Recurring Patterns

Gereon Müller (IDS Mannheim)

Workshop on Optimality-Theoretic Syntax 6
Universität Potsdam, October 18, 2002

1. Shape Conservation and Poetically Dependent CPs

1.1. An Asymmetry in the Distribution of Poetically Dependent CPs

Observation (Waßner (2001)):
There are restrictions on the shape of phase (CP) edges in adjacent CPs with idiomatic connectives in poetic use. ("↪" signals poetic dependence.)

(1) *Variations on a line in Goethe’s “Der Fischer” (see Appendix)*:

a. \[CP_2\text{ Halb} i\text{zog} \text{ sie n} \text{t}_i \] \[\leftrightarrow \] \[CP_1\text{ halb} \text{sank} \text{ e} \text{r} \text{t}_i \text{hin} \]
 half pulled she him half sank he down

b. \[CP_2\text{ Sie zog} \text{ ihn} \text{halb}_i \] \[\leftrightarrow \] \[CP_1\text{ er} \text{sank} \text{ halb}_i \text{hin} \]
 she pulled him half he sank half down

c. \[CP_2\text{ Sie zog} \text{ ihn} \text{halb}_i \] \[\leftrightarrow \] \[CP_1\text{ halb} \text{sank} \text{ er} \text{t}_i \text{hin} \]
 she pulled him half half sank he down

d. \[CP_2\text{ Halb} i\text{zog} \text{ sie n} \text{t}_i \] \[\leftrightarrow \] \[CP_1\text{ er} \text{sank} \text{halb}_i \text{hin} \]
 half pulled she him he sank half down

Note:
The phenomenon is more general. It is not a simple parallelism effect (given the (c)-examples).

(2) *More poetically dependent CPs*:

a. \[CP_2\text{ Bald} \text{bin ich t}_i \text{ hier} \] \[\leftrightarrow \] \[CP_1\text{ bald} \text{bin ich t}_i \text{ dort} \]
 soon am I here soon am I there

b. \[CP_2\text{ Ich bin bald hier} \] \[\leftrightarrow \] \[CP_1\text{ ich bin bald dort} \]
 I am soon here I am soon there

c. \[CP_2\text{ Ich bin bald hier} \] \[\leftrightarrow \] \[CP_1\text{ bald} \text{bin ich t}_i \text{ dort} \]
 I am soon here soon am I there

d. \[CP_2\text{ Bald} \text{bin ich t}_i \text{ hier} \] \[\leftrightarrow \] \[CP_1\text{ ich bin bald dort} \]
 soon am I here I am soon there

Generalization:
If CP\(_1\) is poetically dependent on CP\(_2\), the edge of CP\(_1\) must be affected by non-subject topicalization if the edge of CP\(_2\) is affected by non-subject topicalization (but not vice versa).

1.2. Proposal

The basic constraint:
Williams (1999), Williams (2002) argues for an economy/fidelity constraint called Shape
Claim:
Shape Conservation with CP (phase) edges accounts for the restriction on non-subject topicalization in poetically dependent CPs in German.

(3) SCP (Shape Conservation for Phase Edges):
Phase edges have an identical shape throughout the derivation.

(4) Edge (Chomsky (2000), Chomsky (2001)):
The edge of an XP contains SpecX and X.

Computation of SCP violations:
Given the edge of CP\(_\alpha\), SCP violations for CP\(_\beta\) are computed as follows:
(i) Compare the n-th edge constituent of CP\(_\alpha\) with the n-th edge constituent of CP\(_\beta\) and assign a * if the two items do not have an identical shape (relevant: categorial and movement-related features).
(ii) For each edge constituent of one CP that does not correspond to an edge constituent of the other CP, assign a *.

Background:
Throughout, the local optimization approach developed in Heck and Müller (2000), Fischer (2002) will be adopted. This derivational approach combines assumptions of the minimalist program (Chomsky (1995), Chomsky (2000), Chomsky (2001)) and optimality theory (Prince and Smolensky (1993)).

(5) Assumptions:
 a. Sentences are incrementally derived by alternations of Merge and Move.
 b. Movement is triggered by certain types of features on the probe (target head) that must be matched by appropriate features on the goal (moved item); following Sternefeld (2000), the features that trigger movement are referred to as \([\ast F]\) features, with matching \([F]\) features on the goal (cf. the classic concept of ‘strong’ features).
 c. Each XP is subject to optimization; only an optimal XP can serve as the input for a subsequent optimization procedure. (Thus, whereas a global optimization approach may involve harmonic parallelism or harmonic serialism, a local optimization approach is necessarily an instance of harmonic serialism, in the terminology of Prince and Smolensky (1993), McCarthy (2000).)
 d. The Strict Cycle Condition (SCC) and the Phase Impenetrability Condition (PIC) are inviolable (Gen) constraints that restrict derivational search space for the probe (SCC) and the goal (PIC).
 e. Phases are special derivational units. Only CP is a phase.

Arguments for local optimization in syntax:
(i) Conceptual argument: Compared with standard (global) optimization procedures, complexity is significantly reduced in a local optimization approach.

(ii) Empirical arguments: Other things being equal, global optimization can be shown to make wrong predictions. Since look-ahead is in principle available, violations in lower domains that are locally unmotivated can pay off because they help avoiding more severe violations in higher domains of the sentence.

Two constraints in Heck and Müller (2000):
FC ensures that [*F*] triggers movement; LR requires that movement must result in feature checking. Given a ranking FC ≫ X ≫ LR, movement can also apply without feature checking if this is the only way to satisfy constraint X (repair-driven movement).

