
An OT-based Finite-State Implementation of Menominee Agreement
Morphology

Jochen Trommer
Institute of Cognitive Science

University of Osnabrück
jtrommer@uos.de

Abstract

This paper describes a finite-state im-
plementation of the complex agreement
morphology in the Algonquian language
Menominee. The analysis is based on
Optimality Theory (Prince and Smolen-
sky, 1993) and implemented in a com-
putational system which realizes gen-
eration in OT-Morphology by extended
finite-State techniques. Basic constraint
types are defined and evaluated by mod-
ified versions of algorithms presented
in Ellison (1994) and Karttunen (1998).
Finite-State machines are created dy-
namically and evaluated according to
the input.

1 Introduction

Because of their intricate agreement system, Al-
gonquian languages have long been in the focus of
theoretical work on inflectional morphology (e.g.
Halle and Marantz, 1993). Menominee is an al-
most extinct Central Algonquian language docu-
mented in detail by Bloomfield (1962).

In this paper, I describe main features of an im-
plementation of Menominee agreement morphol-
ogy based on an account in Optimality Theory
(OT, Prince and Smolensky, 1993; McCarthy and
Prince, 1995). I will restrict myself to Menomi-
nee morphotactics which is very complex in itself
and will not treat Menominee morphophonemics
which is another complex area.

In section 2, I introduce some relevant morpho-
logical phenomena. In section 3, I present OT-
constraints to account for these phenomena. Fi-
nally, in section 4, I discuss the algorithms of the
finite-state implementation.

2 Basic Morphological Phenomena

2.1 Multiple Exponence

In many Menominee verb forms, single arguments
are crossreferenced by more than one affix:1

(1) po·se-w-ak
embark-[+3]-[+pl]
’they embark’ (p. 150)

While this is partially redundant in some cases,
to distinguish forms, different affixes usually real-
ize different aspects of an agreement trigger. Thus
-w ([+3]) marks that the corresponding argument
is 3rd person while ak- shows that it is plural. I
will assume that multiple exponence of one argu-
ment by different affixes is motivated by the re-
quirement to realize all features of the agreement
trigger by affixes.

2.2 Infidelity

While Menominee has subject and object agree-
ment, it uses the same affixes for both types of
agreement.

1Page numbers in the examples refer to Bloomfield
(1962).

(2)

a. ke-na·n-a·-w-a·w
2-fetch-D-[+3]-[−1+pl]
‘you (pl.) fetch him’ (p. 153)

b. ke-na·n-eko-w-a·w
2-fetch-D-[+3]-[−1+pl]
‘he fetches you (pl.)’ (p. 154)

Thus in (2a) the affixes ke-. . . -a·w mark 2pl sub-
ject while they mark 2pl object in (2b). Conversely
-w marks a 3rd person object in a. and subject in b.
The forms are only distinguished by the direction
markers -a· and -eko (see below).

2.3 Hierarchy Based Competition

While Menominee is rather generous in assigning
different agreement affixes to single arguments, it
severely restricts coocurrence of affixes for differ-
ent arguments. Thus -w generally marks 3rd person
arguments while -m marks non-third arguments,
but if both would be licensed as in the forms in (2)
only -w occurs. Similar constraints hold for most
types of agreement affixes. Only one agreement
prefix is allowed and also [+1 +pl] -enaw and [-1
+pl] -a·w exclude each other, where -enaw is al-
ways realized, leading to ambiguous forms:

(3) ke-na·tom-enenε-m-enaw (*-a·w)
2-call-D-[-3]-pl
‘we call you (sg. or pl)’ (pg. 157)

Thus the object in (3) is ambiguous between
2sg and 2pl because the plural marker -a·w which
would make it unambiguous is suppressed in the
presence of -enaw. I call the suppression of af-
fixes in the presence of affixes of the same type
”hierarchy-based competition” because in most
analyses (including mine) it is assumed that agree-
ment heads for subject and object ”compete” for
realization by a certain affix class and promi-
nence hierarchies such as 1st > 3rd person deter-
mine which head ”wins”.

