Encyclopedia of Cognitive Science
A 221: Local Dependencies and Word Order Variation

Gereon Müller
Institut für Deutsche Sprache, Mannheim
P.O.Box 101621
D-68016 Mannheim, Germany
0621-1581-204
gereon.mueller@ids-mannheim.de

Keywords
NP-movement, passive, raising, control, scrambling, object shift, clitics, extraposition

Contents
1. Introduction
2. NP-Movement
3. Scrambling
4. Pronoun Movement
5. Extraposition
6. Locality

Article Definition
Certain syntactic displacement operations target clause-internal positions. These movement types are typically clause-bound, and they are responsible for word order variation within and across languages.

Word Processing Software
\LaTeX

Revised, November 26, 2001
Local Dependencies and Word Order Variation

1. Introduction

Certain syntactic displacement operations target clause-internal (IP-internal) positions; among them are NP-movement, scrambling, pronoun movement, and extraposition. A conspicuous common property of these movement types is that they are clause-bound: They cannot cross a CP and target an IP-internal position in a higher clause. Because of this strict locality property, it is more difficult to establish the existence of a syntactic movement operation (and a trace) than in the case of movement types that target IP-external positions and are not clause-bound (like wh-movement to SpecC). Accordingly, analyses that do without syntactic displacement have been proposed for all local dependencies addressed below (see, e.g., Williams (1994) on NP-movement, Fanselow (2001) on scrambling, and Culicover & Rochemont (1990) on extraposition). In what follows, a movement analysis will nevertheless be presupposed throughout – first, because there is a growing body of empirical evidence in support of this view (see the bibliography); second, because a displacement analysis is forced under a general, conceptually attractive assumption, the Uniformity of Theta Assignment Hypothesis (UTAH; Baker (1988)) according to which identical thematic relationships between items must be represented by similar structural relationships between those items at D-structure.

2. NP-Movement

2.1. Passive

The core property of passive constructions is that the external argument of a verb cannot be realised as an NP in the subject position SpecI. This argument reduction effect typically goes hand in hand with a morphological reflex (e.g., special passive morphology on the verb, presence of a passive auxiliary). In some languages (e.g., in Ukrainian), this is all there is to say; a remaining internal
argument receives objective Case, and SpecI can remain empty. However, in many languages (e.g., in English), argument reduction is accompanied by Case absorption – a passivised verb cannot assign objective Case anymore. An internal argument that receives objective Case in active sentences (see (1-a)) is moved to the subject position SpecI in passive sentences (see (1-b)), where it is assigned nominative Case. This operation is called NP-movement. Chomsky (1981) argues that NP-movement is possible in (1-b) because SpecI is not a Theta-position (so that a general ban on movement into Theta-positions is respected); and it is necessary because NP$_2$ would otherwise violate the Case Filter (that demands that every NP is assigned Case).

(1) a. [IP John$_1$ I [VP kissed Mary$_2$]]
 b. [IP Mary$_2$ was [VP kissed t$_2$] (by John)]

The thematic relations between the two arguments are identical in (1-ab). Hence, the UTAH not only implies that the argument bearing the Theta-role Theme (NP$_2$) is base-generated in VP in (1-b); it also requires a syntactic representation of the argument bearing the Theta-role Agent in this sentence. Proposals as to what acts as the external argument in (1-b) include the passive morphology itself, the by-phrase, and various kinds of empty categories (pro, PRO).

Some languages (e.g., German) behave like Ukrainian in that NP-movement is not required, and like English in that an internal argument is assigned nominative rather than objective Case. The question arises of which Case is absorbed by passivisation in double object constructions. In English, it is normally the object Case assigned to the first NP in double object constructions that is absorbed by passivisation; see (2-ab); but there is considerable variation in this domain, and even closely related languages (like Norwegian and German) may behave differently.

(2) a. [IP Mary$_1$ was [VP given t$_1$ a book$_2$]]
 b. *[IP A book$_2$ was [VP given Mary$_1$ t$_2$]]

2
2.2. Raising to Subject, Exceptional Case Marking, and Control

NP-movement is also involved in raising constructions like (3).