(6) FC (Feature Condition):
An [*F*] feature requires movement of an item bearing [F] to its edge domain.

(7) LR (Last Resort):
Movement requires matching of [F] and [*F*].

Topicalization and V/2:
Topicalization in German is triggered by features on C; so is V/2 movement in German (see Grewendorf (2002) and references given there).

(8) Features of declarative C in German:
 a. $C_d = [\text{dass }]$
 C_d does not trigger movement.
 b. $C_e = [\text{Ø}EPP*,[\text{*fin}]]$
 C_e triggers V/2 movement of the finite verb and movement of some XP to SpecC; given the MLC, this will then normally be the subject.
 c. $C_t = [\text{Ø}EPP*,[\text{*top}],[\text{*fin}]]$
 C_t triggers V/2 movement of the finite verb and movement of some [top]-marked XP.

(9) MLC (Minimal Link Condition):
Movement to an XP position applies to the closest XP.

1.3. Analysis

Assumption:
With two poetically dependent CPs as in (1) and (2), CP₂ is optimized before CP₁, and generation and optimization of CP₁ takes place on the basis of CP₂, whose properties are still accessible. (Poetic dependence implies pseudo-subordination.)

Note:
In an account of the data in, e.g., (1), two options must be considered for each C. First, C can be C_e or C_t in CP₂. Second, C can be C_e or C_t in CP₁.
1.3.1. CP₂ is Subject-Initial

First option:

t of CP₂ is Cₑ.

T₁: Poetic dependence: Subject-initial CP₂

| Input: [CP₂, [Cₑ, Ø], [TP sie ihn halb zog[fin] |] |] | FC | SCP | MLC | LR |
|----------------|----------------|---------|------|----|
| O₁: [CP₂, [Cₑ, Ø], [TP sie ihn halb zog |] |] | *!* | | | |
| O₂: [CP₂ sie[, [Cₑ, Ø], [TP t₁ ihm halb zog[fin] |]] | | | | |
| O₃: [CP₂ sie[, [Cₑ, Ø], [TP t₁ ihm halb tₜ |]] | | | | |
| O₄: [CP₂ halbk [Cₑ, Ø], [TP sie ihn tₜ zog |] |] | *! | * | |
| O₅: [CP₂ halbk [Cₑ, zog,Ø], [TP sie ihn tₜ tₜ |] |] | *! | |

Note:

Based on the optimal output O₃ in T₁, there are two possible continuations: CP₁ may have Cₑ, as in T₂, or C₁, as in T₃.

T₂: Poetic dependence: Subject-initial CP₂ → subject-initial CP₁

| Input: [CP₂ sie[, [Cₑ, zog,Ø], [TP t₁ ihm halb tₜ |]] |] | [TP er halb hin sank[fin] |] [Cₑ, Ø[], [EPP₂, [stop+[, [fin+]]] |] | | |
|----------------|----------------|---------|------|----|
| O₂₃: CP₂ ↦ [CP₁, [Cₑ, Ø], [TP er halb hin sank |]] | *!* | ** | | |
| O₂₄: CP₂ ↦ [CP₁, [Cₑ, Ø], [TP t₁ halb hin sank |]] | *! | * | | |
| O₂₅: CP₂ ↦ [CP₁, [Cₑ, sank,Ø], [TP t₁ halb hin tₜ |]] | *! | * | * | |
| O₂₆: CP₂ ↦ [CP₁, halbk [Cₑ, Ø], [TP er tₜ hin sank |]] | | | | |
| O₂₇: CP₂ ↦ [CP₁, halbk [Cₑ, sank,Ø], [TP er tₜ hin tₜ |]] | | | | |

T₃: Poetic dependence: Subject-initial CP₂ → connective-initial CP₁

| Input: [CP₂ sie[, [Cₑ, zog,Ø], [TP t₁ ihm halb tₜ |]] |] | [TP er halb |] [TP er halb hin sank[fin] |] [Cₑ, Ø[], [EPP₂, [stop+[, [fin+]]] |] | | |
|----------------|----------------|---------|------|----|
| O₃₈: CP₂ ↦ [CP₁, [Cₑ, Ø], [TP er halb hin sank |]] | *!* | ** | | |
| O₃₉: CP₂ ↦ [CP₁, [Cₑ, Ø], [TP t₁ halb hin sank |]] | *!* | * | | |
| O₃₁₀: CP₂ ↦ [CP₁, [Cₑ, sank,Ø], [TP t₁ halb hin tₜ |]] | *! | * | | |
| O₃₁₁: CP₂ ↦ [CP₁, halbk [Cₑ, Ø], [TP er tₜ hin sank |]] | *! | * | * | |
| O₃₁₂: CP₂ ↦ [CP₁, halbk [Cₑ, sank,Ø], [TP er tₜ hin tₜ |]] | | | | |

Conclusion:

(1-b) and (1-c) (repeated in (10)) are both optimal outputs.

(10) Subject-initial CP₂:

a. [CP₂, [Cₑ, zog,Ø], [TP t₁ ihm halb tₜ |] ↦ [CP₁, [Cₑ, t₁ halb, hen sank halb, down]]
 she pulled him half, he sank half, down

b. [CP₂, [Cₑ, zog,Ø], [TP t₁ ihm halb tₜ |] ↦ [CP₁, [Cₑ, t₁ halb, sank, down]]
 she pulled him half, sank, down
1.3.2. CP₂ is Connective-Initial

Second option:
C of CP₂ is C₁.

