Institute:

 

Contact

Team

 

 


About

 



Marc Salzmann

Publications

peer reviewed:

2024

35. Doktorowski, S., J. Kretzschmar, J. Quaas, M. Salzmann, and O. Sourdeval, Subgrid-scale variability of cloud ice in the ICON-AES-1.3.00 Geosci. Model Dev., accepted, doi:10.5194/gmd-2022-34, 2023.

 

2023

34. al Hajjar, K., M. Salzmann, Relative contributions of local heat storage and ocean heat transport to cold season Arctic Ocean surface energy fluxes in CMIP6 models, Q. J. R. Meteorol. Soc., 147, 2091-2106, doi:10.1002/qj.4496, 2023.

 

33. Metzner, E. P., and M. Salzmann, Technical note: Determining Arctic Ocean halocline and cold halostad depths based on vertical stability, Ocean Sci., 5, 1453-1464, doi:10.5194/os-19-1453-2023, 2023.

 

32. Wendisch, M., et al., including M. Salzmann, , Atmospheric and surface processes, and feedback mechanisms determining Arctic amplification: A review of first results and prospects of the (AC)3 project, Bull. Am. Meteorol. Soc., 104, E208–E242, doi:10.1175/BAMS-D-21-0218.1, 2023.

 

2022

31. Salzmann, M., S. Ferrachat, C. Tully, S. Münch, D. Watson-Parris, D. Neubauer, C. Siegenthaler-Le Drian, S. Rast, B. Heinold, T. Crueger, R. Brokopf, J. Mülmenstädt, J. Quaas, H. Wan, K. Zhang, U. Lohmann, P. Stier, and I. Tegen, The global atmosphere-aerosol model ICON-A-HAM2.3 – Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness, J. Adv. Model. Earth Syst., 14, e2021MS002699, doi:10.1029/2021MS002699, 2022.

 

2021

30. Mülmenstädt, J., M. Salzmann, J. E. Kay, M. D. Zelinka, P.-L. Ma, C. Nam, J. Kretschmar, S. Hörnig, and J. Quaas, An underestimated negative cloud feedback from cloud lifetime changes, Nat. Clim. Change, 11, 508-513, doi:10.1038/s41558-021-01038-1, 2021.

 

2020

29. Block, K., F. Schneider, J. Mülmenstädt, M. Salzmann, and J. Quaas, Climate models disagree on the sign of total radiative feedback in the Arctic, Tellus A, 72, 1696139, doi:10.1080/16000870.2019.169613, 2020.

 

28. Lauer, M., K. Block, M. Salzmann, and J. Quaas, CO2-forced changes of Arctic temperature lapse-rates in CMIP5 models, Meteorol. Z., 29, 79-93, doi:10.1127/metz/2020/0975, 2020.

 

27. Metzner, E. P., M. Salzmann, and R. Gerdes, Arctic Ocean surface energy flux and the cold halocline in future climate projections, J. Geophys. Res. Oceans, 125, e2019JC015554, doi:10.1029/2019JC015554, 2020.

 

26. Mülmenstädt, C. Nam, M. Salzmann, J. Kretzschmar, T. S. L'Ecuyer, U. Lohmann, P.-L. Ma, G. Myhre, D. Neubauer, P. Stier, K. Suzuki, M. Wang, and J. Quaas,, Sci. Adv., 6, eaaz6433, doi:10.1126/sciadv.aaz6433, 2020.

 

2019

25. Kretzschmar, J. M. Salzmann, und J. Mülmenstädt, and J. Quaas: Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes, Atm. Chem. Phys., 19, 10571-10589, doi:10.5194/acp-19-10571-2019, 2019.

 

24. Mülmenstädt, J., E. Gryspeerdt, M. Salzmann, P.-L. Ma, S. Dipu, and J. Quaas, Separating radiative forcing by aerosol-cloud interactions and fast cloud adjustments in the ECHAM-HAMMOZ aerosol-climate model using the method of partial radiative perturbations, Atmos. Chem. Phys., 19, 15415-15429, doi:10.5194/acp-19-15415-2019, 2019.

 

2018

23. Nam, C., P. Kühne, M. Salzmann, und J. Quaas, A prospectus for using large-eddy simulations to constrain rapid adjustments in general circulation models, J. Adv. Model. Earth Syst., 10, doi:10.1029/2017MS001153, 2018.

 

22. Petersik, P., M. Salzmann, J. Kretzschmar, R. Cherian, D. Mewes, und J. Quaas, Subgrid-scale variability of clear-sky relative humidity and forcing by aerosol-radiation interactions in an atmosphere model, Atmos. Chem. Phys., 18, 8589-8599, doi:10.5194/acp-18-8589-2018, 2018.

 

2017

21. Cherian, R., J. Quaas, M. Salzmann, and L. Tomassini: Black carbon indirect radiative effects in a climate model, Tellus B Chem Phys Meteorol, 69, 1369342, doi:10.1080/16000889.2017.1369342, 2017.

 

20. Dipu S., , J. Quaas, R. Wolke, J. Stoll, A. Mühlbauer, M. Salzmann, B. Heinold, and I. Tegen: Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT and evaluation using satellite data, Geosci. Model Devel., 10, 2231-2246, doi:10.5194/gmd-10-2231-2017, doi:10.5194/gmd-10-2231-2017, 2017.

 

19. Heyn, I., K. Block, J. Mülmenstädt, E. Gryspeerdt, P. Kühne, M. Salzmann, J. Quaas: Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum, Geophys. Res. Lett., 44, 2, 1001-1007, doi:10.1002/2016GL071975, 2017.

