Last Resort violation, and cannot derive its actual intermediate status, which would ideally be attributed to violations of the Barriers Condition: The derivation in which only locality constraints are violated also violates Last Resort, under present assumptions (in this derivation, *how$_2$* first moves to the embedded SpecC$_3$ position, followed by long-distance raising of *whom$_1$* to SpecC$_2$). Again, the conclusion is that either Last Resort is wrong (in the form it takes in (132)) or the notion of closeness is not simply definable in terms of length of paths.

Naturally, in order to maintain the Last Resort-based account of Unambiguous Domination effects with remnant movement, the latter solution (i.e., modifying the notion of closeness) will be the preferred one; but I am not trying to advance a specific proposal here. Rather, let me now turn to another (albeit related) problem that shows up with multiple questions in German.
German normally does not exhibit Superiority effects, in striking contrast to English (recall (111)). This is shown for co-arguments (objects and subjects) by the data in (139):

(139) a. (Ich weiß nicht) [CP was_1 was_2 t_1 behauptet hat]
 I know not what_{acc} who_{nom} claimed has
b. (Ich weiß nicht) [CP wer_1 t_1 was_2 behauptet hat]
 I know not who_{nom} what_{acc} claimed has

Similarly, examples with two wh-objects that correspond to the English data in (112) (where one object originates in the embedded infinitive, and the other one in the matrix clause) are immune to Superiority effects – either object may undergo S-structure wh-movement:

(140) a. Was_1 hast du wen_2 überzeugt [CP t_1 PRO t_1 zu kaufen]?
 what_{acc} have you whom_{acc} convinced to buy
b. Wen_2 hast du t_2 überzeugt [CP PRO was_1 zu kaufen]?
 whom_{acc} have you convinced what_{acc} to buy

These data are obviously problematic for any account that relates Superiority effects in languages like English to the MLC. The problem becomes even more pressing in the specific approach currently under consideration. The MLC is now part of the revised Last Resort condition, and it does not seem possible to maintain the view that this condition for some reason simply does not hold in German – after all, restrictions on remnant movement in German that were earlier derived by Unambiguous Domination now follow under the MLC, integrated into Last Resort. What is more, given Unambiguous Domination effects with wh-movement in German (cf. (129-b), repeated here as (141)), we seem to have direct evidence that wh-movement in German is restricted by Last Resort in the formulation given in (132):

(141) *[NP Was für ein Buch t_1] fragst du dich [CP [PP über wen]_1 du t_2
 what for a book ask you REFL about whom you
 lesen sollst] ?
 read should

To confuse things even more, it turns out that German does indeed exhibit Superiority effects if the two wh-phrases in question are base-generated in different finite clauses,

7. Deriving Unambiguous Domination

as in (142):67

(142) a. Wer_1 hat t_1 geglaubt [CP dass der Fritz wen_2 mag] ?
whnom has believed that ART Fritzhnom whomacc likes
whnom has whomnom believed that ART Fritzhnom likes

b. ?* Wen_2 hat wer_1 geglaubt [CP t_2 dass der Fritz t_2 mag] ?
whnom has whomnom believed that ART Fritzhnom likes

As a final piece of problematic evidence in this context, consider a sentence like (143):

(143) [PP Über wen_1 hast du [NP was für ein Buch t_2] gelesen ?]

Here, a wh-PP embedded in a wh-NP (that is transparent for extraction, due to indefiniteness and the right choice of the governing verb) undergoes wh-movement, yielding a well-formed sentence, but in apparent violation of the Last Resort condition (note that the case is completely parallel to (141) under present assumptions).68

Thus, we have conflicting evidence as regards the validity of the Last Resort condition in (132) in German: Data such as those in (139), (140), and (143) seem to suggest that MLC effects do not show up with wh-movement in German, whereas data such as (141) and (142-b) seem to suggest that they do. Note that the distinction is not one between Superiority-type constructions (as schematically depicted in (144-a)) and remnant movement-type constructions (as in (144-b)) – both kinds of constructions may or may not lead to well-formed sentences in German, as we have just seen.

(144) a. C_1[+wh] ... XP_3[+wh] ... XP_4[+wh] ...

b. C_1[+wh] ... C_2[+wh] ... [XP_3[+wh] ... XP_4[+wh]] ...

In view of this, it seems to me that again the best way to go is to try to relate the apparent (ir-) relevance of Last Resort to the notion of closeness, in such a way that Last Resort blocks the ill-formed examples (141) and (142-b), but not the well-formed examples in (139), (140), and (143). Given that the ill-formed wh-movement operations involve long-distance steps across finite clause boundaries, and the well-formed wh-movement operations typically employ only (relatively) local movements, this enterprise does not strike me as impossible (but I will not undertake it here, and closer

67The observation is, I believe, due to Werner Frey (p.c.); also see Büring & Hartmann (1994, 62) and Müller (1995, 324). Note also that (142-b) is well formed if the wh-phrase wer_1 is replaced by a [-wh] expression such as Karl; so, it must be a genuine Superiority effect that is at work here, and not some other factor that might bar extraction.

68Incidentally, the wellformedness of (143) at first sight also poses a problem for the idea that Unambiguous Domination applies at LF (cf. section 4 above). The reason is that the wh-trace t_1 will end up dominated by a category in a wh-position at LF (after wh-raising of NP_2). In contrast, (143) would be unproblematic if we were to assume that Unambiguous Domination applies at S-structure. However, this problem for an LF-based Unambiguous Domination condition disappears if we take into account that the [+wh] position of PP_1 (SpecC) and the [+wh] position of NP_2 (CP-Adj) are formally different.
scrutiny shows that it is not as straightforward as one would hope). Furthermore, it is evident that the definition of closeness must be parametrizable – otherwise, cross-linguistic variation with respect to Superiority phenomena with clause-mates would have to remain a mystery.\footnote{Clearly, defining the notion of closeness (for the purposes of the MLC/Last Resort) exclusively via the concept of length of paths (or minimal c-command) is theoretically more attractive than resorting to auxiliary, non-basic assumptions whose task is to render the notion of closeness more “liberal” by creating equidistance of two items that stand in an asymmetric c-command relation. However, it is at least worth bearing in mind that the problem is far from being confined to the case at hand. For instance, the consideration of multiple clause-internal A-movement operations has often been viewed as necessitating a concept of “equidistance” or “minimal domain” in the MLC; cf., among others, Chomsky (1995, 356-358) (who points out that a strict notion of closeness that does without minimal domains can work for IP-internal A-movement only if it is ensured that a Case position of an argument is never separated from the base position of that argument by an intervening argument position, an assumption that has far-reaching consequences), and Collins (1997, 23).}

That said, let me turn to a third and final problem raised by the present approach based on Last Resort.

7.4.3. Bound Scrambling Traces

The following example has already been discussed in some detail in subsection 5.1 of this chapter (cf. (67); also see subsection 6.2 of chapter 4):

(145) *dass [NP den Aufsatz _1, mal wieder [VP t_1 gelesen _2 keiner t_2 hat]
that the article\textsubscript{acc} once again read no-one has

I have argued that a derivation as in (146) must be excluded and that this derivation does not violate any of the locality, economy, and cyclicity constraints recognized in chapters 2 – 4.

(146) a. \textit{D-Structure Representation}:
dass mal wieder keiner [VP [NP den Aufsatz _1, gelesen _2 hat]

b. \textit{NP_1 Scrambling to VP}:
dass mal wieder keiner [NP den Aufsatz _1, [VP t_1 gelesen _2 hat]

c. \textit{VP_2 Scrambling to IP}:
dass mal wieder [VP t_1 gelesen _2 keiner [NP den Aufsatz _1, t_2 hat]

d. \textit{NP_1 Scrambling to IP}:
dass [NP den Aufsatz _1, mal wieder [VP t_1 gelesen _2 keiner t_1' t_2 hat]

However – so the argument in subsection 5.1 goes – the resulting representation in (146-b) violates Unambiguous Domination due to illicit domination of the scrambling trace _1 by a scrambled item (VP_2). The question now is: Does the ungrammaticality of sentences like (145) that exhibit bound scrambling traces in scrambled items still follow under the present approach in terms of Last Resort? The crucial operation is
scrambling of NP$_1$ to VP in the first step. Due to Fewest Steps (which minimizes optional features on items; cf. section 6 of chapter 2), this movement cannot yet result in checking of [scr], but it is certainly permitted by the (a)-requirement of Last Resort (VP$_2$-Adj is a typical checking position for the [scr] feature of NP$_1$). By assumption, VP$_2$ itself also has a [scr] feature to check. Thus, we end up with the situation that Last Resort can block the first scrambling operation applying to NP$_1$ in (146) only if γ and β can be identical in the definition of Last Resort in (132), such that VP$_2$ is closer to itself than NP$_1$. Although I do not really foresee undesirable consequences of such an assumption (but see the remarks in subsection 7.3.2 above), it strikes me as conceptually weird to postulate that closeness can be reflexive (in particular, note that VP cannot actually check off its own [scr] feature). But if we assume that VP$_2$ does not count as closer to VP$_2$ than NP$_1$, Last Resort does not block the derivation in (146), and the illformedness of (145) returns as a problem.

To sum up, we have seen that the MLC as part of Last Resort makes some problematic predictions: In some cases, it may wrongly exclude sentences as completely ungrammatical that either have an intermediate status (cf. the English data in subsection 7.4.1) or are perfectly well formed (cf. the German data in subsection 7.4.2). In other cases, it wrongly permits sentences that could be ruled out as ungrammatical under Unambiguous Domination (cf. (145)). Nevertheless, all in all I believe that a Last Resort approach to the restrictions of remnant movement along the lines of Kitahara (1994), Fox (1995), and Koizumi (1995) is worth pursuing as an alternative to the Unambiguous Domination condition, and that the most problematic consequences of the revised Last Resort condition can be tackled by developing an appropriate concept of closeness – a task that has independently been recognized as important by the consideration of the options of IP-internal Case-driven movement operations.

7.4.4. Bi-Directional Adjunction

Finally, let me point out a potentially positive consequence of the MLC-based notion of Last Resort in (110). Recall from chapter 4 that a specific constraint blocking bi-directional adjunction appeared necessary to exclude certain instances of remnant movement. The constraint is repeated here in (147) (= (94) of chapter 4).

(147) If α dominates β, α-adjunction to γ and β-adjunction to γ cannot be bi-directional.