(3) \[\text{IP John}_1 \text{ [VP seems [IP t}_1 \text{ to be a fool]]} \]

The matrix predicate *seem* shares two properties with passivised verbs: It does not take an external argument NP, and it does not assign objective Case. Given that the SpecI position of an infinitive is not assigned nominative Case by non-finite I in English, NP$_1$ in (3) can and must move to the matrix SpecI position, where it is assigned nominative Case by finite I. Raising to subject must be distinguished from two related constructions. *Exceptional Case Marking* (ECM) differs from raising in that the matrix verb takes an external argument (hence, raising is not possible), and in that the matrix verb “exceptionally” assigns objective Case to an embedded subject that it does not Theta-mark (hence, raising is not required); see (4).

(4) \[\text{IP Mary}_2 \text{ [VP believes [IP John}_1 \text{ to be a fool]]} \]

It seems that a verb’s ability to assign objective Case and the presence of an external NP argument go hand in hand; this observation is known as “Burzio’s generalisation”.

Raising and ECM constructions have in common that the infinitive is transparent (for movement and Case assignment, respectively). This is often accounted for by assuming that raising and ECM infinitives possess less structure than other clauses: They are bare IPs, not CPs. A CP destroys the transparency of an infinitive, whereas an IP does not. Accordingly, exceptional Case assignment is impossible in *control* constructions like (5) (where the matrix verb takes an external NP argument) if we assume that a CP projection with a phonologically empty complementiser C is present.

(5) \[\text{IP Mary}_1 \text{ [VP tries [CP C [IP PRO}_1 \text{ to work hard]]} \]

The embedded CP is a barrier for exceptional Case assignment. Hence, the subject of the embedded infinitive cannot be realised as an overt NP (which
would violate the Case Filter). A possibility that is often entertained is that the infinitive’s external argument is nevertheless realised syntactically, albeit as an empty category PRO; PRO is confined to ungoverned positions. (Chomsky (1981) suggests that this can be derived from independent assumptions; hence, the restriction on PRO is sometimes referred to as the PRO theorem).

2.3. More on Control

PRO is co-indexed with the matrix subject in (5) and (6-a) (which acts as its controller), but depending on lexical and structural factors, PRO may also be co-indexed with a matrix object (as in (6-b)), or may receive an arbitrary, generic, or discourse-based interpretation (as in (6-cd)).

(6) a. \[\text{IP Mary} [\text{VP promised John} [\text{CP C [IP PRO} \text{ to leave]]]]] \]
 b. \[\text{IP Mary} [\text{VP persuaded John} [\text{CP C [IP PRO} \text{ to leave]]]]] \]
 c. \[\text{IP [CP C [IP PRO} \text{ To behave oneself in public] would help John]} \]
 d. \[\text{IP John} [\text{CP C [IP how PRO} \text{ to prove the theorem]}]] \]

Examples like (5) and (6-ab) are often said to involve obligatory control (OC); examples like (7-cd) show non-obligatory control (NOC). It has been argued that the theory of control can be based on the assumption that PRO is an anaphor that obeys an appropriately revised version of principle A of the binding theory (Manzini (1983), Koster (1987)): PRO must be bound within its binding domain if it has one. The next-higher clause is the binding domain in OC contexts; however, there is no binding domain for a PRO in subject clauses and \textit{wh}-clauses, which are therefore NOC contexts. A complication is that control tends to be even more local than predicted by the binding theory: With the exception of certain verbs like promise (see (6-a)), the interpretation of PRO follows a Minimum Distance Principle (MDP) according to which PRO picks the minimally c-commanding NP as its antecedent in OC contexts.

Another kind of approach is developed by Hornstein (2001). He argues that the locality of control in OC contexts results from the fact that movement rather
than anaphoric binding is involved. Under this view, PRO is a trace of NP-movement, and control and raising are similar after all, the main difference being that movement is to a Theta-position in OC, but not in raising contexts. (Note that this analysis is incompatible with the ban on movement into Theta-positions mentioned above.) MDP effects are traced back to the *Minimal Link Condition* (MLC), which is independently known to restrict movement (Chomsky (1995)). Furthermore, NOC contexts are assumed to involve an empty pronominal (pro) that is inserted as a last resort operation in syntactic environments that block movement.

At present, it is an open question to what extent such structural explanations (based on binding or movement) can succeed in accounting for the varieties of control, and to what extent non-structural properties (like the thematic properties of matrix predicates) play a role (Culicover & Jackendoff (2001)).