T₄: Poetic dependence: Connective-initial CP₂

<table>
<thead>
<tr>
<th>Input: [CP₂, [c₁, Ø], [TP sie ihn halb zog]]</th>
<th>FC</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁: [CP₂, [c₁, Ø], [TP sie ihn halb zog]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂: [CP₂, sie, [c₁, Ø], [TP t₁, ihn halb zog]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃: [CP₂, sie, [c₁, zog, Ø], [TP t₁, ihn halb t₁]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₄: [CP₂, halbₜ₁, [c₁, Ø], [TP sie ihn t₁ zog]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₅: [CP₂, halbₜ₁, [c₁, zog, Ø], [TP sie ihn t₁ tₜ₁]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₆: [CP₂, halbₜ₁, [c₁, zog, Ø], [TP sie ihn t₁ tₜ₁]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Based on the optimal output O₃ in T₄, there are two possible continuations: CP₁ may have C₄, as in T₅, or C₅, as in T₆.

T₅: Poetic dependence: Connective-initial CP₂ ⇐ connective-initial CP₁

<table>
<thead>
<tr>
<th>Input: [CP₂ halbₜ₁, [c₁, zog, Ø], [TP sie ihn t₁ tₜ₁]]</th>
<th>FC</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃₁: CP₂ ⇐ [CP₂, [c₁, Ø], [TP er halb hin sank]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃₂: CP₂ ⇐ [CP₂, eri, [c₁, Ø], [TP t₁, er halb hin sank]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃₃: CP₂ ⇐ [CP₂, eri, [c₁, sank, Ø], [TP t₁, halb hin t₁]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃₄: CP₂ ⇐ [CP₂, halbₜ₁, [c₁, Ø], [TP er t₁ hin sank]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃₅: CP₂ ⇐ [CP₂, halbₜ₁, [c₁, sank, Ø], [TP er t₁ hin t₁]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T₆: Poetic dependence: *Connective-initial CP₂ ⇐ subject-initial CP₁

<table>
<thead>
<tr>
<th>Input: [CP₂ halbₜ₁, [c₁, zog, Ø], [TP sie ihn t₁ tₜ₁]]</th>
<th>FC</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₄₁: CP₂ ⇐ [CP₁, [c₁, Ø], [TP er halb hin sank]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₄₂: CP₂ ⇐ [CP₁, eri, [c₁, Ø], [TP t₁, halb hin sank]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₄₃: CP₂ ⇐ [CP₁, eri, [c₁, sank, Ø], [TP t₁, halb hin t₁]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₄₄: CP₂ ⇐ [CP₁, halbₜ₁, [c₁, Ø], [TP er t₁ hin sank]]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₄₅: CP₂ ⇐ [CP₁, halbₜ₁, [c₁, sank, Ø], [TP er t₁ hin t₁]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion:
(1-a) (repeated in (11-a)) is an optimal output, but (1-d) (repeated in (11-b)) is not: SCP triggers input neutralization by forcing movement which is not feature-driven.

(11) Connective-initial CP₂:

a. [CP₂ Halb₁ zog sie ihn t₁] ⇐ [CP₁ halbₜ₁ sank er t₁ hin] half pulled she him halb sank he down

b. *[CP₂ Halb₁ zog sie ihn t₁] ⇐ [CP₁ er sank halbₜ₁ hin] half pulled she him he sank half down

General Conclusion:
SCP can be violated so as to fulfill FR, but not in order to respect LR.

1.4. Local vs. Global Optimization

Note:
The MLC must be ranked lower than SCP (see T\textsubscript{6}); the MLC must also be ranked lower than FC (see T\textsubscript{4}).

Argument against global optimization:
Suppose that CP\textsubscript{2} and CP\textsubscript{1} were optimized in parallel. Then, it would wrongly be predicted that O\textsubscript{35} of T\textsubscript{3} could not be optimal (i.e., that (1-c) is ill formed): O\textsubscript{35} violates SCP and the MLC, but a competing candidate like O\textsubscript{55} that has repair-driven movement in CP\textsubscript{2} would only incur two violations of the MLC. Consequently, the wrong prediction under a global optimization approach is that, ceteris paribus, poetic dependence implies strict parallelism in the two CPs. (In the local approach, this problem does not arise because O\textsubscript{5} in T\textsubscript{1} cannot possibly be a source for further optimization in T\textsubscript{3}.) This is shown in T\textsubscript{7}, which combines T\textsubscript{1} and T\textsubscript{3}; the wrong winner is indicated by ★.

T\textsubscript{7}: Global optimization: */Subject-initial CP\textsubscript{2} \hookrightarrow connective-initial CP\textsubscript{1}

<table>
<thead>
<tr>
<th>Input: [TP \text{ sie ihn halb zog}{\text{fin}}], [CP \text{ er halb}{\text{top}} \text{ hin sank}{\text{fin}}] [TP \text{ er halb}{\text{top}} \text{ hin sank}_{\text{fin}}]</th>
<th>FC</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O\textsubscript{35}: [CP \text{ sie, } [C_s \text{ zog, } \text{O}] [TP \text{ t}_i \text{ halb } t_j]] [CP \text{ halb, } [C_s \text{ sank, } \text{O}] [TP \text{ er } t_k \text{ hin } t_j]]</td>
<td>✶✶</td>
<td>✶</td>
<td>✶</td>
<td></td>
</tr>
<tr>
<td>★O\textsubscript{55}: [CP \text{ halb, } [C_s \text{ zog, } \text{O}] [TP \text{ sie ihn } t_k]] [CP \text{ halb, } [C_s \text{ sank, } \text{O}] [TP \text{ er } t_k \text{ hin } t_j]]</td>
<td>✶✶</td>
<td>✶</td>
<td>✶</td>
<td></td>
</tr>
</tbody>
</table>

2. Shape Conservation and Successive-Cyclic Wh-Movement

A problem for derivational approaches:
There is evidence that unbounded dependencies involve successive-cyclic movement (morphological reflexes in languages like Irish, Ewe, Pasamaquoddy, etc.). What is the trigger for successive-cyclic movement to intermediate SpecC positions? In representational approaches, intermediate traces can be forced by locality constraints, but this is not an option in derivational approaches without look-ahead.