A derivation that is excluded by this constraint is the one in (148) (= (93) from chapter 4):

70Note also that the problems discussed in this section also show up in more or less the same form in Chomsky (1995), irrespective of the issue of remnant movement.
a. **D-Structure Representation:**
 - hat der Fritz nicht \([VP [PP da_1 mit]_2 \text{ gerechnet }]_3\)

b. **Scrambling of NP\(_1\) to VP:**
 - hat der Fritz nicht \([VP da_1 [VP [PP t_1 mit]_2 \text{ gerechnet }]_3]_3\)

c. **Extraposition of PP\(_2\) to VP:**
 - hat der Fritz nicht \([VP [VP da_1 [VP t_2 \text{ gerechnet }]_3]_3 [PP t_1 mit]_2]_3\)

d. **Scrambling of NP\(_1\) to IP:**
 - hat da\(_1\) der Fritz nicht \([VP [VP t_1 [VP t_2 \text{ gerechnet }]_3]_3 [PP t_1 mit]_2]_3\)

e. **Topicalization of VP\(_3\):**
 - [VP [VP t\(_1\)' [VP t\(_2\) \text{ gerechnet }]_3]_3 [PP t\(_1\) mit]_2]_3 hat da\(_1\) der Fritz nicht t\(_3\)

The intuition behind (147) was that PP\(_2\) and NP\(_1\) compete for movement to VP in (148), and that PP\(_2\)-movement to VP blocks NP\(_1\)-movement since NP\(_1\) is dominated by PP\(_2\) in the pre-movement structure. This reasoning resembles the MLC-based account of Unambiguous Domination effects given in the preceding subsections – clearly, PP\(_2\) is closer to the target than NP\(_1\) which is dominated by PP\(_2\). Indeed, it seems that (147) can be derived if we assume that extraposition is always triggered by a strong [extr] feature (see subsection 4.1 of chapter 4 and particularly chapter 6 below), and if we adopt a revised version of the Last Resort condition that incorporates a distinction between identical features as interveners and similar features as interveners, as in (149):
from a Last Resort condition that incorporates the MLC. The price to pay here is that Last Resort is now not formulated in a strictly local way anymore, but has a look-ahead property: To find out whether a movement operation (like NP scrambling to VP in (148)) respects Last Resort, one has to know whether subsequent movement operations (like PP scrambling to VP in (148)) result in actual feature checking or not. Furthermore, it might arguably be preferable on conceptual grounds to dispense with the distinction between identical features and similar features as interveners for the purposes of the MLC; but this distinction is clearly necessary for the revised Last Resort condition to work (thus, it must be ensured that, e.g., extraposition of a PP to IP and scrambling of an NP from the same PP to VP can co-occur, even though PP is closer to both VP and IP in the pre-movement structure). For these reasons, I will only tentatively adopt the revision of Last Resort in this subsection, and draw a general conclusion.

8. Conclusion

In this chapter, I set out to derive an apparent asymmetry between movement types – remnant XPs may undergo topicalization and wh-movement, but, in general, they cannot be scrambled or left dislocated. I then went on to call the validity of this statement into question, and proposed instead that the correct empirical generalization is this:

(151) Generalization:
Remnant XPs cannot undergo Y-movement if the antecedent of the unbound trace has also undergone Y-movement.

According to this view, any movement type may or may not affect remnant XPs, depending on the position of the antecedent of the unbound trace created by remnant movement: Remnant scrambling is impossible if the antecedent of the unbound trace has also undergone scrambling, but not otherwise; remnant wh-movement is impossible if the antecedent of the unbound trace has also undergone wh-movement, but not otherwise; etc. In order to account for these facts, I proposed a principle of Unambiguous Domination that precludes (in its representational formulation) α-dominance of α-traces. After refining the analysis in terms of Unambiguous Domination (by considering its relevance for various trace types, and by defining a local domain in which the requirement holds), I then took up recent suggestions that the constraint on remnant movement could be derived from an independently motivated shortest path requirement, the MLC; and I located this requirement within the Last Resort condition. An investigation into the predictions of such a revised approach has shown it to be capable of deriving the basic effects of Unambiguous Domination; but whether or not it can be maintained in the light of certain pieces of counter-evidence is, to my mind, an open question that awaits further research.
Chapter 6

Intermediate Traces and Extraposition

1. The Problem

In this chapter, I would like to address the last of the four problems raised by remnant movement that were noted in section 3 of chapter 1, namely, the apparent inability of remnant movement to create unbound intermediate traces (cf. den Besten & Wepelhuth (1990), Fanselow (1992; 1993), Grewendorf (1994), and Bayer (1996)). Two relevant constructions that initially lend support to this view are repeated here in (1) and (2) (= (63) and (65-a) from chapter 1):

(1) *[CP \(t' \) Daß Fritz \(t_1 \) liebt] \(t_2 \) weiß ich nicht [CP wen \(t_1 \) er \(t_2 \) gesagt that Fritz\(nom \) loves know I\(nom \) not who\(acc \) he\(nom \) said hat] has

(2) *[VP \(t_2 \) Gesagt [CP, \(t' \) dass Fritz \(t_1 \) liebt] \(t_3 \) weiß ich nicht [CP wen \(t_1 \) er \(t_2 \) hat] said that Fritz\(nom \) loves know I\(nom \) not who\(acc \) he\(nom \) has

In (1) successive-cyclic \(wh \)-movement (creating an intermediate trace \(t' \) for reasons of locality) occurs together with topicalization of the remnant CP, and the result is ill formed. Similarly, in (2) successive-cyclic \(wh \)-movement and remnant topicalization co-occur; but in this case, what is topicalized is a remnant VP that includes an extraposed CP that contains the traces of \(wh \)-movement. These constructions both involve a \(wh \)-island effect, but they contrast sharply with their counterparts in (3) and (4), where no remnant movement occurs.

(3) ??*[CP Daß Fritz Caroline liebt] \(t_2 \) weiß ich nicht [CP ob er \(t_2 \) that Fritz\(nom \) Caroline\(acc \) loves know I\(nom \) not whether he\(nom \) zugeben würde] admit would

(4) ??*[CP Daß Fritz Caroline liebt] \(t_2 \) weiß ich nicht [CP ob er \(t_2 \) that Fritz\(nom \) Caroline\(acc \) loves know I\(nom \) not whether he\(nom \) zugeben würde] admit would
These cases of topicalization of a non-remnant XP across a wh-island have an intermediate status; i.e., they are much better than the remnant movement cases in (1) and (2). Thus, there seems to be an additional factor involved that renders (1) and (2) sharply ungrammatical.\footnote{At first sight, one might assume that ungrammatical sentences like (i-a) and (i-b) in German pose the same kind of problem as (1) and (2). Here the antecedent of the unbound intermediate trace is in a scrambling position (and not in a wh-position). (For (i-b) see Hinrichs & Nakazawa (1994, 44), who observe that this construction is potentially problematic for an approach to incomplete category fronting in terms of remnant movement or, in their analysis, SLASH features on the fronted VP.)}

It is tempting to assume that the underlying generalization is that intermediate unbound traces may never occur and that (5) holds as a principle:\footnote{(5) builds on an insight by den Besten & Webelhuth (1990, 83 & 86) but is not identical to either of the two generalizations envisaged by these authors. They first assume that the apparent restriction blocks unbound traces in specifier positions, and eventually suggest that all traces in non-argument positions are precluded from occurring unbound. I will later discuss some of the evidence that leads den Besten & Webelhuth to these assumptions; for the time being, recall from chapter 1 that it looks as though non-argument traces can indeed show up unbound with remnant topicalization in German.}

(5) Unbound traces must be initial.

However, there are a number of factors that call the validity of (5) into question. I address these in the following section.

2. Remnant Movement Can Generate Intermediate Traces

2.1. A Conceptual Problem

First, there is a conceptual problem with (5). This condition explicitly differentiates between bound and unbound traces. Hence, (5) can be viewed as a construction-specific assumption of exactly the type I have sought to avoid in the preceding chapters – the basic task so far has been to account for the properties of remnant movement...
constructions without actually stipulating conditions that refer to the bound/unbound status of a trace. Thus, to the extent that (5) correctly describes the situation in (1) and (2), this should ideally follow from some general, non-construction specific principle(s).

2.2. A Redundancy

Second, it was shown in chapter 4 (subsection 5.2) that one of the two kinds of examples just mentioned that seem to support (5) can be accounted for independently, as involving a Freezing effect. This is (2), which is repeated here:

\[(6) *[VP t_2 Gesagt [CP t'_1 dass Fritz t_1 liebt]_3 weiß ich nicht]_3 CP wen_1 nom loves know I nom not who acc er t_3 hat] he nom has\]

This sentence necessarily involves three movement operations: wh-movement, VP topicalization, and CP extraposition. Wh-movement must apply first; otherwise, the Barriers Condition would be violated. If CP extraposition takes place second, before VP topicalization, the Strict Cycle Condition is violated. And if VP topicalization applies second, CP extraposition in the third step violates the Strict Cycle Condition. Thus, the illformedness of examples like (6) follows directly from the derivational approach to (Anti-) Freezing developed in chapter 4, and resorting to (5) is not necessary. If one nevertheless wants to maintain (5) in light of this, it is clear that massive redundancies arise that one might want to avoid.

2.3. A Missed Generalization

What is more, it was demonstrated in subsections 5.2.2 and 5.2.3 of chapter 4 that exactly the same Freezing effect as in (6) shows up with extraposition of a PP and of a coherent infinitive (the third construction), as in the following examples:

\[(7) *[VP t_2 Gerechnet [PP t_1 mit]_2 hat da_1 der Fritz nicht t_3 counted with has there ART Fritz not]_3\]
\[(8) *[VP t_2 Versucht [α dem Peter t_1 zu geben]_2 hat die Claudia das tried ART Peter dat to give has ART Claudia the Buch_1 nicht t_3 book acc not]_3\]

The ungrammaticality of (7) and (8) follows along the same lines as that of (6). However, these examples do not involve intermediate traces in the moved remnant XPs. As noted in chapter 1, extraction of an R-pronoun from a PP and from a coherent infinitive may take place without establishing an intermediate (PP-internal or infinitive-internal) trace; and in line with this, PP-internal traces and traces included in coherent infinitive-
Chapter 6. Intermediate Traces and Extraposition

ves may in principle occur unbound, as a result of remnant movement. Thus, it seems intuitively appealing to find a common reason for the ungrammaticality of (6) on the one hand and of (7) and (8) on the other. This is accomplished under the approach to Freezing in chapter 4 but not under the condition (5), which cannot account for the prohibition against (7) and (8).

2.4. Unbound Intermediate Traces in Extraposed CPs

Fourth, as was noted in subsection 5.2.1 of chapter 4, there is an empirical problem with the condition in (5) that arises under the approach to extraposition developed there. Recall that the explanation of the Anti-Freezing effect with CP extraposition in German that was given in chapter 4 crucially relies on the idea that \(wh\)-movement can precede CP extraposition in a sentence like (9) (as demanded by the Barriers Condition) without violating the Strict Cycle Condition only if CP extraposition ends up in a CP-adjoined position, i.e., if CP extraposition in (9) is an instance of remnant movement, creating an unbound intermediate \(wh\)-trace \(t'_1\), in violation of (5):

(9) (Ich weiß nicht) \(wen_1\) er \(t_2\) gesagt hat \([CP t'_1 dass Claudia t_1 geküßt hat]\)

One might object that the evidence to be gained against (5) from (9) depends on a theory-internal assumption, viz., that CP here is indeed in a higher position at S-structure than the \(wh\)-phrase \(wen_1\) (‘whom’), so that \(t'_1\) is unbound. No such objection would be possible if well-formed examples could be found that are structurally analogous to the ones in (1) and (2) in the sense that an intermediate unbound trace is unquestionably present. I turn to this in the following subsection.

2.5. Unbound Intermediate Traces in Topicalized Infinitives

Incoherent infinitives behave just like finite clauses in German with respect to an extraction asymmetry between scrambling and specifier movement operations like \(wh\)-movement. Thus, a finite object CP in German may permit \(wh\)-extraction (if it is embedded by a bridge verb), but it never permits long-distance scrambling out of it (cf. subsection 4.2 of chapter 2 and the references given there):

(10) a. *dass Antje Hygrometer\(t_1\) sagt \([CP t'_1 dass niemand t_1 mag]\)

\(that\ Antje\ hygrometers\ says\ that\ no-one\ likes\)

b. Was\(t_1\) denkt Antje \([CP t'_1 dass niemand t_1 mag]\) ?