2.4. General Properties

NP-movement has several characteristic properties, some of which distinguish it from movement types that target an IP-external position, such as *wh*-movement. First, like *wh*-movement, NP-movement obeys the *Relativised Minimality* constraint (Rizzi (1990)), according to which α-movement must not cross an intervening α-position. Thus, NP-movement must be successive-cyclic if a SpecI position intervenes between the base position and the target SpecI position (see (7-ab); note that a passivised ECM verb behaves in every respect like an ordinary raising verb).

\[(7) \quad \text{a. } A \text{ man}_1 \text{ seems/is believed } [\text{IP there to have been kissed } t_1] \]
\[\text{b. } A \text{ man}_1 \text{ seems/is believed } [\text{IP } t'_1 \text{ to have been kissed } t_1] \]

However, in contrast to *wh*-movement, NP-movement is clause-bound: It cannot cross a CP. Thus, NP-movement from a finite clause (*super-raising*) is impossible in English (see (8-a)), whereas *wh*-movement is not (see (8-b)):

\[(8) \quad \text{a. } [*\text{IP Mary}_1 \text{ seems } [\text{CP } (t'_1) \text{ that } [\text{IP } t_1 \text{ likes John }]]]] \]
b. \([_{\text{CP}} \text{Who}_1 \text{ do you think } [_{\text{CP}} t'_1 \text{ that } [_{\text{IP}} \text{Mary likes } t_1]]]\) ?

A second difference concerns binding of anaphors (i.e., reflexive and reciprocal pronouns). NP-movement creates new possibilities for anaphoric binding (see (9-a)), whereas \textit{wh}-movement does not (see (9-b)).

\begin{align*}
(9) \quad & \text{a. } \left[_{\text{IP}} \text{The students}_1 \text{ seem } \left[_{\text{PP}} \text{to each other}_1 \right] \left[_{\text{IP}} t_1 \text{ to be intelligent } \right] \right] \\
& \text{b. } *\left[_{\text{CP}} \text{Which man}_1 \text{ does himself}_1 \text{ think } [_{\text{CP}} t'_1 \text{ that Mary likes } t_1] \right] ?
\end{align*}

Third, there is a difference with respect to \textit{weak crossover}. In a weak crossover configuration, a quantified NP has been moved across a co-indexed personal pronoun that does not c-command the trace of NP. This configuration leads to ungrammaticality with \textit{wh}-movement, but not with NP-movement; see (10-ab).

\begin{align*}
(10) \quad & \text{a. } \left[_{\text{IP}} \text{Every girl}_1 \text{ seems } \left[_{\text{PP}} \text{to her}_1 \text{ mother } \right] \left[_{\text{IP}} t_1 \text{ to be intelligent } \right] \right] \\
& \text{b. } *\left[_{\text{CP}} \text{Which girl}_1 \text{ does } \left[_{\text{NP}} \text{her}_1 \text{ mother } \right] \text{ think } [_{\text{CP}} t'_1 \text{ that John likes } t_1] \right] ?
\end{align*}

Fourth, NP- and \textit{wh}-movement diverge with respect to \textit{parasitic gaps}. A parasitic gap is a trace (noted here as “\(e\)”) in a position that is typically not accessible to regular movement (because of locality constraints). However, \(e\) is permitted if it is in a sufficiently local relation with a well-formed movement chain with the same index. As shown in (11-ab), NP-movement does not license parasitic gaps in English, whereas \textit{wh}-movement does (Chomsky (1982), who also notes that (11-a) is grammatical with \textit{them} in place of \(e\), which implies that the construction is not ill formed because of a control failure with the PRO subject of the \textit{without} phrase).

\begin{align*}
(11) \quad & \text{a. } *\left[_{\text{IP}} \text{The books}_1 \text{ can be sold } t_1 \left[_{\text{CP}} \text{without reading } e_1 \right] \right] \\
& \text{b. } \left[_{\text{CP}} \text{Which books}_1 \text{ did they sell } t_1 \left[_{\text{CP}} \text{without reading } e_1 \right] \right] ?
\end{align*}

\subsection*{2.5. Further Dissociation of Case-Positions and Theta-Positions}

In NP-movement constructions, the first member of the movement chain is in a position to which Case is assigned, and the last member occupies a Theta-position. NP-movement has so far been motivated on the basis of passive and raising (also recall the above remarks on an NP-movement approach to control),
but it has also been argued to underlie other constructions.