2.4 Direction Marking

The most notorious feature of Algonquian Inflec-
tion is ”direction” marking in transitive verbs: If
the subject is higher on a prominence hierarchy

than the object, a direct marker (-a· in (2a)) ap-
pears, if the object is higher an inverse marker
appears (-eko in (2b)). The relevant hierarchy for
Menominee hence contains the ranking 1st/2nd per-
son > 3rd person, but is actually much complexer
as is shown in (4):

(4)

{
[+2]
[+1]

}
>[-spec] > prox > obv > [-an]

prox(imate)/obv(iative) is a special distinction
for all 3rd person arguments in Algonquian lan-
guages, where proximate corresponds roughly
to topic-hood and obviative to non-topic-hood.
[-spec] stands for an unspecified subject which in-
duces passive-like semantics but is morphologi-
cally marked as a transitive subject. As is obvious
from (2), direction marking is intimately related to
hierarchy-based competition, and my analysis will
actually treat it as special case of hierarchy-based
competition.

2.5 Affix Order

Apart from mutual exclusiveness the content of af-
fixes also determines the order of affixes which is
roughly as follows:

(5) Clitics > stem > Direct/Inverse > [+/-3] >
[+/-1pl] > proximate pl/obviative

Interestingly, this corresponds closely to the or-
der predicted for agreement affixes by the OT-
account in Trommer (2003) where person gener-
ally precedes number agreement.

3 An OT-Account

The model of the grammar I assume is a non-
conservative extension of the framework devel-
oped in Trommer (1999). The relevant constraints
are described and justified on the basis of crosslin-
guistic evidence in Trommer (2002) and Trommer
(2003).

With Halle and Marantz (1993) I assume that
Morphology is an independent module of the
grammar which interprets the output of syntax,
where syntax operates on bundles of morphosyn-
tactic features without phonological content. Thus
for the form in (2a), syntax generates the string in
(6):

(6) [+v]1 [+2 +nom +pl]2 [+3 +acc -pl]3

The morphology component provides a lexicon
Lex of vocabulary items (VIs). Each VI consists
of a phonological string and a set of feature struc-
tures (FSs) each bearing a unique index and spec-
ifying morphosyntactic content. (7) lists some rel-
evant lexical VIs for the input in (6). For lexical
VIs Indices are always zero, and therefore not rep-
resented here, they become only relevant for VIs
which are used in word forms.

(7) a. ke: [+cl+2]
b. na·n: [+v]
c. w: [+3]
d. a·: [+Nom +an][+Acc]
e. ek: [+Nom][+Acc +an]
f. m: [-3]
g. a·w: [-1+pl]

Based on Lex, morphology maps an input (such
as (6)) to a string of VIs as in (8):

(8) ke: [+cl+2]2

na·n: [+v]1

a·: [+Nom +an]2[+Acc]3

w: [+3]3

wa ·w: [-1+pl]2

According to the principles of Optimality The-
ory (Prince and Smolensky, 1993), a grammar
consist of a generator GEN, a function which
maps an input to an infinite set of candidates,
and a language-specific ranking of a set of uni-
versal constraints. I assume that the morphol-
ogy module is just such a grammar enriched by
a language-specific VI lexicon Lex. In the fol-
lowing subsections, I will lay out the characteris-
tics of morphological GEN, and of the basic con-
straint types I assume. I will show how these con-
straints account for the phenomena described in
section 2. Note that the indices of FSs in VIs allow
two-level constraints as in Correspondence Theory
(CT, McCarthy and Prince, 1995), but the coindex-
ing mechanisms and the constraints referring to in-
dices are formally different from the mechanisms
in phonological CT to mirror the special properties
of inflectional morphology.

3.1 GEN

I will call two VIs index siblings, if they are iden-
tical apart from the indices of their feature struc-
tures. A VI V is licensed in a language L by a
syntactic input string I = F1 . . . Fn iff it is an in-
dex sibling to some VI in Lex(L), and satisfies the
following conditions:

1. For all indices i of FSs in V : 1 ≤ i ≤ n

2. For all feature structures F′
j in V :F ′

j � Fj

(Fj subsumes the input FS with which it is
coindexed)

Now GEN can be defined as follows:

(9) GEN maps an Input I in a language L to
the set of all strings consisting exclusively
from VIs which are licensed by I in L.