\(What\ thinks\ Antje\ that\ no-one\ likes\)

As was briefly mentioned in footnote 17 of chapter 1, the same asymmetry shows up with incoherent object infinitives like those embedded by \(ablehnen\) (‘refuse’) in German. Consider the following contrast:
2. Remnant Movement Can Generate Intermediate Traces

(11) a. dass [NP das Buch]1, keiner [α, t zu lesen] abgelehnt hat

 that the book_{acc} no-one_{nom} to read refused has

b. Was1 hat keiner [α, t zu lesen]3 abgelehnt?

 what_{acc} has no-one_{nom} to read refused

It is commonly assumed that incoherent infinitives (in contrast to coherent infinitives) retain the full clausal structure and the transparency properties of finite clauses, i.e., that α in (11) is a CP. If this is so, the asymmetry between scrambling and wh-movement in (11) follows in the same way as that in (10). As regards (10), I argued in chapter 2 (following Müller & Sternefeld (1993)) that the embedded CP is a barrier that can only be circumvented by an intermediate movement step to SpecC. Such an operation is possible if the ultimate landing site is SpecC, too; however, if long-distance scrambling uses this option, a PUB effect arises that has been shown to be derivable from economy (long-distance scrambling of Hygrometer via the embedded SpecC position violates Last Resort because the scrambled item is not equipped with a [+wh] feature). Evidently, under the assumption that incoherent infinitives are complete CPs, extraction from such an infinitive depends on the availability of SpecC as an escape hatch, and we expect a PUB effect induced by Last Resort in the case of long-distance scrambling in (11-a) but not in the case of wh-movement in (11-b). What is relevant in the present context, however, is not the prohibition against scrambling from an incoherent infinitive as such, but rather the fact that this prohibition shows that well-formed cases of extraction from such an infinitive, as in (11-b), must proceed via SpecC, i.e., must create an intermediate trace:

(12) Was1 hat keiner [CP t C PRO t zu lesen]3 abgelehnt?

 what_{acc} has no-one_{nom} to read refused

Exactly the same conclusion can be drawn in the case of subject infinitives, which are necessarily incoherent in German. Again, these infinitives do not permit long-distance scrambling, but they permit wh-extraction (cf. the discussion in Haider (1983), Sternefeld (1985a), and Grewendorf (1989)); and again, this can be taken to indicate that they come equipped with a full CP structure and require extraction to proceed via SpecC.3 Consider the examples in (13) (here, (13-a) involves a subject infinitive without extraction, preceded by a sentence adverbial of the matrix clause so as to mark the clause boundary of the infinitive; (13-b) shows that the object of the subject infinitive cannot be scrambled into the matrix clause, in front of the sentence adverbial; and (13-c) makes the point that wh-extraction is possible in this context):

3 As noted before (see footnote 5 of chapter 2), the very possibility of wh-extraction from an infinitival subject CP in German is unexpected under the approach to barriers adopted here. To my mind, this fact ultimately suggests that a different type of barriers theory (in terms of minimality) should be developed. But, as before, I will not attempt to do such a thing here; let us simply assume that the general transparency of infinitival CPs for wh-extraction (topicalization, relativization) in German can be derived from the theory of locality in one way or another.
(13) a. dass wahrscheinlich \[\text{CP } \text{NP diesen Film } \] zu beanstanden
 that probably \[\text{this film} \] to object to
 sich nicht gehören würde
 not be proper would
 b. *dass \[\text{NP diesen Film } \] wahrscheinlich \[\text{CP } (t'_{1}) \text{ PRO t}_{1} \] zu beanstanden
 that this probably \[\text{to object to} \]
 sich nicht gehören würde
 not be proper would
 c. Was \[t_{1} \] würde wahrscheinlich \[\text{CP } t'_{1} \text{ PRO t}_{1} \] zu beanstanden
 what would probably \[\text{to object to} \]
 sich nicht gehören ?
 not be proper

Since incoherent object and subject infinitives do not allow long-distance scrambling in the first place due to the interaction of the Barriers Condition and Last Resort, we of course expect them not to be able to contain unbound scrambling traces after remnant movement (e.g., remnant topicalization) either. This was already shown for incoherent object infinitives in subsection 2.5 of chapter 1 (cf. (42-b) from that chapter, repeated here as (14-a)) and is shown for subject infinitives in (14-b):

(14) a. *[\text{CP } (t'_{1}) t_{1}] \text{ Zu lesen, hat } \text{NP das Buch } \text{ kein} \ t_{3} \text{ abgelehnt}
 to read has \[\text{the book} \] no-one refused
 b. *[\text{CP } (t'_{1}) t_{1}] \text{ Zu beanstanden, würde } \text{NP diesen Film } \text{ sich} \text{ nicht gehören}
 to object to would \[\text{this film} \] not be proper

However, an interesting question that now arises is how incoherent infinitives behave with respect to unbound traces of \textit{wh}-movement. By analogy with finite clauses, we might expect the pertinent constructions to be utterly impossible, and this is of course what the condition in (5) predicts, given that \textit{wh}-extraction from these kinds of clauses must establish an intermediate trace in Spec\textit{C} in order to be possible at all. The data in (15), though, show that this prediction is wrong – unbound intermediate traces of \textit{wh}-movement may show up in topicalized incoherent infinitives ((15-a) involves topicalization of an incoherent object infinitive, and (15-b) shows the same with topicalization of an incoherent subject infinitive):\(^4\)

\(^4\)A terminological remark is in order here. Up to now, usage of the notion “remnant infinitive” has implied that the infinitive is coherent, i.e., permits scrambling out of it. However, now it turns out that remnant infinitives may also be incoherent infinitives, viz., if unbound \textit{wh}-traces are involved. Hence, remnantness of an infinitive does not automatically signal coherence anymore.
2. Remnant Movement Can Generate Intermediate Traces

(15) a. ??[CP t'_1 PRO t_1 Zu lesen]_1 weiß ich nicht [CP was_t_1 der Fritz t_3 abgelehnt hat]
 to read know I not what ART Fritz refused has

b. ??[CP t'_1 PRO t_1 Zu beanstanden]_3 weiß ich nicht [CP was_t_1 t_3 sich nicht gehört]
 to object to know I not what is not proper

These examples involve the weak wh-island effect that is typical of topicalization of arguments across a wh-item in SpecC, but they do not exhibit the severe deviance that can be observed with analogous cases involving finite clauses, as in (1). Thus, (15-a) and (15-b) are completely on a par with the corresponding sentences in (16) that do not involve unbound traces in the fronted infinitives:

(16) a. ??[CP Das Buch zu lesen]_1 weiß ich nicht [CP warum der Fritz t_3 abgelehnt hat]
 the book to read know I not why ART Fritz refused has

b. ??[CP Diesen Film zu beanstanden]_3 weiß ich nicht [CP ob t_3 sich nicht gehört]
 this film to object to know I not whether is not proper

To sum up so far: However the contrast between intermediate unbound traces in topica-
 lized finite clauses (as in (1)) and intermediate unbound traces in topicalized non-finite
 clauses (as in (15-a) and (15-b)) ultimately is to be accounted for, the mere existence
 of the sentences in (15) shows that the condition in (5) cannot be correct – unbound
 intermediate traces may in principle occur in topicalized CPs.

What, then, is responsible for the impossibility of remnant movement in cases
 like (1), if not a general prohibition against unbound intermediate traces such as (5)?
 Towards a solution, I will now first turn to infinitival counterparts of the sentence in
 (2).

2.6. Unbound Intermediate Traces With and Without Extraposition

Consider first an example like (17):

(17)*[VP_2 [VP_3 t_3 Abgelehnt]] [CP t'_1 dem Peter t_1 zu geben]] weiß ich nicht
 refused ART Peter_dat to give know I not

[CP was_t_1 er t_2 hat]
 what_acc he has

This sentence is structurally analogous to (2), (7), and (8), and like these construc-
 tions, it is ungrammatical. This conforms to expectations. Due to the Barriers Condition,
Chapter 6. Intermediate Traces and Extraposition

wh-movement of *was*₁ (‘what’) to its target position must apply first, and no matter in which order the other two movement operations (VP topicalization and CP extraposition) apply, the Strict Cycle Condition is invariably violated.⁵ With this in mind, consider (18):

(18) ??[VP₂ [CP₂ t₂′] Dem Peter t₁ zu geben] abgelehnt [CP ART Peter dot zu geben refused know I not *was*₁ er t₂ hat] what acc he has

This sentence differs minimally from that in (17) in that VP-internal extraposition of CP has not taken place, and the result is not worse than any wh-island violation with topicalization in German; i.e., it is better than (17). Again, this does not come as a surprise under present assumptions – a derivation of (18) in which wh-movement precedes VP topicalization does not violate any constraints (in particular, it does not violate the Strict Cycle Condition). Clearly, the prediction now is that – ceteris paribus – the same conclusions should apply if CP, in a construction that takes the form of (18), were finite and not an infinitival clause. However, it is *not* the case that all other things are equal. There is an intervening factor with finite clauses, and this factor was already noted in subsection 4.1 of chapter 4 and left as an open problem there: Finite clauses, in contrast to infinitives (of all kind, i.e., both coherent and incoherent non-finite clauses), permit wh-extraction (or any other kind of long-distance movement) only if they eventually show up in an extraposed position. Thus, sentences like (19-a) (= (58-a) from chapter 4), in which the CP from which wh-extraction has taken place remains in situ, are ungrammatical; and so are sentences like (19-b) (which is structurally analogous to (18) and differs minimally from (2) in that CP extraposition has not taken place), for the very same reason:

(19) a. *(Ich weiß nicht) wen₁ er [CP t₁′ dass Claudia t₁ geküßt hat]₁₂ gesagt hat I know not whom he that Claudia kissed has said has
 b. *(VP [CP₂ t₂′] Daß Fritz t₁ liebt] gesagt]₁₂ weiß ich nicht [CP wen₁ that Fritz nom loves said know I nom not who acc] er t₃ hat] he nom has

Minimally contrasting examples involving wh-extraction from infinitives are given in (20) (also see (12)):

(20) a. *(Ich weiß nicht) wen₁ er [CP₂ t₂′ C PRO t₁ zu küszen] abgelehnt hat I know not whom acc he to kiss refused has

⁵It might be the case, however, that the degree of ungrammaticality in the case of (17) is not quite the same as with analogous constructions like those just mentioned; this is indicated in the example by assigning it a "?*" instead of a "*". At present, I have no explanation for this subtle difference.
3. Extraction as a Trigger for Extraposition

Also recall that examples with a finite CP in situ are much better (albeit often far from perfect, for reasons which are unclear to me) if wh-extraction does not occur; compare (19-a) and (19-b) with (21-a) (= (57-a) from chapter 4) and (21-b):

(21) a. ??dass er [CP dass Claudia Peter geküßt hat] _2 gesagt hat
 that he that Claudia Peter kissed has said has
 dass Claudia Peter geküßt hat] _2 gesagt hat
 that Claudia Peter kissed has said has
 that er tört nicht
 that he doesn’t

I would like to contend that the conclusion to be drawn from all this is the following: The ungrammaticality of sentences like (1) has nothing to do with the fact that an intermediate unbound trace shows up; rather, it should be related to the observation that extraction from a finite CP in German seems to necessarily require extraposition of that CP, as indicated by the illformedness of sentences like those in (19). According to this view, what saves sentences involving topicalization of remnant infinitives (or categories containing remnant infinitives) that include unbound intermediate traces (as in (15) and (18)) is the fact that extraction from a non-finite CP does not have to go hand in hand with extraposition of that CP. In the following section, I will develop this idea.