2.5.1. The VP-Internal Subject Hypothesis

The assumption that an external argument of a verb is base-generated in the VP-external SpecI position has been called into question in recent years. The alternative (suggested by Sportiche (1988) and many others, and now widely adopted) is that all arguments of V are base-generated in a VP-internal position; this is known as the VP-Internal Subject Hypothesis (VISH). (Since this assumption is usually taken to hold for all predicates, a more adequate term is Predicate-Internal Subject Hypothesis.) Under this view, the “external” argument of V is base-generated VP-internally, in SpecV. Given that SpecI is the position to which nominative Case is assigned in English, NP-movement to SpecI must then take place in active sentences as it does in passive sentences; see (12).

(12) [IP John₁ I [VP t₁ wrote the book₂]]

The VISH raises a question concerning the structure of double object constructions, where there are three argument NPs but, it seems, only two VP-internal positions (specifier and complement). The most widely adopted approach in view of this problem is one that relies on a shell (Larson (1988), Chomsky (1995)): On top of the lexical VP, there is a vP shell with an empty head v. Two internal arguments can now be base-generated in VP, and the remaining external argument is base-generated in Specv. Obligatory V-to-v movement and Case-driven NP-movement to SpecI yield the correct surface string. (13) is a possible analysis of an English double object construction.

(13) [IP John₁ I [vP t₁ gave₂ [VP Mary [v₁ t₂ a book]]]]

The vP shell analysis is usually extended to simple transitive and intransitive verbs, such that an external argument is base-generated in Specv throughout; it thereby qualifies as “external” in the literal sense again.
2.5.2. **Raising to Object**

There is an alternative analysis of ECM constructions that goes back to Postal (1974). Under this view, (4) does not involve exceptional Case assignment of the matrix verb to the subject position of the infinitive, but raising of the embedded subject to the object position of the matrix clause, as in (14).

(14) \[[\text{IP } \text{Mary}_1 \text{ I } [\text{vP } t_1 \text{ believes John}_2 [\text{IP } t_2 \text{ to be a fool }]]] \]

As before, the construction would then depend on the transparency of IP, but it would be transparency for movement, not for Case assignment.

The empirical evidence that might decide between the two possibilities is not decisive. On the one hand, adverbials that belong to the matrix clause may usually not intervene between the lower external argument and the rest of the infinitive; see (15). This is an argument for the ECM analysis.

(15) *John believed Mary sincerely to have left

On the other hand, the external argument of the infinitive c-commands a matrix adverbial that follows the infinitive, as shown by binding of the reciprocal in (16). This piece of evidence supports the raising to object analysis.

(16) The DA proved the defendants\textsubscript{1} to be guilty during each other’s\textsubscript{1} trials

The raising to object analysis has been refined and generalized in such a way that all NPs that bear objective Case must undergo raising to a Case-related position provided by a functional head (e.g., the specifier of an “object agreement” phrase AGR\textsubscript{O}P). In such an approach, there is a complete dissociation of Theta-positions and positions to which structural Case is assigned; see Johnson (1991) and Chomsky (1995).

3. **Scrambling**

Many languages exhibit a considerable amount of clause-internal free constituent order. For instance, all permutations of three argument NPs in a double object
construction can result in wellformedness in German (on which the following discussion will focus). Given the UTAH, only one of the orders can be base-generated; the remaining orders are derived by scrambling, a movement type introduced by Ross (1967). For present purposes, we can assume (following what is arguably the standard view) that subject \(\Rightarrow \) indirect (dative) object \(\Rightarrow \) direct (accusative) object is the base order in German. Thus, (17-b-f) are derived from (17-a) by scrambling.

\[
(17) \quad \begin{align*}
&\text{a. dass } [\text{IP the woman nom the man dat the book acc given has}] \\
&\text{b. dass } [\text{IP the woman nom the book acc given has}] \\
&\text{c. dass } [\text{IP the book acc the woman nom the man dat given has}] \\
&\text{d. dass } [\text{IP the man dat the woman nom the book acc given has}] \\
&\text{e. dass } [\text{IP the man dat the book acc the woman nom given has}] \\
&\text{f. dass } [\text{IP the book acc the man dat the woman nom given has}]
\end{align*}
\]

An independent argument for a scrambling approach is provided by the fact that clause-internal word order variation is not confined to co-arguments of a predicate in German. Scrambling can also move an item that is base-generated within an object NP to a clause-internal position. This is shown for extraction of a pronoun \textit{da} (lit. ‘there’, here ‘it’) from a PP embedded in an object NP in (18).

\[
(18) \quad \begin{align*}
&\text{dass } [\text{NP it nom no-one nom the book acc given has}] \\
&\text{gelesen hat}
\end{align*}
\]