Such movement is triggered by pseudo-wh features.
Problems: Little independent motivation, complexity.

Another solution (Heck and Müller (2000)):
Such movement is not feature-driven; it is triggered by a constraint PB (Phase Balance) that
requires for each unmatched [*wh*] feature in the numeration a *wh*-phrase that is accessible in the derivation.
Problem: Crucial use of numerations, complexity.

A new solution:
Such movement is neither feature-driven nor triggered by PB; it is triggered by SCP.

Note:
Unbounded dependencies have a bottom, a middle, and a top (Gazdar et al. (1985)).

(12) The structure of unbounded dependencies:

\[
\begin{align*}
& [CP_1 \text{ What }, \text{ did you say } [CP_2 t_i' \text{ that John thinks } [CP_3 t_i' \text{ that Bill should read } t_i]]]?
& \rightarrow \text{ top } & \leftarrow \rightarrow \text{ middle } & \rightarrow \rightarrow \text{ bottom } & \leftarrow \\
\end{align*}
\]

Observation:
(i) FC triggers movement at the top.
(ii) SCP triggers movement in the middle.
(iii) Some unknown constraint triggers movement at the bottom.

Proposal:
The first movement step that establishes the shape of the CP edge which must then be kept identical in subsequent phases is triggered by a version of OpSpec, viz., OP.

(13) OP (Operators in Phase Edges):
An operator must occupy a phase edge specifier.

Remark:
An operator is an XP that bears a feature like [wh] or [top].

Question:
Doesn’t (a version of) OpSpec suffice to account for bottom, middle, and top in other optimality-theoretic analyses of unbounded dependencies (like Grimshaw (1997), Baković (1998), and Vikner (2001))?

Answer:
Not really, it must either be accompanied by a constraint that has the same effects as FC in the present approach (see Müller (1997b), Ackema and Neeleman (1998)), or it must be reformulated in a way that ensures that the *wh*-phrase moves to its scope position (not just some specifier position); cf. in particular ParseScope in Legendre et al. (1998), Fanselow and Čavar (2001). (The second solution presupposes that syntactic inputs are richly structured; they must contain a full representation of *wh*-scope.) Furthermore, it is unclear how Op-Spec could trigger movement steps in the middle of an unbounded dependency.

Note:
O_{21} in T_9 violates SCP twice: The first edge constituent of CP_2 (what) and the first edge con-
T8: Successive-cyclic wh-movement, bottom

<table>
<thead>
<tr>
<th>Input: [c that], [TP ... whi, [c that]]</th>
<th>FC</th>
<th>OP</th>
<th>SCP</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1: [CP3, [c that], [TP ... whi, [c that]]]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: [CP2, whi, [c that], [TP ... ti, [c that]]]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T9: Successive-cyclic wh-movement, middle

<table>
<thead>
<tr>
<th>Input: [c that], [TP ... [CP3 whi, [c that]]]</th>
<th>FC</th>
<th>OP</th>
<th>SCP</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O21: [CP2, [c that], [TP ... [CP3 whi, [c that]]]</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O22: [CP2, whi, [c that], [TP ... [CP3 t′i, [c that]]]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

stinent of CP2 (that) do not have an identical shape; and the second edge constituent of CP2 (that) is not matched at all.

T10: Successive-cyclic wh-movement, top

<table>
<thead>
<tr>
<th>Input: [c, [whi], [Ø]], [CP2 whi, [c that]]</th>
<th>FC</th>
<th>OP</th>
<th>SCP</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O221: [CP1, [c, did-Ø], [TP ... [CP2 whi, [c that]]]</td>
<td>*!</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O222: [CP1, whi, [c, did-Ø], [TP ... [CP2 t′′i, [c that]]]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
O222 in T10 must violate SCP once because the root C’s [*fin*] feature needs to be checked via do-support.

Remark:
This analysis is in many respects a simplification, and more would eventually have to be said:
(i) Do-insertion in T10 is costly and violates some (low-ranked) constraint; see Grimshaw (1997).
(ii) Wh-movement that ends in an embedded clause is predicted to involve a doubly-filled Comp configuration; i.e., (something like the) Doubly-filled Comp Filter (DFCF; see Pesetsky (1998)) must be active here; see (14-a).
(iii) English can have empty complementizers in bridge environments. It must be ensured that the co-occurrence of empty complementizers and that either does not violate SCP, or is in each case forced by a higher-ranked constraint (possibilities: high-ranked faithfulness, empty complementizers as complementizers targetted by covert verb movement, in analogy to V/2 in German); see (14-bc).

(14) Sentences about which more must be said:
 a. I wonder [CP1, what, [Ø], she said [CP2, t′i, [c that John thinks [CP t′i, [c that Bill should read ti]]]]
 b. [CP1, What, [Ø], she said [CP2, t′i, [c that John thinks [CP t′i, [c that Bill should read ti]]]]

8
c. \[\text{CP}_1 \emptyset \text{ I believe } \text{CP}_2 \text{ that he thinks } \text{CP}_3 \emptyset \text{ he is right } \]\]

3. Shape Conservation and Extraction from V/2 Sentences in German

3.1. An Asymmetry in Extraction from Embedded Clauses

Observation (Tappe (1981), Haider (1984), Reis (1985)):
Embedded declarative CPs in German can be *dass* clauses or (if they are embedded under bridge predicates) V/2 clauses. Both types of complements appear to be transparent for *wh*-movement as such; however, whereas *wh*-movement from a *dass* clause may go to a *dass* clause or a V/2 clause, *wh*-movement from a V/2 clause may only end up in a V/2 clause again.