3. Extraction as a Trigger for Extraposition

3.1. Extraposition and Last Resort

Let me begin by considering the consequences that the Last Resort condition has for extraposition more closely. The first thing to note is that given Last Resort, all kinds of extraposition (clausal extraposition, Heavy NP Shift, PP extraposition, etc.) must be triggered by an appropriate feature. Indeed, I have (more or less tacitly) assumed so far that in all the cases of extraposition that were considered, an [extr] feature is indeed present, in the pre-movement structure, on the item that is to undergo extraposition; recall footnote 18 of chapter 4 and subsection 7.4.4 of chapter 5. This [extr] feature behaves in many respects like the [top] and [scr] features assumed for topicalization and scrambling, respectively. As in the case of these latter features, it seems plausible to assume that the [extr] feature is [Interpretable] and necessarily strong if it is present at all (i.e., a concept of LF extraposition appears to be poorly motivated); moreover, I would like to postulate that the [extr] feature is in principle optional, just like [scr] and [top]. As for the target of extraposition, I will simply continue to assume that any right-adjointed position in the minimal residue of a head can function as a target for extraposition, i.e., that any head can check off the [extr] feature on a lexical item; cf.
Abstracting away from a few potentially intervening factors, I take the assumption that [extr] is optionally inserted to be fairly uncontroversial with respect to PPs in SOV languages like German. As for NPs, assuming [extr] to be a strictly optional feature might appear problematic at first sight. After all, only heavy NPs can undergo extraposition in German, and given that the [extr] feature shows up on bare nouns in the numeration, it seems that we are deprived of a means of relating the presence or absence of an [extr] feature on N to the “heaviness” of the projection headed by N. However, this problem disappears if we follow Rochemont (1978), Fanselow (1991), and others in assuming that the decisive factor in licensing NP extraposition is not actually heaviness, but rather focussing. This latter property can be marked inherently on a lexical head in the numeration, and we can stipulate that the [extr] feature, while in principle optional, can be instantiated on a noun only if that noun is also marked as focussed.

This leaves us with CPs. As for control infinitives, assuming [extr] to optionally show up on an infinitival C makes the correct predictions; cf.:

(22) a. dass Fritz [CP, C1 das Buch zu lesen] versucht/abgelehnt hat
 that Fritz the book to read tried/refused has
b. dass Fritz t1 versucht/abgelehnt hat [CP, C1 das Buch zu lesen]
 that Fritz tried/refused has the book to read

As far as finite CPs in German are concerned, I have assumed that exactly the same situation holds, i.e., that extraposition is by itself not obligatory (leaving it open whether – and if so, how – the slight deviance or “clumsiness” of middle field-internal finite CPs in German should be accounted for in syntax):

6 It should be noted, though, that PP extraposition – perhaps somewhat surprisingly – yields better results with light PPs than with heavy PPs; cf.:

(i) a. dass er ihm t1 gebeten hat darum1
 that he nom him acc asked has for that
b. ?dass er ihm t1 gebeten hat [PP, um diesen Gefallen]
 that he nom him acc asked has for this favour

Other factors that are potentially relevant in this domain involve intonation and the grammatical function of the extraposed PP. In what follows, I abstract away from these factors, assuming that they do not reflect genuine syntactic restrictions of the type that should be captured by constrains on [extr] insertion.

7 I.e., what we have here is a GPSG-type feature co-occurrence restriction, as discussed earlier in chapter 2. As before, one would ideally like to derive this from more general assumptions, but I will not attempt to do that here.

8 The case is different with raising and ECM infinitives, where extraposition is (generally) impossible in German. I will not address this problem here.
3. Extraction as a Trigger for Extrapolation

(23) a. ??dass er [CP dass_1 Claudia Peter geküßt hat]_1 gesagt hat
that he that Claudia Peter kissed has said has
b. dass er t_1 gesagt hat [CP, dass_1 Claudia Peter geküßt hat]
that he said has that Claudia Peter kissed has

In (22-a) and (23-a), an [extr] feature has failed to show up on C_1 in the numeration; hence, extrapolation does not occur. In (22-b) and (23-b), in contrast, there is an optional [extr] feature on the C_1 node, and extrapolation takes place, in line with Last Resort.

Needless to say, these considerations do not yet comprehensively account for all the possibilities and restrictions related to extrapolation in a language like German, but they may suffice for present purposes.

3.2. Extraction and Extraposition

3.2.1. Derivational [extr] Instantiation

Now recall that wh-extraction from a finite CP is possible in German only if that CP ends up in an extrapolated position. Cf. the contrast between (9) and (19-a); both examples are repeated here:

(24) a. (Ich weiß nicht) wen_1 er t_2 gesagt hat [CP t_1 dass Claudia t_1 geküßt
I know not whom he said has that Claudia kissed
hat]_2 has
b. *(Ich weiß nicht) wen_1 er [CP t_1 dass Claudia t_1 geküßt hat]_2 gesagt hat
I know not whom he that Claudia kissed has said has

This contrast does not show up only in German; a cross-linguistic survey reveals that it is quite a common property of finite complements in SOV languages that they permit overt wh-extraction only under extrapolation. For instance, as has been noted by Ormazabal, Uriagereka, & Uribe-Etxebarria (1994, 6-7), the situation in Basque is completely parallel. Thus, it seems that what we want to express is that an otherwise optional feature (viz., [extr]) is instantiated obligatorily on a finite C node if extraction takes place via the minimal residue of C. I take it that this cannot be expressed in strictly local terms in an insightful way – in the numeration there is nothing that tells us whether the minimal residue of a [–wh] C node is later going to be affected by wh-extraction across it or not. Thus, I would like to suggest adopting an idea that was first (to my knowledge) proposed by Watanabe (1993, 56ff). Watanabe assumes that features that must be checked off by movement are not necessarily present in the numeration. Rather, some features may arise as a consequence of syntactic movement (and checking) operations. This holds, e.g., for Case-driven movement; according to Watanabe’s assumptions, NP-movement to SpecAGR creates a new feature [F] that must be checked off by further movement to a higher head. Elaborating on this gene-
ral idea, I will assume that the [extr] feature may indeed be instantiated on a C node in one of two ways – either by optional insertion in the process of creating the numera-
tion or by *wh*-extraction in the derivation.\(^9\) This latter way of instantiating an [extr] feature is explicitly stated in (25).\(^10\)

(25) **Derivational [extr] Instantiation:**
An [extr] feature is instantiated on a finite non-root C if the minimal residue of this C node is affected by movement.

From Derivational [extr] Instantiation it follows that (24-b) is ungrammatical. Here, *wh*-extraction from CP instantiates an [extr] feature on C, but CP fails to undergo extraposition, so that the [extr] feature remains unchecked. Hence, the derivation that generates this S-structure representation does not converge. In (24-a), on the other hand, the [extr] feature instantiated on C is checked off by CP extraposition; the derivation converges, and the sentence is well formed.

A technical question arises in this context. Recall that the [extr] feature is in principle optional on C. So, what happens if C comes equipped with one [extr] feature assigned to it in the numeration, and another one acquired in the derivation? (25) would rule out such a situation if it were accompanied by a statement that C can receive an [extr] feature derivationally only if it is [extr]-less so far. However, it turns out that such a stipulation is unnecessary under the revised notion of Fewest Steps that was proposed in section 6 of chapter 2 (in (113), repeated here as (26)):

(26) **Fewest Steps:**
If two derivations \(D_1\) and \(D_2\) are in the same reference set and \(D_1\) involves fewer checking operations than \(D_2\), then \(D_1\) is to be preferred over \(D_2\).

If a C node has two [extr] features, these two features may well be checked off on one and the same target head. However, in that case, there are two checking operations in which the derivation participates. A competing derivation in which C does not initially bear an [extr] feature in the derivation will therefore block the derivation just envisaged, in which C ends up having two [extr] features at a certain point in the derivation. Thus, again (i.e., as in the cases of illegitimate optional movement discussed in section 6 of chapter 2), the revised Fewest Steps condition has the effect of minimizing

\(^9\)Like Watanabe’s (1993) proposal, this view is not compatible with Chomsky’s (1995, 228) inclusiveness condition according to which “no new objects are added in the course of computation.”

\(^10\)For the time being, I assume that (25) holds in German, Basque, and other SOV languages; I will abstract away from a possible extension to other language types. – Note that the confinement to non-root C nodes in (25) is necessary because an [extr] feature on a root C node affected by *wh*-movement would yield the disastrous result that all *wh*-movement should be impossible in root clauses; the reason for this is that an [extr] feature on a root C node could never be checked off anymore.
optional features.\footnote{Note that the Fewest Steps condition allows optional extraposition in the first place for the same reason that it allows optional scrambling: The LF representation of a derivation in which an optional [extr] feature is checked is different from an LF representation of an otherwise identical derivation in which no [extr] feature (hence, no extraposition) is present.}

As it stands, (25) not only triggers finite CP extraposition if \textit{wh}-movement crosses the minimal residue of C, ending up in a higher position in the clause, but also predicts that CP extraposition must apply if the minimal residue of C acts as the ultimate landing site of a \textit{wh}-movement operation. In other words, finite embedded questions formed by \textit{wh}-movement always require extraposition of CP. I think this consequence is indeed tenable; cf. the contrast in (27):\footnote{However, (25) could straightforwardly be reformulated in such a way that it triggers CP extraposition only if movement proceeds further. This is purely an empirical question.}

(27) a. *dass Fritz sich \([\text{CP}_2 \text{w} \text{arum}_1 \text{C sie } \text{t}_1 \text{ das getan hat }] \text{ fragt}
\quad \text{that Fritz}_{\text{nom}} \text{REFL why she}_{\text{acc}} \text{ that}_{\text{acc}} \text{ done has asks}
\quad \text{that Fritz}_{\text{nom}} \text{REFL asks why she that done has}

b. dass Fritz sich \text{t}_2 \text{fragt} [\text{CP}_2 \text{warum}_1 \text{C sie } \text{t}_1 \text{ das getan hat }]
\quad \text{that Fritz}_{\text{nom}} \text{REFL asks why she that done has}

The in situ version in (27-a) seems to be more on a par with a sentence like (24-b) than with a sentence like (23-a), as far as its degree of (un-)grammaticality is concerned, and this follows under the formulation of (25) just given. As one might expect, the same strong contrast arises with VP topicalization:

(28) a. *[\text{VP}_3 \text{ [CP}_2 \text{ Warum}_1 \text{C sie } \text{t}_1 \text{ das getan hat }] \text{ gefragt }] \text{ hat Fritz sich}
\quad \text{why she that done has asked has Fritz REFL}
\quad \text{not t}_3

b. [\text{VP}_3 \text{ t}_2 \text{ Gefragt} [\text{CP}_2 \text{ warum}_1 \text{C sie } \text{t}_1 \text{ das getan hat }]] \text{ hat Fritz sich}
\quad \text{asked why she that done has has Fritz REFL}
\quad \text{not t}_3

3.2.2. \textit{Topicalization}

Closer inspection reveals that the formulation of Derivational [extr] Instantiation given in (25) is not yet general enough. Like \textit{wh}-movement, topicalization from an embedded finite clause in German is possible only if that clause undergoes extraposition; cf.:

(29) a. Den Karl hat sie \text{t}_2 \text{gesagt} [\text{CP}_3 \text{ t}_1' \text{ dass sie } \text{t}_1 \text{ geküßt hat }]
\quad \text{ART Karl}_{\text{acc}} \text{ has she said that she kissed has}

Chapter 6. Intermediate Traces and Extraposition

b. *Den Karl \text{acc} hat sie [CP, t₁¹ dass sie t₁ geküßt hat] gesagt
 ART Karl \text{acc} has she that she kissed has said

Given that topicalization is driven by a [top] feature on an XP that is checked off by the functional category Top (as suggested in chapter 2 and assumed throughout), it seems necessary to extend (25) in such a way that it also accounts for the contrast in (29). This can be accomplished by modifying (25) as in (30):

(30) \textit{Derivational \[extr\] Instantiation (revised):}

An \[extr\] feature is instantiated on a finite non-root clausal functional category X if the minimal residue of X is affected by movement.