There are different views as to what the landing site of scrambling is. Data such as (17-e), (17-f) show that scrambling can be iterated. This requires either additional functional categories that provide a unique landing site for each scrambling operation, or a general mechanism that produces as many landing sites as are needed in one domain. Assuming the latter, we can postulate that scrambling in German (where NP-movement to SpecI is not obligatory) is movement within the vP domain – adjunction to vP (as was standardly assumed) or substitution in (outer) specifiers of v (see Chomsky (1995) on the possibility of multiple specifiers).
Scrambling (in German) differs from NP-movement (in English) in being optional. It has so far proven difficult to find a trigger for scrambling, which is required in syntactic theories that adopt economy principles and thereby require each movement operation to be forced in some way. Triggers that have been suggested include abstract features and information-structural requirements.

Much recent work has focussed on how scrambling fits into the typology of movement operations that is based on the distinction between NP-movement and wh-movement. (This distinction is often generalized to a dichotomy of A- vs. A-bar movement, with NP-movement an instance of the former, and wh-movement an instance of the latter.) In some respects, it does not seem to fit at all. For instance, since scrambling can cross an intervening scrambled item (see (17-e), (17-f)), it appears to be exempt from Relativised Minimality effects. In most cases, however, scrambling patterns with either NP-movement or wh-movement.

First, in many languages, scrambling is clause-bound. Thus, scrambling in German can never leave a finite CP (see (19-a)), like NP-movement and unlike wh-movement. Depending on the nature of the matrix verb, scrambling may or may not take place from a non-finite clause. This is often taken to show that so-called restructuring verbs select a bare IP infinitive, whereas non-restructuring verbs select a CP infinitive (see (19-bc)).

(19)

(a) *dass den Fritz1 keiner sagt [CP (t’)] dass Maria t1 mag]
that ART Fritz1_acc no-one_nom says that Maria_nom likes

(b) *dass den Fritz1 keiner [CP (t’)] C t1 einzuladen | abgelehnt hat
that ART Fritz1_acc no-one_nom to invite rejected has

(c) dass den Fritz1 keiner [IP t1 einzuladen] versucht hat
that ART Fritz1_acc no-one_nom to invite tried has

However, in some languages (among them Russian, Persian, Korean, and Japanese), long-distance scrambling across a CP is possible, like wh-movement in English.

Second, scrambling at first glance seems to pattern with NP-movement as regards the binding of anaphors. (20-a) shows that a direct object can bind an
indirect object that follows it; given that the reverse order is base-generated, this implies that scrambling creates new possibilities for anaphoric binding. However, it is then unclear why an indirect object can never bind a direct object; see (20-b). Furthermore, scrambling in front of a subject cannot license a nominative anaphor, like *wh-movement; see (20-c). All this might be taken to show that anaphoric binding is not solely regulated by structural factors, but relies on linear precedence and dominance on a thematic hierarchy, in which case the evidence is neutral between an NP-movement and a wh-movement analysis (see Jackendoff (1990) and Williams (1994)).

(20) a. dass der Fritz die Gäste1 einander1 t1 vorstellte
 that ART Fritznom the guestsacc each otherdat introduced

 b. *dass der Fritz den Gästen1 einander1 vorstellte
 that ART Fritznom the guestsdat each otheracc introduced

 c. *dass den Fritz1 sich1 t1 mag
 that ART Fritzacc selfnom likes

Third, German scrambling does not give rise to (clear) weak crossover effects, like NP-movement; see (21).

(21) dass jeden Jungen1 [NP seine1 Mutter] t1 liebt
 that every boynom his mothernom loves

Fourth, scrambling licenses parasitic gaps, like wh-movement; see (22):

(22) dass das Buch1 jeder [CP ohne e1 zu lesen] ins Regal t1
 that the bookacc everyone, nom without to read into the shelf put
 zurückgestellt hat
 has

Thus, scrambling in German seems to share some properties with NP-movement, and some with wh-movement. To preserve the strict A-/A-bar dichotomy mentioned above, scrambling must be assimilated with either NP-movement or wh-movement, and conflicting pieces of evidence must be explained away. Alternatively, the non-homogeneous evidence can be taken to indicate that the A-/A-bar distinction should be dispensed with, and be replaced by a finer-grained system according to which, e.g., scrambling forms a natural class with NP-movement
insofar as it targets an IP-internal position, and with *wh*-movement insofar as it is not Case-driven. Syntactic constraints can then refer to these distinctions.