(15) *Wh-Movement from ‘dass’ and V/2 clauses in German:*

a. Ich weiß nicht \[\text{CP}_1 \text{ wen}_1 (\text{dass}) \text{ du } \text{meinst } \text{CP}_2 \text{ } \text{t}_i \text{ dass sie } \text{t}_i \text{ getroffen hat } \]
 I know not whom that you think that she met has

b. \[\text{CP}_1 \text{ Wen}_i \text{ meinst du } \text{CP}_2 \text{ } \text{t}_i \text{ hat sie } \text{t}_i \text{ getroffen }] \ ?
 whom think you has she met

c. \[\text{CP}_1 \text{ Wen}_i \text{ meinst du } \text{CP}_2 \text{ } \text{t}_i \text{ dass sie } \text{t}_i \text{ getroffen hat }] \ ?
 whom think you that she met has

d. *Ich weiß nicht \[\text{CP}_1 \text{ wen}_i (\text{dass}) \text{ du } \text{meinst } \text{CP}_2 \text{ } \text{t}_i \text{ hat sie } \text{t}_i \text{ getroffen } \]
 I know not whom that you think has she met

Previous approaches:
(i) Islands (Staudacher (1990), Sternefeld (1989), Reis (1996), Müller (2002)):
V/2 clauses in German are islands for extraction (at least into *dass* clauses), as they are in other Germanic languages (Vikner (1995)).
(ii) Directionality (Müller (1989), Haider (1993)):
V/2 and V in a TP-final position do not govern in the same direction, which would be required for extraction (see, e.g., Koster (1987)’s Global Harmony).
(iii) Improper movement (Haider (1984), Müller and Sternefeld (1990), Müller and Sternefeld (1993), Sternefeld (1992)):
Specifiers in successive-cyclic movement must be of the same type, which SpecV/2 and Spec*dass* are not.
(iv) Data denial (Čavar (1996), Fanselow and Mahajan (1996)):
Extraction from V/2 clauses into *dass* clauses is possible after all.

Claims:
(i) None of these approaches is fully convincing, and the data are real.
(ii) The ban on movement from V/2 clauses into *dass* clauses follows without further ado from SCP, given straightforward assumptions about declarative and interrogative C nodes in German.

(16) *Features of declarative C in German:*

a. \[C_d = [C \text{ dass }] \]

b. \[C_e = [C \emptyset [s\text{EPP+}],[s\text{fin+}]] \]
c. \(C_t = [C \emptyset_{\text{[EPP]*,[stop]*,[fin]*}}] \)

(17) **Features of interrogative C in German:**

a. \(C_{dw} = [C \text{dass}_{\text{[wh]*}}] \) (colloquial German)

b. \(C_{dw'} = [C \emptyset_{\text{[wh]*}}] \) (standard German)

c. \(C_{ew} = [C \emptyset_{\text{[EPP]*,[wh]*,[fin]*}}] \)

3.2. **Analysis**

Note:
As before, two options must be considered for each C in CP\(_2\) and CP\(_1\) of the examples in (15).

3.2.1. **CP\(_2\) is a ‘dass’-Clause**

First option:
C of CP\(_2\) is \(C_d \).

\[T_{11} : \text{Successive-cyclic wh-movement from ‘dass’ clauses: CP\(_2\) headed by C\(_d\) } \]

<table>
<thead>
<tr>
<th>Input: ([C_{dw} \text{ dass }], [TP \text{ sie wen getroffen hat }])</th>
<th>FC</th>
<th>OP</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_1): ([CP_2 [C \text{ dass }], [TP \text{ sie wen getroffen hat }]])</td>
<td>(*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\textbf{=O}(_2): ([CP_2 \text{ wen } [C \text{ dass }], [TP \text{ sie t_ getroffen hat }]])</td>
<td></td>
<td>(\ast)</td>
<td>(\ast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_3): ([CP_2 \text{ wen } [C \text{ dass }], [TP \text{ sie t_ getroffen t_ }]])</td>
<td></td>
<td></td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
</tbody>
</table>

Note:
Based on the optimal output O\(_2\) in T\(_{11}\), there are two possible continuations in (15): CP\(_1\) may have C\(_{dw}\), as in T\(_{12}\), or C\(_{ew}\), as in T\(_{13}\).

\[T_{12} : \text{Successive-cyclic wh-movement from ‘dass’ clauses into ‘dass’ clauses} \]

| Input: \([C_{dw} \text{ dass}_{\text{[wh]*}}], [TP \text{ du meinst }]\)
\hline
<table>
<thead>
<tr>
<th>([CP_2 \text{ wen } [C \text{ dass }], [TP \text{ sie t_ getroffen hat }]])</th>
<th>FC</th>
<th>OP</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
</table>
| O\(_23\): \([CP_1 \text{ [C\(_{dw}\) dass]}, [TP \text{ du meinst }]\)
\hline
|\([CP_2 \text{ wen } [C \text{ dass }], [TP \text{ sie t_ getroffen hat }]]\) | | | \(\ast\) | \(\ast\) | |
| \(\textbf{=O}\(_{22}\): \([CP_1 \text{ wen } [C_{dw} \text{ dass }], [TP \text{ du meinst }]\)
\hline
|\([CP_2 \text{ wen } [C \text{ dass }], [TP \text{ sie t_ getroffen hat }]]\) | | | \(\ast\) | \(\ast\) | |
| O\(_{23}\): \([CP_1 \text{ wen } [C_{dw} \text{ meinst }], [TP \text{ du t_ }]
\hline
|\([CP_2 \text{ wen } [C \text{ dass }], [TP \text{ sie t_ getroffen hat }]]\) | | \(\ast\) | \(\ast\) | \(\ast\) | |

Note:
In standard German, C\(_{dw}\) is empty. This implies that O\(_{22}\) in T\(_{12}\) incurs a single violation of SCP. Still, the candidate remains optimal.