“Clausal functional category” here is a cover term for C and Top. Note that as it stands (30) does not actually trigger CP extraposition if Top’s minimal residue is affected by movement (as in (29)); rather, what is extraposed on this view is TopP. This view might prove to be correct; alternatively, matching of CP and TopP (as had to be postulated anyway, for reasons of locality; recall subsection 4.2.5 of chapter 2) might also ensure that an \[extr\] feature of Top can be checked against a target head X even if it is not TopP itself that ends up in the minimal residue of X, but rather the CP that immediately dominates (and matches with) TopP. For lack of decisive empirical evidence, I will leave this question open.

In addition to accounting for (29-b), the revised condition of Derivational \[extr\] Instantiation in (30) makes an interesting prediction concerning topicalization and V/2 clauses in German. As is well known, embedded clauses in which topicalization (and V/2 movement) has applied may never remain in situ in German; see, e.g., Stechow & Sternefeld (1988, 392 & 397-399). Examples that show this restriction are given in (31) (compare the minimally different examples without internal topicalization in (23)):

(31) a. *dass er [CP den Peter \text{acc} habe die Claudia \text{nom} t₂ geküßt]₁ sagte
 that he ART Peter \text{acc} has,subj ART Claudia \text{nom} kissed said

b. dass er t₁ sagte [CP, den Peter \text{acc} habe die Claudia \text{nom} t₂ geküßt]
 that he said ART Peter \text{acc} has,subj ART Claudia \text{nom} kissed

The illformedness of (31-a) follows directly under present assumptions. Both topicalization and V/2 movement affect the minimal residue of the finite clausal functional head Top (in contrast to what is the case with complementizer-initial clauses, as in (23), where the domain of C is not affected by any movement operation). Hence, an \[extr\] feature is instantiated on Top but not checked off via clausal extraposition, and therefore the derivation generating (31-a) necessarily fails to converge. No such problem arises in (31-b). As before, Top obligatorily receives an \[extr\] feature (due to topicalization and V/2 movement), but this time subsequent extraposition applies, thereby checking off this feature and leading to convergence. Thus, the prohibition against embedded V/2 clauses in situ in German is derived.
3. Extraction as a Trigger for Extraposition

3.3. Intermediate Traces in Topicalized CPs Revisited

3.3.1. The Analysis

With all this mind, we can now return to the original problem posed at the beginning of this chapter, which is to account for the severe illformedness of sentences like (32) (= (1)):

(32) *[CP \(t_1' \) Daß Fritz \(t_1 \) liebt]_1 weiß ich nicht [CP wen_1 er \(t_2 \) gesagt hat]

that Fritz\(_{nom}\) loves know I\(_{nom}\) not who\(_{acc}\) he\(_{nom}\) said has

The pre-movement representation of this sentence is given in (33) (as before, I abstract away from V/2 movement in the matrix clause, since it is irrelevant to the issue currently under consideration):

(33) – weiß ich [CP\(_3\) – er [CP\(_2\) – dass Fritz wen\(_1\) liebt] gesagt hat] nicht

To fulfill the Barriers Condition, the first two movement operations must be wh-extractions applying to wen\(_1\) and moving it via SpecC\(_2\) to SpecC\(_3\):

(34) a. – weiß ich [CP\(_3\), – er [CP\(_2\), wen\(_1\) dass Fritz \(t_1 \) liebt] gesagt hat] nicht
 b. – weiß ich [CP\(_3\), wen\(_1\) er [CP\(_2\), \(t_1' \) dass Fritz \(t_1 \) liebt] gesagt hat] nicht

Substitution of wen\(_1\) in SpecC\(_2\) creates an [extr] feature on C\(_2\), given Derivational [extr] Instantiation in (30), and, for the same reason, subsequent substitution of wen\(_1\) in SpecC\(_3\) creates an [extr] feature on C\(_3\). Now we know that three additional movement operations must take place in order to generate the S-structure representation in (32), viz., CP\(_2\) extraposition, CP\(_3\) extraposition, and CP\(_2\) topicalization. Because of the Strict Cycle Condition, CP\(_2\) extraposition to the minimal residue of C\(_3\) must apply next, as in (35):

(35) – weiß ich [CP\(_3\), [CP\(_3\), wen\(_1\) er \(t_2 \) gesagt hat] [CP\(_2\), \(t_1' \) dass Fritz \(t_1 \) liebt]] nicht

The [extr] feature on C\(_2\) is checked off by this movement operation. Next, we can assume that CP\(_3\) undergoes extraposition, e.g., to IP (it may also undergo extraposition to the matrix CP/TopP). And finally, topicalization applies to CP\(_2\) (which implies that C\(_2\) has been assigned an optional [top] feature in the numeration), thereby creating the S-structure representation in (32). (Since neither of these two last movement operations is in any way problematic as regards locality conditions, and since both operations may end up in the very same minimal residue so that the Strict Cycle Condition does not necessarily impose a specific order, it might just as well be the case that the order of rule application in (36) is reversed. Nothing depends on this in the present context.)

(36) a. – weiß ich \(t_3 \) nicht [CP\(_3\), [CP\(_3\), wen\(_1\) er \(t_2 \) gesagt hat] [CP\(_2\), \(t_1' \) dass Fritz \(t_1 \) liebt]]
Chapter 6. Intermediate Traces and Extraposition

b. \([\text{CP}_2 \ t'_1 \ \text{dass Fritz } t_1 \ \text{liebt}] \ \text{weiß ich } t_3 \ \text{nicht} \ [\text{CP}_3 \ \text{wen}_1 \ \text{er } t_2 \ \text{gesagt hat}] \ t'_2\]

Abstracting away from the indeterminacy of rule application in the last two steps, the movement theory adopted so far tells us that this derivation is the only one that is compatible with locality and cyclicity constraints. Thus, in order to systematically rule out sentences of the type in (32), we must hope that there is nevertheless something wrong with this derivation, and indeed, it turns out that it is excluded by the economy constraint Fewest Steps as involving a PUB effect. To see this, note that CP2 is extraposed in step (35) and later topicalized in the last step in (36-b). Therefore, two distinct movement operations apply to one and the same item in the course of the derivation, and a PUB violation occurs. This violation is derivable from Fewest Steps. The reason is that there is a competing derivation that generates the same S-structure representation as the derivation in (33) – (36) (henceforth, D1), but does so with fewer checking operations and therefore blocks D1.

In such a blocking derivation, intermediate CP2 extraposition does not take place. However, D2 in (37) cannot be the derivation that we are looking for:

\[
\begin{align*}
\text{(37)} & \quad \text{a. D-Structure:} \\
& \quad - \ \text{weiß ich } [\text{CP}_3, -\text{er } [\text{CP}_2, -\text{dass Fritz } \text{wen}_1 \ \text{liebt}] \ \text{gesagt hat}] \ \text{nicht} \\
& \quad - \ \text{Wh-Movement of } \text{`wen}_1 \ \text{to SpecC}_2: \\
& \quad - \ \text{weiß ich } [\text{CP}_3, -\text{er } [\text{CP}_2, \text{wen}_1 \ \text{dass Fritz } t_1 \ \text{liebt}] \ \text{gesagt hat}] \ \text{nicht} \\
& \quad - \ \text{Wh-Movement of } \text{`wen}_1 \ \text{to SpecC}_3: \\
& \quad - \ \text{weiß ich } [\text{CP}_2, \text{wen}_1 \ \text{er } [\text{CP}_2, \ t'_1 \ \text{dass Fritz } t_1 \ \text{liebt}] \ \text{gesagt hat}] \ \text{nicht} \\
& \quad - \ \text{Extraposition of CP}_3: \\
& \quad - \ \text{weiß ich } t_3 \ \text{nicht} \ [\text{CP}_3, \ \text{wen}_1 \ \text{er } [\text{CP}_2, \ t'_1 \ \text{dass Fritz } t_1 \ \text{liebt}] \ \text{gesagt hat}] \\
& \quad - \ \text{Topicalization of CP}_2: \\
& \quad [\text{CP}_2 \ \text{t’}_1 \ \text{dass Fritz } t_1 \ \text{liebt}] \ \text{weiß ich } t_3 \ \text{nicht} \ [\text{CP}_3, \ \text{wen}_1 \ \text{er } t_2 \ \text{gesagt hat}] \\
\end{align*}
\]

D2 differs minimally from D1 in that intermediate (hence, invisible) CP2 extraposition fails to occur. Given that wh-movement in step (37-b) invariably instantiates an [extr] feature on C2, this derivation does not converge – the strong [extr] feature remains unchecked at the point in the derivation where Spell-Out applies. However, recall from the notion of reference set arrived at in chapter 2 (repeated here as (38)) that only derivations that converge can compete with respect to transderivational economy constraints like Fewest Steps.

\[
\begin{align*}
\text{(38)} & \quad \text{Reference Set:} \\
& \quad \text{Two derivations D1 and D2 are in the same reference set iff they yield the same LF output and converge at LF and PF.} \\
& \quad \text{Thus, D2 does not compete with D1 and consequently cannot block it via Fewest Steps.}
\end{align*}
\]

But now consider derivation D3 in (39):
3. Extraction as a Trigger for Extraposition

(39) a. **D-Structure:**

b. **Wh-Movement of \textit{wen}₁ to SpecC₃:**
 – weiß ich [CP₁ wen₁ er [CP₂ – dass Fritz t₁ liebt] gesagt hat] nicht

c. **Extraposition of CP₃:**
 – weiß ich t₃ nicht [CP₃ wen₁ er [CP₂ – dass Fritz t₁ liebt] gesagt hat]

d. **Topicalization of CP₂:**
 [CP₂ – dass Fritz t₁ liebt] weiß ich t₃ nicht [CP₃ wen₁ er t₂ gesagt hat]

D₃ generates the same S-structure representation as D₁ and D₂. As in D₂, CP₂ extraposition does not take place. What is more, though, in this case, \textit{wh}-movement skips over the intervening SpecC₂ position and goes directly to SpecC₃. Therefore, an \textit{extr} feature does not have to show up on C₂ at any point in the derivation, and CP₂ extraposition can be left undone without leading to a non-converging derivation. Since D₃ involves fewer instances of feature checking than D₁ and since both derivations are members of one and the same reference set, it follows that D₁ is blocked by D₃. D₃, however, involves a highly non-local movement step: \textit{wen}₁ moves from its in situ position directly into its ultimate target position, SpecC₃. Such a kind of movement induces a fatal violation of the Barriers Condition (the initial, hence undeletable, trace t₁ itself is the offending trace here, since an intermediate trace is not established) and therefore creates strong ungrammaticality even in the case of argument movement.