4. Pronoun Movement

4.1. Object Shift

Unstressed object pronouns move out of the vP to a clause-internal position in Scandinavian languages, thereby crossing vP-external material like adverbials and negation; this operation is known as *object shift*. The landing site follows the canonical subject position SpecI; see the contrast between (23-a) and (23-b) in Danish.

(23) a. Hvorfor købte3 [IP Peter2 den1 ikke [vP t2 [\text{_} v' t3 t1]]] ?
 why bought Peter it not

 b. *Hvorfor købte3 [IP Peter2 – ikke [vP t2 [\text{_} v' t3 den1]]] ?
 why bought Peter not it

The nature of the landing site is not generally agreed on; a possibility is that it is a functional projection like AGR\textsubscript{O}P that intervenes between IP and vP. Similarly, it is unclear whether pronominal object shift is phrasal (XP) movement or head (X0) movement. While being confined to unstressed pronouns in the Mainland Scandinavian languages, object shift can also affect non-pronominal NPs in Icelandic, the main difference being that movement of the latter is optional. Furthermore, object shift can (and, in the case of of two unstressed object pronouns, must) be iterated, as we have seen with scrambling. However, Scandinavian object shift differs from scrambling in German (and other languages) in a number of respects. First, in contrast to scrambling, object shift requires movement of the main verb to a higher position (“Holmberg’s generalisation”; see Holmberg (1999), Chomsky (2001)). This is ensured by V-to-C movement in (23-a), but not in a minimally different sentence where købte (‘bought’) is replaced by the perfect form har købt (‘has bought’), such that *har* is in C and *købt* stays within vP. Consequently, object shift is impossible in the latter case. (Dependence on main verb movement also explains why object shift is strictly local and cannot
even leave restructuring infinitives.) Second, unlike scrambling, object shift does not seem to pattern with \(\mathit{wh}\)-movement in any respect (e.g., it does not license parasitic gaps). Third, while scrambling typically reverses the D-structure order of arguments, object shift is strictly order-preserving: A shifted direct object can never show up in front of an indirect object.

4.2. Pronoun Fronting

German also exhibits obligatory fronting of unstressed object pronouns to a clause-internal position; see (24-ab). This position precedes the scrambling domain \(\mathit{vP}\). However, it can in turn optionally be preceded by the subject; see (24-c).

\[
\text{(24) a. dass } \mathit{es_1} \left[\mathit{vP} \right. \text{ der Fritz der Maria } \mathit{t_1} \text{ gegeben hat } \right]
\]

\[
\text{that } \mathit{it_{acc}} \ ART \ \mathit{Fritz}_{\mathit{nom}} \ ART \ \mathit{Maria}_{\mathit{dat}} \ \mathit{given} \ \mathit{has}
\]

\[
\text{b. } *\text{dass } \left[\mathit{vP} \right. \text{ der Fritz der Maria } \mathit{es_1} \text{ gegeben hat } \right]
\]

\[
\text{that } \ ART \ \mathit{Fritz}_{\mathit{nom}} \ ART \ \mathit{Maria}_{\mathit{dat}} \ \mathit{it_{acc}} \ \mathit{given} \ \mathit{has}
\]

\[
\text{c. dass der } \mathit{Fritz}_2 \ \mathit{es_1} \left[\mathit{vP} \ t_2 \text{ der Maria } \mathit{t_1} \text{ gegeben hat } \right]
\]

\[
\text{that } \ ART \ \mathit{Fritz}_{\mathit{nom}} \ \mathit{it_{acc}} \ ART \ \mathit{Maria}_{\mathit{dat}} \ \mathit{given} \ \mathit{has}
\]

Pronoun fronting in German is local in the same way that scrambling is: A finite \(\mathit{CP}\) can never be crossed, and movement from an infinitive is possible with restructuring verbs, but not with others:

\[
\text{(25) a. } *\text{dass } \mathit{es_1} \ \text{keiner } \left[\mathit{CP} \ (t') \ C \ \mathit{t_1} \text{ zu lesen } \right] \text{ abgelehnt hat}
\]

\[
\text{that } \mathit{it_{acc}} \ \text{no-one}_{\mathit{nom}} \ \text{to read} \ \text{rejected} \ \text{has}
\]

\[
\text{b. dass } \mathit{es_1} \ \text{keiner } \left[\mathit{IP} \ \mathit{t_1} \text{ zu lesen } \right] \text{ versucht hat}
\]

\[
\text{that } \mathit{it_{acc}} \ \text{no-one}_{\mathit{nom}} \ \text{to read} \ \text{tried} \ \text{has}
\]