These conditions ensure that only features from
the input are present in the output VIs (hence no
morphological constraint can enforce the appear-
ance of additional features in the output) and that
each feature structure in the output corresponds to
exactly one head in the input (however a VI might
have different FSs corresponding to different input
FSs). Crucially, nothing excludes the possibility
that more than one VI corresponds to an input FS.
Hence this definition of GEN in principle allows
the phenomenon of multiple exponence (section
2.1). Since FSs in VIs need not be identical to the
corresponding input FSs, infidelity (section 2.2) is
possible if FSs in VIs do not specify grammatical
role or case ([+Nom] and [+Acc] in the examples.

3.2 Alignment

Alignment constraints require that a specified item
is maximally close to a specified border. This is
the standard constraint type in OT to account for
affix order. Following Trommer (2003), I as-
sume that morphological alignment is only sen-
sitive to whether a VI is simple (contains only
one feature structure) or complex (contains more
than one feature structure), and to the content of
its morphosyntactic feature structures, and further
that all morphologic alignment constraints refer to
the edges of the word form. Hence we get the for-
mat in (10)

(10) ALIGN(F, E, C): Count a constraint vio-
lation for each VI that intervenes between
the designated edge E (left or right) of the
word form and the most remote VI of com-
plexity C (simple or complex) which con-
tains a FS subsumed by F .

Since alignment constraints refer to absolute
edges, I write them iconically as follows:

(11) [+pl]simple ➪ R ALIGN([+pl],right, simple)
L

➪

[]complex ALIGN([],left, complex)

I usually omit the subscript ”simple” since most
constraints refer to simple VIs. (12) shows
alignment constraints in action with example (1)
po·se-w-ak, ‘they embark’, i.e., for the input
[+v]1 [+Nom +3 +pl]2:

(12) po·se:[+v]1 w:[+3]2 ak:[+pl]2

[+v] [3] [+pl]
L

➪

L

➪

➪ R

☞ po·se-w-ak *
po·se-ak-w **! *
w-po·se-ak *!
w-ak-po·se *! *
ak-po·se-w *! ** **
ak-w-po·se *!* * **

A crucial advantage of the alignment-based ap-
proach to affix order is that it allows to use
crosslinguistically attested ordering principles to
account for the specific affix order in single lan-
guages. Thus Trommer (2003) shows in detail that
person crosslinguistically tends to align to the left
word edge (reflected here in L

➪

[3]) while num-
ber tends to align to the right edge (reflected by
[+pl] ➪ R).

3.3 COHERENCE

As alignment, coherence constraints are primar-
ily motivated by their effects on affix order (see
Trommer, 2002, for discussion). Intuitively they
state for specific affix classes that ”together should
stand, what together belongs”, i.e. affixes corre-
sponding to the same syntactic head should not be
interrupted by affixes belonging to another head.
A definition of the constraint type effecting this is
given in (13). Note that a VI is said to contain an

index i if it contains a FS with index i. A match-
ing VI for the constraint is a VI of complexity C
(simple or complex) that contains a FS subsumed
by F .

(13) COHERENCE(F, C) : Count a constraint
violation for each matching VI V contain-
ing index i preceded by another matching
VI V ′ containing index j such that i �= j
and there is no matching VI V ′′ between
V ′ and V .

Crucially for Menominee, the formulation in (13)
has the side effect that highranked COHERENCE
constraints block more than one affix of the same
type. Thus COH(ERENCE)([3],simple) disallows
more than one affix simple VI specifying third per-
son:2

(14) [+v]1 [+2 +nom +pl]2 [+3 +acc -pl]3

COH([3])

-m [-3]2 -w [+3]3 *!
☞ -m [-3]2

☞ -w [+3]3

Thus COHERENCE gives as one half of an ac-
count for hierarchy-based competition. It allows
to capture the restriction to one argument for spe-
cific affix classes.