Conclusion:
(15-a) and (15-b) (repeated in (18)) are both optimal outputs.

(18) **Wh-movement from ‘dass’ clauses in German:**

a. \(\text{Ich weiß nicht [CP\(_1\) wen\(_i\) (dass) du meinst [CP\(_2\) t\(_j\) dass sie t_ getroffen hat]] } \)
\[\text{I know not whom that you think that she met has} \]
T13: Successive-cyclic wh-movement from ‘dass’ clauses into V/2 clauses

<table>
<thead>
<tr>
<th>Input: [C_{cw} \emptyset, [\negwh, [\negfin]], {TP du meinst } {TP \text{ sie } t_i \text{ getroffen hat} }]</th>
<th>FC</th>
<th>OP</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{21}: [CP_1 {C_{cw} \emptyset } {TP \text{ du meinst} } {TP \text{ sie } t_i \text{ getroffen hat} }]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{22}: [CP_1 {C_{cw} \emptyset } {TP \text{ du meinst} } {TP \text{ sie } t_i \text{ getroffen hat} }]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O_{23}: [CP_1 {C_{cw} {\text{meinst, } \emptyset } {TP \text{ du } t_j } {TP \text{ sie } t_i \text{ getroffen hat} }]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O_{24}: [CP_1 {C_{cw} {\text{meinst, } \emptyset } {TP \text{ du } t_j } {TP \text{ sie } t_i \text{ getroffen hat} }]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

b. [CP _{\text{wen}_i} \{\text{meinst du} \} \{TP_2 \text{ t}' \{\text{dass sie } t_i \text{ getroffen hat} \}] | ?

Problem:

Why does SCP not force further wh-movement in (18-a), as in (19-a)? (Note, however, that the phenomenon of wh-imperatives in (19-b) that is discussed in Reis and Rosengren (1992) is extremely suggestive in this context, and might indicate an SCP effect.)

(19) *Wh-movement that is too long:*

a. *Wen_\text{i} weiß ich nicht \{CP_2 \text{ t}' \{\text{dass sie } t_i \text{ getroffen hat} \}] \{\text{whom know I not} \} \{\text{that she} \} \{\text{met has} \}

b. ?Wen_\text{i} sag mal \{CP_1 \text{ t}' \{\text{dass du } t_i \text{ getroffen hast} \}] \{\text{whom tell me} \} \{\text{that you} \} \{\text{met have} \}

Solution:

(19-a) is blocked by (18-a) because of a high-ranked constraint that dominates SCP. This constraint implies that checking of an operator feature like [*top*] or [*wh*] freezes the moved item (see Epstein (1992) for an overview of constraints that have this effect). Note that this constraint must not hold for non-operator features like [*EPP*], so as to permit cases where, e.g., passive feeds wh-movement, as in (20). (Another case where this constraint must not hold involves extraction from SpecC positions in which (only) [*EPP*] has been checked; see T15, T16 below.)

(20) *Passive feeds wh-movement:*

[CP \{\text{Who}_i \{\text{c do } \text{*wh*}\} \} \{\text{you think} \} \{CP_2 \text{ t}' \{TP \text{ t}' \{\text{T was }\text{*EPP*}\} \text{kissed t}_i \text{ }\text{}}}]] ?

3.2.2. **CP is a V/2 Clause**

Second option:

C of CP_2 is C_e.

Note:

Based on the optimal output O_5 in T14, there are two possible continuations: CP_1 may C_{cw}, as in T15, or C_{du} as in T16.

Note:

O_{43} is optimal, but will lead to ungrammaticality in subsequent parts of a derivation. The reason
\[T_{14}: \text{Successive-cyclic wh-movement from V/2 clauses: } CP_2 \text{ headed by } C_e\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Input: } [C_e, \emptyset, [\text{EPP以外}, [\text{wh語}]], [\text{V/2}]], [\text{TP sie wen getroffen hat}] & FC & OP & SCP & MLC & LR \\
\hline
O_1: [C_P, [C_e, \emptyset]] [\text{TP sie wen getroffen hat}] & *!* & * & * & * & \text{违約} \\
O_2: [C_P, wen, [C_e, \emptyset]] [\text{TP sie t_i getroffen hat}] & *! & * & * & * & \text{违約} \\
O_3: [C_P, [\text{hat}, \emptyset]] [\text{TP sie wen, getroffen t_j}] & *! & * & * & * & \text{违約} \\
\hline\hline
\end{array}
\]