It seems desirable to analyse German pronoun fronting and Danish object shift in the same way. Under this view, the fact that subject NPs precede fronted pronouns optionally in German, and obligatorily in Danish, would result from an independently motivated difference with respect to optional vs. obligatory NP-movement to \(\mathit{SpecI}\). Furthermore, multiple pronoun fronting results in a fixed order that is reminiscent of the order-preservation effect with object shift. Still, there are many differences. First, the fixed-order effect is not the same: The
order is indirect object \(\succ\) direct object with object shift, but direct object \(\succ\)
indirect object with pronoun fronting. Second, pronoun fronting can cross an
intervening non-pronominal NP, which object shift cannot. Third, main verb
movement does not seem to be required with pronoun fronting. Finally, pronoun
fronting in German shares some properties with \(wh\)-movement (e.g., it licenses
parasitic gaps).

4.3. Cliticisation

Unstressed pronouns may be (pro- or en-) *clitic* in the sense that they must attach
to the left or to the right of a suitable phonological host, usually V. Pronominal
cliticisation is widespread in the Romance and Slavic languages. (26-a) is an
example from French.

(26) Jean les\(_1\) mange \(t_1\)
Jean them eats

The trigger for cliticisation is arguably phonological, given the clitic pronoun’s
need to form a phonological word with an appropriate host. Since nothing can
intervene between a clitic pronoun and its host, cliticisation is often analysed
as involving head movement (*incorporation*) into the \(X^0\) position in which the
verb shows up. However, whereas head movement is extremely local (Baker
(1988)), clitic movement seems to obey roughly the same locality constraints as
scrambling and pronoun movement in German: A finite CP cannot normally be
crossed, but cliticisation from an infinitive (*clitic climbing*) is permitted in some
languages, given that a restructuring verb occurs in the matrix clause. Clitic
climbing is impossible in French, but applies optionally in Italian (alternatively,
lo can attach as an enclitic to *leggere*):

(27) a. Mario lo\(_1\) vuole \([IP \text{ leggere } t_1]\)
Mario it wants to read

b. *Mario lo\(_1\) odia \([CP (t'_1) C [IP \text{ leggere } t_1]]\)
Mario it hates to read
In view of this dual nature, it has been argued that a moved clitic pronoun simultaneously acts as an X\(^0\) category and as an XP.

5. **Extraposition**

Whereas NP-movement, scrambling, and pronoun movement involve leftward displacement, extraposition is rightward movement. This movement type is often optional and seems to be motivated at least in part by parsing requirements. Extraposition has been argued to underlie instances of optional rightward PP- and CP-displacement from NP (see (28-ab)), so-called *heavy NP shift* (see (28-c)), and argument CP-displacement in SOV languages (see (28-d) from German, which is strongly preferred over the pre-verbal option).

(28) a. \[NP \ A \ review \ t_1 \] will appear shortly \[PP \ of \ his \ new \ book \] \[CP \ that \ no-one \ knew \]
 b. \[NP \ A \ woman \ t_1 \] came into the room \[CP \ that \ no-one \ knew \]
 c. She threw \[NP \ letter \ which \ she \ had \ not \ decoded \] \[CP \ that \ she \ sleeps \]
 d. dass er \[NP \ letter \ which \ she \ had \ not \ decoded \] \[CP \ dass sie schläft \]

Extraposition is clause-bound (Ross (1967)), like NP-movement; see (29-a). On the other hand, heavy NP shift has been claimed to license parasitic gaps, like *wh*-movement; see (29-b).

(29) a. *John always maintains \[CP \ dass sie schläft \] whenever he is asked about it \[PP \ of \ his \ new \ book \]
 b. John offended \[NP \ his \ favourite \ uncle \ from \ Cleveland \]

Extraposition has a number of peculiar properties that set it apart from other instances of movement. To name just one, subject NPs as in (28-ab) are barriers for leftward movement; so the wellformedness of these examples is initially surprising. Moreover, rightward movement has been argued to be dubious on purely conceptual grounds (Kayne (1994)).
6. Locality

There is one fundamental property that all movement types that target an IP-
internal position share, and that sets them apart from movement types that
target a position in the CP domain: Displacement is clause-bound, i.e., long-
distance movement across a CP is impossible; see (30). (There is evidence that
the CP domain can be targeted by scrambling in languages with long-distance
scrambling.)