3.4 PARSE F

PARSE F captures the intuition that output VIs
should realize as many input features as possible:

(15) PARSE F: Count a constraint violation
for each feature token FI in a input FS
FSI which is not realized by a type-
identical feature token FO in an output FS
FSO coindexed with FSI .

(16) shows how this works for the example in (1):

(16) po·se:[+v]1 w:[+3]2 ak:[+prox +pl]2

PARSE F

☞ po·se-w-ak
po·se-ak *!
po·se-w *!*
po·se *!**

2”[3]” subsumes ”[+3]” and ”[-3]”.

3.5 Relativized PARSE

While PARSE F treats all features equal,
hierarchy-based competition requires formal
means to stipulate that features of more promi-
nent arguments are realized in the context of less
prominent ones. This is achieved by constraints
which demand the realization of a feature in the
context of a less prominent one in the input.

(17) PARSE FFT/FC

: If the input has exactly
one FS FS1 such that F,FT � FS1 and
one FS FS2 such that FC � FS2, then
count one constraint violation if F does not
subsume a FS in the output coindexed with
FS1. Otherwise count no violation.

Thus PRS [3][+an]/[-an] requires that the feature [3]
(i.e., [+3] or [-3]) of an animate ([+an]) argument
should be realized if there is also an inanimate ar-
gument in the input. This captures the fact that
m:[-3] ”wins” in hierarchy-based competition over
w:[+3] if the [+3] argument is [-an] (w:[+3] wins
if if it is [+an]). (18) shows how this guarantees
a unique output for the example in (14) ([+/-an]
added):

(18) [+v]1 [+2+an+nom+pl]2 [+3-an+acc-pl]3

COH PRS
[3] [3][+an]/[-an]

-m [-3]2 -w [+3]3 *!
☞ -m [-3]2

-w [+3]3 *!

Relativized PARSE constraints also account
for direction marking given the VIs for
direct (a·:[+Nom +an][+Acc]) and inverse
(ek:[+Nom][+Acc +an]) markers from (7). The
following tableaus demonstrate the computation
of the correct marker in the examples of (2):

(19) Input: [+Nom+2+an+pl]1 [+Acc+3+an-
pl]2

PARSE
[+an][+2]/[+3]

☞ [+Nom+an]1 [+Acc]2
[+Nom]1 [+Acc+an]2 *!

(20) Input: [+Nom+3+an-pl]1
[+Acc+2+an+pl]2

PARSE
[+an][+2]/[+3]

[+Nom+an]1 [+Acc]2 *!
☞ [+Nom]1 [+Acc+an]2

Note the crucial importance of coindexing here:
Both VIs specify the same features, but to satisfy
the PARSE constraint [+an] must appear in a FS
coindexed with the relevant input FS.

4 The Finite-State Implementation

The implementation covers the complete verb
paradigms for 4 basic verb types (intransitive
verbs with animate/inanimate subject and transi-
tive verbs with animate/inanimate objects).

It is designed to test the OT-analysis presented
in section 3 for correctness. While many as-
pects of Menominee inflection (such as affix or-
der) could be implemented in a more efficient way
by finite-state machines (FSMs), this is dismissed
to model closely the linguistically motivated anal-
ysis. The implementation is based on my own C
implementation of basic finite-state machines and
operations such as intersection union and the algo-
rithms in Ellison (1994) and Karttunen (1998). As
an alphabet for the FSMs I use finite sets of VIs
usually augmented by some atomic symbol such
as ”*” (to represent constraint violations). Arcs in
FSMs are labeled by single symbols (usually VIs)
or by predicates conjoined by logical operators (cf.
Eisner, 1997). In departure from the cited litera-
ture I use output structures which are coindexed
with the input FSs integrating an adapted version
of correspondence theory (McCarthy and Prince,
1995).