\[T_{15}: \text{Successive-cyclic wh-movement from V/2 clauses into V/2 clauses}\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Input: } [C_e, \emptyset, [\text{EPP以外}, [\text{wh語}]], [\text{V/2}]], [\text{TP du meinst}
[C_P, wen, [C_e, \text{hat}, \emptyset]] [\text{TP sie t_i getroffen t_j}] & FC & OP & SCP & MLC & LR \\
\hline
O_{41}: [C_P, [C_e, \emptyset]] [\text{TP du meinst}
[C_P, wen, [C_e, \text{hat}, \emptyset]] [\text{TP sie t_i getroffen t_j}] & *!* & *! & *! & *! & \text{违約} \\
O_{42}: [C_P, wen, [C_e, \emptyset]] [\text{TP du meinst}
[C_P, \text{hat}, [C_e, \text{hat}, \emptyset]] [\text{TP sie t_i getroffen t_j}] & *!* & *! & *! & *! & \text{违約} \\
O_{43}: [C_P, [C_e, \text{meinst}, \emptyset]] [\text{TP du t_j}
[C_P, wen, [C_e, \text{hat}, \emptyset]] [\text{TP sie t_i getroffen t_j}] & *! & *! & *! & *! & \text{违約} \\
\hline\hline
\end{array}
\]

is that there is an independent, high-ranked constraint against embedding wh-V/2 clauses which can never be violated by an optimal candidate; see (21-a). (Suggestion, based on the EOC (Empty Output Constraint) in Heck and Müller (2000) (also see Ackema and Neeleman (1998), Wunderlich (2000)): (21-a) is blocked as suboptimal by the empty output \(\emptyset\) in (21-b), given that the EOC is ranked lower.)

\[21\] \text{The prohibition against embedded wh-V/2 clauses in German:}
\begin{enumerate}
\item *Sie sagt [CP wen_i hat sie t_i getroffen] \(\rightarrow\) violates V-wh-V/2
\item \(\emptyset\) \(\rightarrow\) violates EOC
\end{enumerate}

\text{Conclusion:}
(15-b) (repeated in (22-a)) is an optimal output, but (15-d) (repeated in (22-b)) is not: SCP triggers input neutralization by forcing verb movement which is not feature-driven.

\[22\] \text{Wh-Movement from V/2 clauses in German:}
\begin{enumerate}
\item [CP_1 wen_i meinst du [CP_2 \text{hat sie t_i getroffen}]] ?
\item [CP_1 wen_i meinst dass [CP_2 \text{hat sie t_i getroffen}]]
\end{enumerate}

\text{General Conclusion:}
As before, SCP can be violated so as to fulfill FR, but not in order to respect LR.
3.3. Local vs. Global Optimization

Note:
A global optimization approach would, ceteris paribus, wrongly predict SCP to require parallelism in the shape of CP edges more generally, and could not account for the asymmetry observed in (15). In particular, (15-c) should also be excluded: CP₁ in O₂₄ of T₁₃ violates SCP once and MLC once; its predecessor CP₂ in O₂ of T₁₁ violates MLC once and LR once. However, if both CPs could be optimized in parallel, the optimal output would combine CP₁ in O₂₄ of T₁₃ and CP₁ in O₃ of T₁₁, which would incur two violations of the MLC and two violations of LR, but no violation of SCP. This is shown in T₁₇.

T₁₇: Global optimization: *Successive-cyclic wh-movement from ‘dass’ clauses into V/2 clauses

3.4. Extensions

Note:
The same account can be given for cases in which the ultimate landing site is higher up in the tree. These cases show exactly the same asymmetry as the examples in (15):

(23) *Wh-Movement from ‘dass’ and V/2 clauses to an intermediate SpecC:*

a. Wen, denkst du [CP₁ tₜ’ dass sie meint [CP₂ t₂’ dass sie t₁ getroffen hat]] ? who think you that she believes that she met has

b. Wen, denkst du [CP₁ tₜ’ meint sie [CP₂ t₂’ hat sie t₁ getroffen]] who think you believes she has she met ?

c. Wen, denkst du [CP₁ tₜ’ meint sie [CP₂ t₂’ dass sie t₁ getroffen hat]] ? who think you believes she that she met has
d. *Wen, denkst du [CP₁ tᵢ'' dass sie meint [CP₂ tᵢ' dass sie tᵢ getroffen]]
who think you that she believes has she met?

Analysis:
The analysis carries over essentially unchanged. CP₁ has C_d or C_e instead of C_dw or C_ew, but this does not affect the outcome: As before, movement from a dass clause into a V/2 clause may (minimally) violate SCP in order to respect higher-ranked FC, whereas movement from a V/2 clause into a dass clause can and must respect SCP by violating lower-ranked LR.

Note:
The same asymmetry shows up with topicalization; see (24):

(24) a. Den Karl, denke ich [CP₁ tᵢ'' dass sie meint [CP₂ tᵢ' dass sie tᵢ getroffen hat]]
the Karl think I that she believes that she met has
b. Den Karl, denke ich [CP₁ tᵢ'' meint sie [CP₂ tᵢ' hat sie tᵢ getroffen]]
the Karl think I believes she has she met

c. Den Karl, denke ich [CP₁ tᵢ'' meint sie [CP₂ tᵢ' dass sie tᵢ getroffen hat]]
the Karl think I believes she that she met has

d. *Den Karl, denke ich [CP₁ tᵢ'' dass sie meint [CP₂ tᵢ' hat sie tᵢ getroffen]]
the Karl think I that she believes has she met

Analysis:
The account is basically the same as that given for wh-movement, with [*wh*] (on C) and [wh] (on the wh-phrase) replaced by [*top*] (on C) and [top] (on the moved topic).