This, in a nutshell, is the explanation for the impossibility of sentences like (1)/(32): \textit{Wh}-extraction via SpecC automatically triggers CP extraposition, and subsequent CP topicalization creates a PUB effect, reducible to the Fewest Steps condition. Under this view, what is wrong with (1)/(32) is not that an unbound intermediate trace occurs but, on the contrary, that no such trace may occur, because of economy.

Given that Derivational [extr] Instantiation obligatorily inserts [extr] features only on finite C nodes, and not on non-finite C nodes (which we have to assume to permit \textit{wh}-extraction from infinitival CPs that show up to the left of V in German; cf. (20)), nothing blocks the topicalization of remnant infinitives that contain an intermediate \textit{wh}-trace, as in (15). These examples are repeated here:

(40) a. ??[CP t₁ PRO t₁ Zu lesen], weiß ich nicht [CP was₁ der Fritz t₃ abgelehnt hat]
 to read know I now what ART Fritz refused

 has

b. ??[CP t₁ PRO t₁ Zu beanstanden], weiß ich nicht [CP was₁ t₃
to object to know I not what
 sich nicht gehört]
 is not proper

A derivation of, e.g., (40-a) may look as follows:
Chapter 6. Intermediate Traces and Extraposition

(41) a. \(D\)-Structure:
 – weiß ich \[CP_2 – der Fritz \[CP_3 – PRO was_1 zu lesen] abgelehnt hat \] nicht
b. Wh-Movement of ‘was_1’ to \(SpecC_3\):
 – weiß ich \[CP_2 – der Fritz \[CP_3 was_1 PRO t_1 zu lesen] abgelehnt hat \] nicht
c. Wh-Movement of ‘was_1’ to \(SpecC_2\):
 – weiß ich \[CP_2 was_1 der Fritz \[CP_3 t_1’ PRO t_1 zu lesen \] abgelehnt hat \] nicht
d. Topicalization of \(CP_3\):
 \[CP_3 t_1’ PRO t_1 zu lesen \] weiß ich \[CP_2 was_1 der Fritz t_3 abgelehnt hat \] nicht
e. Extraposition of \(CP_2\):
 \[CP_3 t_1’ PRO t_1 zu lesen \] weiß ich t_2 nicht \[CP_2 was_1 der Fritz t_3 abgelehnt hat \]

This derivation involves a weak \(wh\)-island violation, which accounts for the intermediate status of the resulting sentence, but it does not involve a violation of the Fewest Steps condition (which would be much more severe). The reason for this is that \(wh\)-movement to \(SpecC_3\) may take place without instantiating an \[extr\] feature on \(C_3\) – Derivational \[extr\] Instantiation in (30) says something about finite clausal heads but not about non-finite ones.

3.3.2. A Consequence: PUB vs. Economy

At first sight, it seems that this approach faces a problem in view of examples like those in (42), which are well formed despite the fact that the \(wh\)-clauses do not show up in an extraposed position (cf. (27)):

(42) a. \[CP_2 Warum_1 C sie das t_1 getan hat] fragt sich Fritz t_2
 why she nom that acc done has asks REFL Fritz nom
b. \[CP_2 Wen_1 C sie t_1 liebt] ist mir t_2 leider unklar
 whom acc she nom loves is me dat unfortunately unclear

Since \(wh\)-movement to \(SpecC\) instantiates an \[extr\] feature on the head of \(CP_2\) according to (30), these examples must involve a combination of extraposition and subsequent topicalization of \(CP_2\). Under a strict PUB account, we should therefore wrongly expect these examples to be ill formed. But given that PUB effects can be derived from the economy constraints Fewest Steps and Last Resort, this consequence does not arise. Recall that the derivation \(D_1\) in (33) – (36) can only be blocked via Fewest Steps because there is a competing derivation in the same reference set (\(D_3\)) that involves one checking operation fewer. It follows that the examples in (42) are a problem for the present approach only if there is a competing derivation that involves fewer checking operations (and that violates some principle of grammar, like the Barriers Condition). However, there is no such derivation: The derivations of the examples in (42) each involve one instance of \([+wh]\) feature checking, one instance
of \([\text{extr}]\) feature checking, and one instance of \([\text{top}]\) feature checking; if any of these features remains unchecked, Last Resort is violated. The \([+\text{wh}]\) feature is obligatory, the \([\text{extr}]\) feature is obligatorily inserted after checking of the \([+\text{wh}]\) feature, and the optional \([\text{top}]\) feature is licensed by its creating a different LF representation (recall the theorem concerning optional movement features (120) of chapter 2). Thus, what differentiates between ill-formed examples like (32) and well-formed examples like those in (42) is the fact that the former can have a derivation in which an \([\text{extr}]\) feature can be dispensed with (by skipping over an intermediate SpecC position in the course of \(wh\)-movement at the cost of a fatal locality violation), whereas the latter cannot have a derivation in which the \([\text{extr}]\) feature is dispensed with (there is only one movement step of the \(wh\)-phrase in the first place).

Basically the same account can be given for the observation that clauses with internal \(wh\)-movement can show up not only in extraposed and topicalized positions, but also in scrambling positions. Consider the contrast in (43):

(43) a. *dass der Fritz überhaupt nicht \([\text{CP}_2]\) wie du das Auto \(t_1\) repariert that \(\text{ART Fritz}_{\text{nom}}\) absolutely not how you the car fixed hast \(t_1\) wissen konnte have know could

b. ??dass \([\text{CP}_2]\) wie du das Auto \(t_1\) repariert hast \(t_1\) der Fritz überhaupt that how you the car fixed have \(\text{ART Fritz}_{\text{nom}}\) absolutely nicht \(t_1\) wissen konnte not \(t_1\) know could

(43-b) has the same degree of grammaticality as regular instances of IP-internal finite \([-\text{wh}]\) clauses in German. This means that it must not be ruled out by economy constraints. Indeed, given that (43-b) involves checking of the features \([+\text{wh}]\), \([\text{extr}]\) (generated by local \(wh\)-movement), and \([\text{scr}]\) (optionally inserted on C), the derivation violates neither Fewest Steps nor Last Resort. Hence, (relative) wellformedness results despite the fact that the sequence of extraposition and scrambling applying to one and the same item (\(\text{CP}_2\)) would violate the PUB.

The ultimate rationale behind both cases discussed in this subsection is that the otherwise optional \([\text{extr}]\) feature is turned into an obligatory feature in certain contexts: If the feature \([\text{extr}]\) cannot be avoided, the derivation in which it occurs is legitimate even though another feature like \([\text{top}]\) or \([\text{scr}]\) is subsequently checked by the same item, in the same way that a derivation is legitimate in which an obligatory \([\text{Case}]\) feature is checked prior to a \([+\text{wh}]\) feature (see chapter 2).13

13This analysis also accounts for the fact that embedded V/2 clauses can undergo topicalization, as an alternative to extraposition, compare (31-a) with (i-a).

(i) a. \([\text{CP Den Peter}_2\) habe die Claudia \(t_2\) geküßt \(t_1\) sagte er \(t_1\) \(\text{ART Peter}_{\text{acc}}\) \(\text{has}_p\) \(\text{ART Claudia}_{\text{nom}}\) kissed said he
Chapter 6. Intermediate Traces and Extraposition

4. A Problem and a Conclusion

In the final section of this chapter, I would like to first discuss one construction that at first sight supports the view that intermediate traces cannot occur unbound; and after that, I draw a conclusion.

4.1. Subextraction and Intermediate Traces

So far, I have discussed data that at first sight seem to suggest that unbound intermediate traces are not permitted, and I have shown that these data can and, in fact, must be accounted for without such a construction-specific assumption. It should be noted, however, that there are other constructions discussed by den Besten & Webelhuth (1990) and Fanselow (1992; 1993) that initially appear to support a prohibition against intermediate unbound traces. One particularly interesting case involves subextraction (was für split) in German; a standard example is given in (44):

(44) \[\text{Was}_1 \text{ hat er } [\text{NP}_1 \text{ für Bücher }]_2 \text{ gelesen ?} \]

Here, the wh-item \text{was}_1 has been extracted out of \text{NP}_2, stranding \text{NP}_2 in situ. There seems to be no a priori reason why the remnant \text{NP}_2 should not be able to undergo long-distance topicalization across a wh-island created by subextraction itself. However, the result is strongly ungrammatical, as (45) shows:

(45) *\[[\text{NP}_1 \text{ Für Bücher }]_2 \text{ weiß ich nicht } [\text{CP } \text{was}_1 \text{ er } \text{t}_2 \text{ gelesen hat }] \]

Why should this be so? The answer provided by den Besten & Webelhuth (1990, 81) is that subextraction as in (44) invariably involves an intermediate NP-internal trace, as in (46):14

(46) \[\text{Was}_1 ... [\text{NP} \text{t}_1' [\text{NP}_1 [\text{PP} \text{für Bücher }]]_2 ...] \]

On this approach, (45) has an unbound intermediate trace of \text{was}_1 in the fronted remnant \text{NP}, as shown in (47), and this intermediate trace, according to den Besten & Webelhuth, is responsible for the illformedness of the sentence.

14The structure of NPs of the form was für \textit{N} is a bit more involved under den Besten & Webelhuth’s assumptions (e.g., the highest \text{NP} is analysed as a DP), but these details are not important in the present context.
Such a solution is no longer available under the present approach. But there is evidence that this approach cannot be maintained anyway and that there might be an independent factor at play in (45). To see this, note first that there is an alternative derivation of (47) that fails to produce an unbound intermediate trace. Given that \textit{für Bücher} is an XP constituent (a PP, according to den Besten & Webelhuth’s own assumptions), it is unclear what precludes it from undergoing long-distance topicalization out of NP$_2$; such a derivation would not create any unbound trace whatsoever:

(48) $*$[PP$_3$ \textit{für Bücher}] weiß ich nicht [CP was$_1$ er t$_2$ gelesen hat]
for books know I not what he read has

Alternatively, what has undergone topicalization in (45) might be neither PP$_2$, as in (48), nor NP$_2$, as in (47), but rather the intermediate NP$_4$, as in (49):

(49) $*$[NP$_4$ t$_1$ [PP$_3$, \textit{für Bücher}]] weiß ich nicht [CP was$_1$ er [NP$_4$ t$_1$ t$_3$]$_2$ gelesen hat]
for books know I not what he read has

In this case, topicalization would have created an unbound trace of was, but, crucially, not an unbound intermediate trace, and hence the illformedness of the sentence would still be unexpected.