Since some constraints refer to indices to cap-
ture input-output relations, their application uses
dynamically created FSMs. In other words to ap-
ply a constraint a new FSM is created according
to the respective input and then used to compute
the new candidate set. Thus constraints are imple-
mented as filters which map regular sets and in-
puts (i.e., strings of FSs) to regular sets while GEN
takes inputs and the VI lexicon Lex and maps it to
the candidate set in form of a FSA. Thus a con-

straint ranking F1 . . . Fn and an input I are evalu-
ated as follows:

(21) Fn(I ,. . . F2(I ,F1(Gen(I ,Lex))))

4.1 GEN

Since the VI lexicon Lex(L) and the set of in-
dices in a given input I are finite, a simple function
enumerate(I, L) returns the set of VIs licensed
by I in L. Now GEN is simply the Kleene clo-
sure for enumerate(I, L). For example, the input
[+v]1 [+Nom +3]2 [+Acc +3]3 along with the lexi-
con in (7) results in the following automaton:

(22)

0

w:[+3]

w:[+3]

naan:[+v]1

2

3

Note that some VIs from the lexicon are not
represented in the automaton since they are not li-
censed by the input.

4.2 Alignment

Notice that my version of alignment is not equiv-
alent to Generalized Alignment (McCarthy and
Prince, 1993) which can not be captured by finite-
state devices since it refers to potentially multiple
edges and constraint targets (Eisner, 1997). In the
formulation of alignment in 3.2, each constraint
has a unique edge (the left or right word edge) and
a unique target to be aligned (the most remote item
identified by the constraint) and can be captured
by FSMs.

A left alignment constraint ALIGN(F, left, C)
is implemented by a finite state transducer of the
form in (23), where ”*” denotes one and ”0” no
constraint violation:

(23)

0

1ANY/*

2ANY/0

ANY/*

C &
SUB:F/0

~(C &
SUB:F)/0

Complexity parameters (C: simple and com-
plex) are also used as predicates in FSMs. SUB:F
accepts every VI that contains a FS subsumed by

the FS F, ”&” indicates logical conjunction and
”˜” negation. The transition from state ➁ to itself
hence matches only VIs which are not of complex-
ity C or do not subsume F. (23) accepts two types
of strings 1) those which do not contain an appro-
priate F in any but the first VI. These are matched
by direct traversion from the start state to state ➁.
and possibly following traversions from ➁ to it-
self. 2) strings which contain at least one appropri-
ate F in a VI after the first one. The transition from
➀ to ➁ matches the last such VI. Hence all transi-
tions from the start state to ➀ and on ➀ induce a
constraint violation. Next shows the instantiation
for ALIGN([3],left, simple):

(24)

0

1ANY/*

2ANY/0

ANY/*

SIMPLE &
SUB:[3]/0

~(SIMPLE &
SUB:[3])/0

Alignment constraints for the right edge are even
simpler than the leftwards variant, and have the
general form in (25):

(25)

0

~(C &
SUB:F)/0

1

C &
SUB F/0

ANY/*

Strings without appropriate alignment target
are completely consumed on the start state, the
transition from the start state to ➀ matches the
first alignment target (if any). All following VIs
(matched by transitions on ➀) separate the first
target from the right edge and hence induce con-
straint violations. Both types of alignment con-
straints are evaluated according to the algorithms
in Ellison (1994).

4.3 COHERENCE

As GEN, COHERENCE is not implemented by a
static FSM but by automata created dynamically
for a given input. For reasons of space I show here
only the algorithm for simple VIs. First, all in-
dices of FSs from the input I which subsume the
constraint FS are collected in the list L:

(26) COLLECT INDICES(I, F)

L← []; for all FS in I:
if F � FS: insert index(FS) in L

Now a transducer is created where each index
from L corresponds to a state, and simple VIs with
this index lead always to a transition to the corre-
sponding state.