(30) *... [IP ... α₁ ... [CP (t₁') ... t₁ ...] ...

Thus, there is a correlation between the position targeted by a movement type
(low vs. high) and the distance over which it can apply (short vs. long). This
generalisation seems hardly accidental; it can be explained by a conspiracy of two
constraints. First, there is a locality constraint that permits extraction from a
CP only via SpecC (see, e.g., the Phase Impenetrability Condition in Chomsky
(2001)). This precludes one-step movement without t₁' in (30). Second, there is a
constraint on improper movement according to which movement to an IP-internal
position may precede movement to SpecC, but not vice versa; this asymmetry can
be taken to reflect the hierarchy of the target positions in the tree. See Williams
(1974) for the basic observation, and May (1979), Chomsky (1981), and Müller
& Sternefeld (1993) for specific proposals.

References

Chomsky, Noam. 1982. *Some Concepts and Consequences of the Theory of

Culicover, Peter, & Ray Jackendoff. 2001. Control is Not Movement. *Linguistic
Inquiry 32:493-512.

Bibliography

Glossary

barrier# A syntactic category that creates an opaque domain; syntactic operations that cross a barrier are illegitimate.

Burzio’s generalisation: A verb can assign objective Case if and only if it takes an external (subject) argument.

Case Filter: Every noun phrase (NP) must be assigned structural case.

clitic pronoun: Phonologically reduced pronoun that attaches to another word.

control: The procedure that determines the reference of the phonologically empty subject in clausal infinitives and gerunds.

Exceptional Case Marking (ESM): Case marking of the subject of an infinitive by the matrix verb, i.e., Case marking that is not accompanied by Theta-role assignment.

extraposition: Displacement of a syntactic category to the right periphery of a clause.

head movement: Movement of an X⁰ category to another X⁰ category.

heavy NP shift: Extraposition of a noun phrase (NP) that is long or focussed.

Holmberg’s generalisation: Object shift is possible only if the main verb has moved.

incorporation: Movement (typically of an X⁰ category) to a word-internal position; often considered synonymous with head movement.
Minimal Link Condition (MLC) A constraint according to which movement paths must be minimal in length; see also Relativised Minimality.

Minimum Distance Principle (MDP) A constraint on control structures according to which the phonologically empty subject of clausal infinitives and gerunds takes the closest c-commanding noun phrase (NP) as its antecedent.

NP-movement Fronting of a noun phrase (NP) to a local position.

object shift Clause-internal fronting of object noun phrases (NPs) (typically pronouns) in Scandinavian languages.

parasitic gap A trace in a position not accessible to movement that is permitted nevertheless because it is “parasitic” on (i.e., sufficiently close to) a well-formed movement chain with the same index.

passive Passive morphology on a verb suppresses the subject argument and promotes an object argument to the subject.

phase A certain type of clausal (propositional) category that acts as a local domain for various syntactic operations.

Phase Impenetrability Condition (PIC) A constraint according to which movement can only take place from the left edge of a phase; e.g., movement from the phase CP can take place only from the specifier of C.

PRO theorem The empty category PRO is confined to ungoverned positions (e.g., the subject position of an infinitive). Arguably, this restriction is derivable from independent assumptions; hence “theorem”.

21
raising# Fronting to a subject (specifier of I) or object position.

Relativised Minimality#: A constraint according to which movement to a position α must not cross an intervening α; see also Minimal Link Condition.

restructuring verb#: A verb that selects an infinitive that is transparent for syntactic operations.

scrambling#: Optional clause-internal fronting operation that can be iterated and produces free word order in a language.

shell#: An auxiliary functional projection that further extends a lexical projection.

super-raising#: Raising across a finite clause boundary.

Uniformity of Theta Assignment Hypothesis (UTAH)# The hypothesis that sentences that show identical thematic relationships between items have similar structural representations between those items at the level of deep structure (D-structure).

VP-Internal Subject Hypothesis (VISH)# The hypothesis that all arguments of a verb, including the subject, are generated within the verb’s projection.

weak crossover#: Movement of a quantified noun phrase (NP) across a co-indexed pronoun that does not c-command the NP’s trace; weak crossover often leads to ungrammaticality.