Next, consider the example in (50):

(50) $*$[NP$_4$ \textit{Bücher}] weiß ich nicht [CP was$_1$ er [NP$_4$ t$_1$ für t$_3$]$_2$ gelesen hat]
books know I not what he for read has

(50) is just as ungrammatical as (45), and we would like to be able to state that this is so for the very same reason. Indeed, it seems to be the case that normally neither the remnant NP that is created after subextraction (i.e., after movement of was$_1$) nor a part of this remnant NP can undergo any kind of movement on its own. However, there is one exception to this rule, and that is particularly interesting, given the approach to extraposition developed in chapter 4. It turns out that the sequence \textit{für (D) N} can (marginally) undergo extraposition after subextraction to SpecC, as in (51):

\[16\]Note that it does not seem possible to argue that NP$_2$ in this context is a barrier that blocks extraction of PP$_2$; NP$_2$ occupies a complement position; and, of course, it does not block subextraction of was$_1$. In addition, recall that the governing verb \textit{lesen} (‘read’) belongs to the class of verbs that in principle permit extraction out of a direct object NP in situ, as a lexical property. – I hasten to add that for some unclear reason, subextraction of was, although sensitive to the position of the NP from which extraction takes place (cf. den Besten (1981), Grewendorf (1989), Diesing (1992), and many others), appears insensitive to lexical properties of the governing verb; cf. Müller (1995, 66) for discussion.

\[16\]This sentence is not completely perfect; but what is relevant in the present context is that it has the marked status that is often associated with heavy NP shift in German.
(51) a. \(\text{Was}_{1} \text{hat er } t_{2} \text{gelesen } [\text{NP } t'_{1} [\text{NP } t_{1} \text{für Bücher }]]_{2} \),
 what has he read for books
b. \(\text{Was}_{1} \text{hat er } [\text{NP } t'_{1} t_{4}]_{2} \text{gelesen } [\text{NP}_{4} t_{1} \text{für Bücher }]? \)
 what has he read for books
c. \(\text{Was}_{1} \text{hat er } [\text{NP } (t'_{1}) [\text{NP } t_{1} t_{3}]]_{2} \text{gelesen } [\text{PP}_{3} \text{für Bücher }]? \)
 what has he read for books

As indicated, there are three analyses that are a priori possible. Either the extrapo-
sed string \(\text{für Bücher} \) is a bare PP without any unbound trace, as in (51-b), or it is a
remnant NP, as in (51-a) and (51-b). In (51-a) NP\(_{2}\) is extraposed, and an intermediate
unbound trace of \(\text{was} \) is created; in contrast, in (51-b) NP\(_{4}\) is extraposed, thereby pro-
ducing only an initial unbound trace of \(\text{was} \).\(^{17}\) Given that extraposition in (51) is not
completely well formed, and given that the extraposed string in (51) shows heaviness
(or focussing) effects, the analysis in terms of NP extraposition, i.e., Heavy NP Shift,
might indeed emerge as the correct one. But if this is so, we arrive at the result that
the data in (51) might possibly suggest an analysis where a trace of \(\text{was} \) (perhaps even
an intermediate trace of \(\text{was} \)) occurs unbound; in that case, even the evidence from
subextraction does not warrant a condition like (5) that generally precludes unbound
intermediate traces.

There are other striking peculiarities of the construction. Consider, e.g., the sen-
tences in (52):

(52) a. \(\text{Warum hat Karl der Maria } [\text{NP was}_{1} \text{für Bücher }] \text{gegeben }? \)
 why has Karl ART Maria\(_{dat}\) what for books\(_{acc}\) given
b. *\(\text{Warum hat Karl was}_{1} \text{der Maria } [\text{NP } t_{1} \text{für Bücher }] \text{gegeben }? \)
 why has Karl what ART Maria\(_{dat}\) for books\(_{acc}\) given

(52-a) shows that \(wh \)-NPs of the \(\text{was für N} \) kind can show up in situ in multiple que-
thions. In the ungrammatical example (52-b), subextraction has taken place in this
configuration. However, the relevant difference between this and well-formed cases of
subextraction is that \(\text{was}_{1}\) in (52-b) has not undergone \(wh \)-movement but scrambling.
Now recall that \(wh \)-scrambling in German has been ruled out by invoking econo-
my constraints (Fewest Steps and Last Resort) in chapter 2. Still, though, there is a
clear contrast between illicit \(wh \)-scrambling, as in (53), and illicit subextraction to a
scrambling position, as in (52-b); and this contrast suggests that there is an additional

\(^{17}\)Note that the traces of \(\text{was} \) in the extraposed item must be unbound at S-structure under the approach
to (Anti-) Freezing developed in chapter 4: A combination of extraction from XP and extraposition of XP
is possible only if extraposition applies after extraction (because of the Barriers Condition) and ends up
at least in the same minimal residue (because of the Strict Cycle Condition) – in this case, in the minimal
residue of C.
4. A Problem and a Conclusion

violation of some constraint in (52-b).18

(53) ??Wie\textsubscript{1} hat [IP was\textsubscript{2} [IP der Fritz t\textsubscript{1} t\textsubscript{2} repariert]] ?
how has what\textsubscript{acc} ART Fritz fixed

What this clearly shows is that subextraction constructions not only prohibit movement of the type in (45), but behave in an unexpected way in other respects, too. I take it that the correct descriptive generalization about subextraction options in German is the following: In the structure

(54) ... [NP was\textsubscript{1} für (D) N] ...

the only possible movement operations are (i) movement of was\textsubscript{1} to SpecC; (ii) movement of the complete NP\textsubscript{2}; and (iii) movement of the string für (D) N to a right-adjoined position. An explanation for these facts is obviously desirable. However, I cannot do such a thing here. My goal was to show that these peculiarities associated with subextraction are not related to the issue of remnant movement and that a specific prohibition against unbound intermediate traces does not even suffice to exclude the sentence in (45).

4.2. Conclusion

Let me summarize the main findings of this chapter. I considered ungrammatical cases of remnant movement where an intermediate trace of wh-extraction shows up unbound; cf. (1) and (2), both repeated here:

(55) a. *[CP t\textsubscript{1}′ Daß Fritz t\textsubscript{1} liebt]\textsubscript{2} weiß ich nicht [CP wen\textsubscript{1} er t\textsubscript{2} that Fritz\textsubscript{nom} loves know \textsubscript{nom} not who\textsubscript{acc} he\textsubscript{nom}
gesagt hat]
said has

b. *[VP t\textsubscript{2} Gesagt [CP\textsubscript{2} t\textsubscript{1}′ dass Fritz t\textsubscript{1} liebt]\textsubscript{3} weiß ich nicht [CP
said that Fritz\textsubscript{nom} loves know \textsubscript{nom} not
wen\textsubscript{1} er t\textsubscript{3} hat]
who\textsubscript{acc} he\textsubscript{nom} has

I argued that a construction-specific statement along the lines of den Besten & Webelhuth (1990), to the effect that intermediate traces can simply never occur unbound (see (5)), is neither conceptually attractive nor empirically adequate. The most important empirical counter-argument was that sentences involving unbound intermediate traces in fronted incoherent infinitives (or in fronted VPs that contain non-extraposed incoherent infinitives) turned out to be possible, in contrast to sentences like those in (55)

18I assigned (53) a star in chapter 2; cf. (19-c) of that chapter. That (53) is assigned two question marks here is not supposed to mean that the sentence has improved in the meantime; rather, it reflects the fact that grammaticality judgements are to be viewed as relative, not as absolute.
Chapter 6. Intermediate Traces and Extraposition

(cf. (15) and (18)). The basic idea then was that the illformedness of the examples in (55) does not have anything to do with the fact that an intermediate trace occurs unbound. Rather, it is due to restrictions on extraposition. The explanation I advanced is not homogeneous – (55-a) and (55-b) are ruled out for different reasons: On the one hand, (55-b) is impossible because extraposition of CP₂ ends up in a position that is too low to avoid a Freezing effect (if wh-extraction from a finite CP is to apply, CP must be extraposed to the next higher CP). (55-a), on the other hand, is impossible because the fact that wh-extraction from a finite CP has applied signals that CP must have undergone extraposition in the derivation; thus, extraposition of CP₂ feeds subsequent topicalization applying to the same item, and a PUB effect results, reducible to the economy condition Fewest Steps. Thus, neither of the sentences in (55) demands a construction-specific assumption about unbound traces; in fact, the assumptions that I made about extraposition were motivated by sentences like (56), where no unbound trace shows up:

(56) a. (Ich weiß nicht) wen₁ er t₂ gesagt hat [CP t₁’ dass Claudia t₁ geküßt hat]₂
 I know not whom he said has that Claudia kissed has
b. *(Ich weiß nicht) wen₁ er [CP t₁’ dass Claudia t₁ geküßt hat]₂ gesagt hat
 I know not whom he that Claudia kissed has said has

The wellformedness of (56-a) follows under the present system if we assume that extraposition may end up in a CP-adjoined position; and the illformedness of (56-b) follows if we assume that wh-movement to the minimal residue of a finite C node obligatorily creates an [extr] feature on C.
Chapter 7

Concluding Remarks

In the preceding chapters, I have examined various instances of remnant movement constructions resulting from topicalization, \textit{wh}-movement, scrambling, left dislocation, and extraposition. I have tried to show that there are a number of properties of remnant movement in German that are surprising under a representational approach (viz., violations of the Proper Binding Condition, Anti-Freezing effects, movement type asymmetries, and an apparent prohibition against unbound intermediate traces), and that these properties can be explained by invoking independently established constraints in a derivational approach to movement theory, along the lines of Chomsky’s (1991; 1993; 1995) minimalist program. The constraints that turned out to be particularly relevant are the Barriers Condition, Fewest Steps, Last Resort, the Strict Cycle Condition, and the Minimal Link Condition (MLC), viewed here as a part of Last Resort. This approach relies on the assumption that movement operations are triggered by features, and the features that I have focussed on are [+wh], [top], [scr], and [extr].

Thus, on the empirical side my basic aim has been to show that for an adequate account of the properties of remnant movement in German, a derivational approach to movement theory is preferable to a representational one. On a more general note, it has often been observed that representational analyses of syntactic phenomena can usually be rephrased in derivational terms (and vice versa) without too much difficulty, so most syntactic phenomena do not force a decision as to what the overall organization of a grammar (representational or derivational) should look like. Therefore, as soon as we find a phenomenon that strongly suggests preferring one approach over the other, this result may have important repercussions that go beyond the question of an empirically adequate account of the phenomenon itself. Accordingly, I would like to contend that, on the conceptual side, the analysis developed here should be viewed as an argument for a type of grammar in which all constraints are either derivational or transderivational (and constraints that can be viewed as filters on surface representations do not exist at all).