3.5. Islands

(25) Wh-islands and topic islands in German:

a. *Was weißt du nicht [CP₁ wemₖ Karl tₖ gesagt hat [CP₂ tᵢ' dass sie tᵢ mag]]
what know you not whom Karl said has that she likes
b. *Was, denkst du [CP₁ der Frauₖ hat Karl tₖ gesagt [CP₂ tᵢ' dass sie tᵢ mag]]
what think you the woman has Karl said that she likes

Observation:
It follows from the ranking FC ≫ SCP that the phase edge of CP₂ cannot be replicated in CP₁. Hence, the wh-phrase in (25-ab) has to stay in SpecC₂ during CP₁ optimization, and is subsequently inaccessible for further movement because of the PIC; thus, (25-ab) can never be generated. This implies that [*wh*] of the matrix C will have to remain unchecked, in violation of FC. FC, however, is a constraint that outranks the EOC, i.e., it can never be violated in an optimal candidate (Heck and Müller (2000)), so (26-ab) are blocked by Ø.

(26) Wh-islands and topic islands in German, best suboptimal candidates:

a. *Du weißt [wₖ] nicht [CP₁ wemₖ Karl tₖ gesagt hat [CP₂ was, (dass) sie tᵢ mag]]
you know not whom Karl said has what that she likes
b. *Du denkst [sw/his] [CP₁ der Frau_k hat Karl_t gesagt [CP₂ was (dass) sie t_i mag]]? you think the woman has Karl said what that she likes

3.6. Embedding Without Movement

Observation:
A dass clause–V/2 clause asymmetry does not show up when the phase edge of a higher dass clause is not targeted by movement.

(27) a. Ich denke [CP₁ dass er sagte [CP₂ dass sie schlafen möchte]]
I think that he said that she sleeps wants to
b. Ich denke [CP₁ er sagte [CP₂ sie möchte schlafen]]
I think he said she wants to sleep
c. Ich denke [CP₁ er sagte [CP₂ dass sie schlafen möchte]]
I think he said that she sleep wants to
d. Ich denke [CP₁ dass er sagte [CP₂ sie möchte schlafen]]
I think that he said she wants to sleep

Problem:
(27-d) is initially surprising: Why is the shape edge of CP₁ not made identical to that of CP₂ by applying XP movement to SpecC and V/2 movement to C? As it stands, these movement operations, not being feature-driven, would only violate LR twice.

Solution:
There is a constraint that is ranked higher than SCP which ensures that only a C bearing the feature [*EPP*] permits non-operators (i.e., XPs that do not have a [top] or [wh] feature) in its specifier; this constraint can for present purposes be referred to as EPP/O.

T₁₈: Mixed embedding without movement

<table>
<thead>
<tr>
<th>Input</th>
<th>FC</th>
<th>OP</th>
<th>EPP/O</th>
<th>SCP</th>
<th>MLC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁: [CP₁, [CP₂ dass er sagte [CP₂ sie, [C₃ möchte Ø t_i schlafen t_j]]]]</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂: [CP₁, [CP₂ dass er sagte [CP₂ sie, [C₃ möchte Ø t_i schlafen t_j]]]]</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>O₃: [CP₁, [CP₂ dass er sagte [CP₂ sie, [C₃ möchte Ø t_i schlafen t_j]]]]</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>O₄: [CP₁, [CP₂ sagte Ø [TP₉ t_i t_j]]]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>O₅: [CP₁, [CP₂ sagte Ø [TPᵢ t_i t_j]]]</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
</tbody>
</table>
Appendix: Der Fischer

Der Fischer (Goethe)

Das Wasser rauscht’, das Wasser schwoll,
Ein Fischer saß daran,
Sah nach dem Angel ruhevoll,
Kühl bis ans Herz hinan.
Und wie er sitzt und wie er lauscht,
Teilt sich die Flut empor:
Aus dem bewegten Wasser rauscht
Ein feuchtes Weib hervor.

Sie sang zu ihm, sie sprach zu ihm:
“Was lockst du meine Brut
Mit Menschenwit und Menschenlist
Hinauf in Todesglut?
Ach wüsdest du, wie’s Fischlein ist
So wohlig auf dem Grund,
Du stiegst herunter, wie du bist,
Und würdest erst gesund.

Labt sich die liebe Sonne nicht,
Der Mond sich nicht im Meer?
Kehrt wellenatmet ihr Gesicht
Nicht doppelt schöner her?
Lockt dich der tiefe Himmel nicht,
Das feuchtverklärte Blau?
Lockt dich dein eigen Angesicht
Nicht her in ew’gen Tau?”

Das Wasser rauscht’, das Wasser schwoll,
Netzt’ ihm den nackten Fuß;
Sein Herz wuchs ihm so sehnsuchtsvoll
Wie bei der Liebsten Gruß.
Sie sprach zu ihm, sie sang zu ihm;
Da war’s um ihn geschehn;
Halb zog sie ihn, halb sank er hin
Und ward nicht mehr gesehn.

The Fisherman

The water roared, the water swelled;
a fisherman sat beside,
gazing calmly at his fishing line,
cool to his very heart.
And as he sits there and as he listens,
the waves split
and from the turbulent water
a watery woman bursts up.

She sang to him, and spoke to him:
“Why do you lure my children
with your human wit and cunning,
up here to this deadly glow?
Ah, if you only knew how pleasant the tiny fish
find it below the surface,
you would come down, just as you are,
and you would be well for the first time.

Does not the dear sun refresh itself
and the moon as well, in the sea?
Do they not turn their faces, breathing the waves
and thus becoming doubly fair?
Aren’t you tempted by the deep sky,
the moist and transfiguring blue?
Aren’t you tempted by your own face
shining in the eternal dew?”

The water roared, the water swelled,
and moistened his naked foot;
and his heart filled with the longing
that he felt at the greeting of his beloved.
She spoke to him, and sang to him;
then all was done for him;
half pulled by her and half sinking himself,
he went down and was never seen again.

email: gereon.mueller@ids-mannheim.de
homepage: http://www.ids-mannheim.de/gra/personal/mueller.html
References

19