 

18. Heyn, I., J. Quaas, M. Salzmann, and J. Mülmenstädt: Effects of diabatic and adiabatic processes on relative humidity in a GCM, and relationship between mid-tropospheric vertical wind and cloud-forming and dissipating processes, Tellus A, 69, 1, 1272753, doi:10.1080/16000870.2016.1272753, 2017.

 

17. Kretzschmar, J., M. Salzmann, J. Mülmenstädt, O. Boucher, and J. Quaas: Comment on ``Rethinking the lower bound on aerosol radiative forcing'', J. Climate, 30, 6579-6584, doi:10.1175/JCLI-D-16-0668.1, 2017.

 

16. Salzmann, M.: The polar amplification asymmetry: Role of antarctic surface height, Earth Syst. Dynam., 8, 323-336, doi:10.5194/esd-8-323-2017 doi:10.5194/esd-8-323-2017, 2017.

 

2016

15. Salzmann, M.: Global warming without global mean precipitation increase? Sci. Adv., 2, e1501572, doi:10.1126/sciadv.1501572, 2016.

 

2015

14. Rosch, J., T. Heus, M. Brueck, M. Salzmann , J. Mümenstädt, L. Schlemmer, and J. Quaas: Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations, Q. J. Roy. Meteor. Soc., 141, 2199-2205, doi:10.1002/qj.2515, 2015.

 

13. Salzmann, M., and R. Cherian: On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the 20th century, J. Geophys. Res. Atmos., 120, 9103-9118, doi:10.1002/2015JD023313, 2015.     Link to PDF via Qucosa

 

2014

12. Salzmann, M., H. Weser, and R. Cherian: Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models, J. Geophys. Res. Atmos., 119, 11321-11337, doi:10.1002/2014JD021783, 2014.     Link to PDF via Qucosa

 

11. Cherian, R., J. Quaas. M. Salzmann, and M. Wild: Pollution trends over Europe constrain global aerosol forcing as simulated by climate models, Geophys. Res. Lett., 41, 2176-2181, doi:10.1002/2013GL058715, 2014.

 

2013

10. Stevens, B., M. Giorgetta, T. Mauritsen, T. Crueger, S. Rast, M. Salzmann, H. Schmidt, J. Bader, K. Block, R. Brokopf, I. Fast, S. Kinne, L. Kornblueh, U. Lohmann, R. Pincus, T. Reichler, and E. Roeckner: The Atmospheric Component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model Earth Syst. , 5, doi:10.1002/jame.20015, 2013.

 

prior to 2013

 

9. Golaz, J.-C., M. Salzmann, , L. J. Donner, L. W. Horowitz, Y. Ming, and M. Zhao: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL Atmosphere General Circulation Model AM3, J. Clim., doi:10.1175/2010JCLI3945.1, 2011.

 

8. Salzmann, M., Y. Ming, J.C. Golaz, P. A. Ginoux, H. Morrison, A. Gettelman, M. Krämer, and L. J. Donner: Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests, Atmos. Chem. Phys., 10, 8037-8064, doi:10.5194/acp-10-8037-2010, 2010.

 

7. Beirle, S., M. Salzmann, M. G. Lawrence, and T. Wagner: Sensitivity of satellite observations for freshly produced lightning NOx. Atmos. Chem. Phys., 9, 1077-1094, doi:10.5194/acp-9-1077-2009. 2009.

 

6. Lawrence, M. G.,  M. Salzmann: On interpreting studies of tracer transport by deep cumulus convection and its effects on atmospheric chemistry, Atmos. Chem. Phys., 8, 6037-6050,doi:10.5194/acp-8-6037-2008 , 2008.

 

5. Salzmann, M., M. G. Lawrence, V. T. J. Phillips, and L. J. Donner: Cloud system resolving model study of the roles of deep convection for photo-chemistry in the TOGA COARE/CEPEX region. Atmos. Chem. Phys., 8, 2741-2757 doi:10.5194/acp-8-2741-2008, 2008.

 

4. Trentmann, J., C. Keil, M. Salzmann, C. Barthlott, H.-S. Bauer, T. Schwitalla, M. G. Lawrence, D. Leuenberger, V. Wulfmeyer, U. Corsmeier, C. Kottmeier, and H. Wernli: Multi-model simulations of a convective situation in low-mountain terrain in central Europe, Meteorol. Atmos. Phys.doi:10.1007/s00703-008-0323-6, 2009.

 

3. Salzmann, M., M. G. Lawrence, V. T. J. Phillips, and L. J. Donner: Model sensitivity studies regarding the role of the retention coefficient for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems, Atmos. Chem. Phys.,7, 2027-2045, doi:10.5194/acp-7-2027-2007, 2007.

 

2. Salzmann, M., M. G. Lawrence, V. T. J. Phillips, and L. J. Donner: Modelling tracer transport by a cumulus ensemble: Lateral boundary conditions and large scale ascent, Atmos. Chem. Phys., 4, 1797-1811,  doi:10.5194/acp-4-1797-2004, 2004.

 

1. Lawrence, M. G., R. von Kuhlmann, M. Salzmann, and P. J. Rasch: The balance of effects of deep convective mixing on tropospheric ozone, Geophys. Res. Lett., 30, 1940, doi:10.1029/2003GL017644, 2003.

 

 

 

other:

 

Grell, G. A.,  J. Fast, W. I. Gustafson, S. E. Peckham, S. A. McKeen, M. Salzmann, and S. Freitas: On-line chemistry within WRF: Description and Evaluation of a state-of-ther-art multiscale air quality and weather prediction model, in Integrated Systems of Meso-Meteorological and Chemical Transport Models, edited by A. Baklanov, A. Mahura and R. Sokhi, Springer, 2011 (link). 

 

 

 

Last update 03 June 2021 by M. Salzmann