At this point, we may note that the type of grammar presupposed throughout this study, while derivational in nature, remains a hybrid form because it incorporates re-
presentational residues like the concept of chain and, indeed, the notion of trace. As has been argued by Koster (1987), Brody (1995), and several others, this type of hybrid derivational grammar is characterized by a fundamental redundancy. Given the presence of traces, most instances of movement are encoded twice: by the movement operation itself, and by chain formation algorithms that link traces to their antecedents. I think there is a grain of truth in this critique, and, to end this study, I would like to briefly speculate on how this dilemma can be solved. As a starting point, it is worth noting that (assuming the MLC-based approach to Unambiguous Domination effects) none of the syntactic constraints that are crucial for the analyses given in the preceding chapters actually mention either traces or chains. In the present framework, these concepts are necessary mainly for semantic reasons, e.g., to provide semantic variable binding in the case of wh-operators, or to help locating lexical expressions in the positions where they are needed to obtain a compositional semantics at the level of LF (see especially the remarks on the copy theory in chapter 3). Thus, suppose that we were to give up the assumption that movement leaves a trace. This would leave most (if not all, given some obvious adjustments) of the syntactic reasonings in the previous chapters intact. However, what would have to be dropped is the idea that representations at the level of LF can be compositionally interpreted as such – i.e., what would be called for is a radically different concept of semantic interpretation. A possible framework would be one in which semantic interpretation and syntactic derivation go hand in hand, i.e., interpretation works derivationally, too; a semantic theory that is designed to meet this requirement is sketched in Sternefeld (1996). Of course, if this view is adopted, numerous questions and problems arise which I cannot pursue in this study. However, if this radical perspective on the syntax/semantics interface ultimately proves viable, we can conclude that the main conceptual argument of this monograph does not only support a hybrid derivational approach to grammar, but, in fact, a strictly derivational one.
References

References

Culicover, Peter. 1991. Topicalization, Inversion, and Complementizers in English. Ms., The Ohio State University, Columbus.
References

Höhle, Tilman. 1990. Die w...w-Konstruktion im Deutschen. Ms., Universität Tübingen.
Höhle, Tilman. 1991. On Reconstruction and Coordination. In Representation and Derivation in
References

Mahajan, Anoop. 1994. Two Apparent Rightward Movement Rules in Hindi and Their Implications. Ms., UCLA.
290 References

References

Riemsdijk, Henk van. 1982. Correspondence Effects and the Empty Category Principle. Tilburg Papers in Language and Literature 12, University of Tilburg.
References

References

Thiersch, Craig. 1985. VP and Scrambling in the German Mittelfeld. Ms., University of Tilburg.

Index

*-marking, 43
A-Over-A Principle, 236
Across-the-Board movement, 230
adjunct islands, 30
Afrikaans, 127
Ancash Quechua, 78
Anti-Freezing, 137
argument/adjunct asymmetries, 42, 52, 68, 79, 248, 249
Bahasa Indonesia, 78
Barrier, 28, 128
 defined via selection, 168
Barriers Condition, 28, 128
bi-directional adjunction, 163, 253
Breton, 8
Bulgarian, 51, 160, 239
Chain Domain, 235
chain interleaving, 134
Chain-Binding, 107
checking domain, 48
Chinese, 61
clausal functional category, 270, 274
clitics, 15, 138, 139, 197–200, 210, 212, 216, 231, 232, 242
 and the feature [cl], 241, 242
closeness, 238, 249, 251–253
coherent vs. incoherent infinitives, 15–17, 144, 165, 194, 260–262
complementizer deletion, 76
complementizer-trace effect, 95, 96, 109, 118
Convergence, 31
copy theory, 41, 99, 106, 107, 110, 120, 211, 236, 282
Crash, 31
Cycle, 63, 114, 132
cyclicity constraints, 27
Czech, 232
Danish, 7, 38, 41, 203, 213
dative shift, 110, 225
derivational [extr] Instantiation, 268, 270
derivational grammar, viii–x, 25, 92, 122, 129, 130, 136, 139, 140, 144, 184, 211, 236, 240, 281, 282
 hybrid vs. strict, 281
Derivational Proper Binding Condition (DPBC), 109
Dutch, 7, 13, 146, 147, 151, 153, 159, 192, 216
economy
 global, 31
 local, 31, 48, 51, 113, 237, 281
 transderivational, 31, 33, 34, 36, 44, 51, 52, 113, 237, 239, 281
ECP, 28
equidistance, 252
Extended Projection Principle (EPP), 95, 125
Extension Condition, 59, 60, 62, 113
 extraction from NP, 9–13, 30, 131, 136, 154, 206, 220, 231
extraposition
 as remnant movement, 151
 as right-adjunction to XP, 151
 triggered by an [extr] feature, 145, 254, 265, 266
 feature co-occurrence restriction, 52, 266
Fewest Steps, 34, 51, 73, 134
 and Zeta-operations, 79

295
counts checking operations, 79, 97, 135, 173, 268
Form Chain, 42, 73
Freezing, 19–21, 128, 137
French, 226, 228, 229, 231, 232
Frozen Structure Constraint, 124
Full Representation, 69
Gamma-marking, 42, 58, 139, 146
Gapping, 230
Generalized Proper Binding Condition (GPBC), 97
Generalized Transformation, 59
GPSG, 52, 266
head movement, 3, 8, 27
and the Extension Condition, 60
and Unambiguous Domination, 225–234
Heavy NP Shift (HNPS), 95, 154, 265
in German, 153, 154, 198, 278
hierarchy of checking positions, 91
Hindi, 77, 146, 147, 150, 151
HPSG, 3, 258
Hungarian, 78
I-topicalization, 138, 188, 189, 196, 198, 227
improper movement, 28, 44, 64–68, 70, 72, 73, 86, 87, 89, 91, 92, 98, 110, 135, 136, 161, 184
interarboreal operations, 60
Interpretability of features, 32, 39, 48
[Case], 48, 87
[extr], 265
[scr], 48, 49, 51, 219
[top], 48, 51
[+wh] on C, 49–51, 239
[+wh] on wh-phrase, 49–51
interrogativizer, 49
Iraqi Arabic, 78, 81
Italian, 15, 214, 215, 231, 232
Japanese, 32, 51, 61, 88, 159, 190, 219, 230
Korean, 32–34, 37–39, 41, 51, 61, 63, 88, 107, 190
Last Resort, 47, 51, 74, 246
and identical vs. similar features, 254
and typical checking positions, 79, 91, 97, 135, 173, 238
incorporating the MLC, 238
left dislocation
as left-adjunction to CP, 215
Legitimate LF objects, 43, 68
long-distance scrambling, 17, 65–68, 72, 86, 88, 91, 190, 212, 230, 258, 260–262
lowering, 18, 19, 45, 46, 93–100, 102, 103, 105–116, 118–121, 141, 156, 159, 231, 241, 244, 245, 248
excluded by the Strict Cycle Condition, 118
of quantifiers, 106, 119
of topics, 93, 95, 108, 110, 112, 119
of wh-phrases, 93, 95, 96, 103, 105, 108, 110, 111
matching projections, 71, 270
Merge, 27, 59, 60, 113
Minimal Link Condition (MLC), 238, 246, 248, 254
Minimal Residue, 48, 63, 158, 170
without recursion, 158
Move Alpha, 59, 113, 116, 132
movement without checking, 79
multiple question, 35, 36, 50, 51, 61, 75, 82, 127, 159, 160, 201, 249, 278
NP split, ix
NP-shell, 231
numeration, 34
identity of -s, 40, 74, 77
object shift, 7
optional features
licensing of, 83
triggering extraposition, 265
triggering topicalization and scrambling, 38
P-stranding, 13, 14, 125–127, 144, 152, 153, 161, 162
INDEX

Palauan, 78
partial wh-movement, 77, 78, 80–82, 89,
100, 102, 103, 105, 108, 110
Path, 114, 115
pied piping
and feature movement, 27
clausal – in German, 191
wh-, 222
predicate scrambling, 138, 178, 179, 183,
188–190, 193, 195, 196, 198,
199, 218, 223, 224, 227
Predicate-Internal Subject Hypothesis, 2,
55, 195–197, 222, 223, 232
Principle of Unambiguous Binding (PUB), 66
derived from economy, 86
Procrastinate, 33
Proper Binding Condition (PBC), 18
at LF, 98
at S-structure, 94
Proper Chain-Binding Condition (PCBC), 108
Q-morpheme, 61
R-pronoun, 13, 14, 125, 143, 144, 152,
161, 177, 178, 259
reanalysis, 10, 11, 167
reconstruction, 120, 194
and the copy theory, 41, 99, 107, 120
by Lambda-conversion, 41, 120
by lowering, 99
of V/2 movement, 76, 99
pseudo-, 107
semantically induced, 98, 103–107,
188, 194, 202, 211
Reference Set
defined via identical LFs, 77, 272
defined via identical numerations,
33, 39
defined via identical numerations and
identical LFs, 40, 47, 76
Relativized Minimality, 27, 28, 86
remnant movement, 2
representational grammar, viii, ix, 56, 122,
129, 131, 134, 136, 139, 140,
144, 146, 148, 281
Right Node Raising, 230
Right Roof Constraint, 171
right-adjunction
landing sites for, 150
Russian, 49, 88
scrambling
as left-adjunction to XP, 38
triggered by a [scr] feature, 39, 48,
49, 80, 242
seesaw, 172
Serbo-Croatian, 8
Shortest Path Condition, 44, 111, 237
Specificity, 10, 12, 104, 154, 190
Specified Subject Condition (SSC), 11, 13
Spell-Out vs. S-structure, 32
Strict Cycle Condition, 54, 56, 62, 114,
115, 132
as part of Move Alpha, 116, 132
string-vacuous movement, 1, 2, 17, 41,
177–179, 181–183, 199
strong features, 32
subextraction, 276–279
Subjectivity condition, 28, 53
subject islands, 29, 30
Subject-Aux Inversion, 38
super-raising, 64–69, 72, 86–88, 90, 91,
224
Superiority, 46, 47, 237–240, 242, 246,
251, 252
condition, 46
in German, 250, 251
Swedish, 7
third construction, 165
Top (functional head), 38
topic islands, 174, 208, 235, 244
topicalization
as movement to SpecTop, 38
triggered by a [top] feature, 38, 48,
49, 80, 110, 270
typical checking position, 79, 80
Unambiguous Domination, 210
and chain domains, 235
applying at LF, 211, 251
derivational version, 211, 236, 240
INDEX

derived from economy, 240, 246
unbound trace, 1, 2, 4, 5, 9, 19, 93, 122
created by lowering, 93, 113
intermediate, 22, 24
of a non-argument, 5
of a subject, 196, 223
of an argument, 5
of an \(X^0\) category, 225–234
vs. bound trace, 218, 221
vs. unbound anaphor, 195
ungrammaticality, 31
Upward Boundedness Constraint, 172

V/2 movement, 1, 19, 25, 38, 49, 76, 89,
121, 131, 182, 215, 226, 227,
233, 270, 271, 275, 276
and topicalization, 49
as movement to \(C\), 19
as movement to Top, 38, 49
variable binding at LF, 105
VP-shell, 167, 225, 229

Wackernagel position, 159, 197, 198, 200,
210
was fuer split, 276
weak features, 32
weak pronoun, 138, 139, 159, 197, 198,
210, 212, 216
Wh-Island Condition, 29, 53, 56, 58, 59,
66, 203
wh-islands, 22–24, 41, 43, 54, 56–58, 61–
63, 67, 69–72, 88, 89, 116, 155,
161, 201–203, 205, 207, 208,
213, 215–217, 246, 257, 258,
263, 264, 274, 276
Wh-Legitimacy, 31
wh-movement
as movement to Spec\(C\), 38
at LF, 31, 35, 36, 38, 47, 50, 51, 61,
77, 82, 83, 112, 136, 251
triggered by a [+wh] feature, 32, 38,
48–50
Wh-Movement Parameter, 50, 118
wh-scrambling, 36, 37, 40, 44, 47, 52, 72,
73, 75, 85, 135, 136, 278
wh-topicalization, 35, 37, 40, 44, 47, 51,
72, 73, 75–77, 83, 84

Williams cycle, 91
Yo-Yo movement, 45, 46, 98, 102, 103,
105, 108, 111, 237, 238

Zeta-operations, 79

Zeta-operations, 79