(27) COH AUT(L,F)

Create a start state 0
Create transition: 0 − ˜IND:L:F/0→ 0
for all i in L

Create final state i
Create transition:

0 − IND:i:F/0→ i
Create transition:

i − ˜IND:i (L \ i):F/0→ i
for all j in L �= i:

Create transition: i − IND:j:F/∗ → j

IND i1 . . . in:F is a predicate which matches all
simple VIs with FSs subsumed by F and bear-
ing an index i1 ≤ k ≤ in. ”(L \ i)” denotes
the list L with all instances of i removed. (28)
shows the resulting transducer for the constraint
COHERENCE([3], simple) and the input in (6):

(28)

0

~IND:2,3:[3]/0
3IND:3:[3]/0

2

IND:2:[3]/0

~IND:2:[3]/0
IND:2:[3]/*

IND:3:[3]/*

~IND:3:[3]/0

Again this transducer is evaluated according to El-
lison (1994).

4.4 Relativized PARSE

Relativized PARSE constraints such as
PARSE FFT /FC

are implemented by the algo-
rithm in (29), where C is the current candidate set
and I = i1 . . . in the input. The first four lines
collect indices corresponding to FT and FC in
two lists. If both lists have length 1 (line 5), for
the input FS which matches the target feature FT

and F the feature to be realized, an automaton is
generated which requires that F is realized in the
output corresponding to (i.e, with the index) of

the respective input FS.

(29) Evaluation Algorithm for PARSE FFT /FC

LT ← []; LC ← []
for j ← 1 to n

if F,FT � ij : insert j in LT

if FC � ij : insert j in LC

if length(LC) = length(LT) = 1
C’ = PARSE AUT(first(LT),F) ∩ C
if C’ �= Ø

C ← C ′

The three last lines are inspired by priority union
as developed in Karttunen (1998)3: The result of
intersection is only used as the new candidate set,
if this does not lead to an empty candidate set.

PARSE AUT(j, F) is defined as the following
automaton, which accepts every string that real-
izes the FS F by at least one FS with index j:

(30)

0

ANY

1
REALIZE(i,F)

ANY

For PARSE [3][+an]/[-an] and the input in (18) we get:

(31)

0

ANY

1
REALIZE(2,[3])

ANY

4.5 PARSE F

PARSE F is the most problematic constraint type
discussed here since it does not count local con-
straint violations in the output, but computes how
many input features are realized in the output.
However PARSE F has a convenient property
which I will call extensional conservativity that
can be exploited for an implementation.

(32) A constraint is extensionally conservative
if for any two candidates such that C =
CACE = C ′

AV C ′
E and C ′ = CAVCE ,

C and C′ induce the same number of

3In contrast to priority union the algorithm here is based
on intersection, of automata, not on composition of transduc-
ers.

constraint violations (for CA, CE , C ′
A, C ′

E

strings and V a VI).

In other words, for an extensionally conserva-
tive constraint candidates differing from a candi-
date C only by ”repeating” at some place one VI
already present in C are just as harmonic as C .
PARSE F is extensionally conservative since by
adding a VI that is already present no additional
features are realized which are not already real-
ized by the base form. Expressing features twice
does neither improve nor downgrade feature real-
ization. By transitivity all extensions of a form
(i.e., all forms which can be built from an other
form by adding an arbitrary number of VIs al-
ready present in the form) are equally optimal as
the form itself.

Now conceive of the current candidate set as a
regular expression (RE) RE1 using only concate-
nation, disjunction the Kleene star ”*” and ”?”
for optionality. If we replace all occurrences of
”*” in RE1 by ”?” we get an expression RE2 =
Truncate(RE1) which denotes a subset of the
strings denoted by RE1 such that for each string
S1 in (RE1 − RE2) there is at least one string
S2 in RE2 such that S1 is an extension of S2.
From this and the fact that PARSE F is extension-
ally conservative it follows that each string in RE1

which is optimal for PARSE F is the extension of
a string in RE2 which is also optimal for this con-
straint. Conversely, if a string in R2 is optimal
for PARSE F, then all its extensions in RE1 are
also optimal. Thus to find the (potentially infi-
nite) set of optimal candidates in RE1, we only
need to determine the (finite) set of optimal candi-
dates in RE2 Optimal(RE2), create the set of all
its extensions Ext(Optimal(RE2)) and intersect
it with R1. Here is a summary of the procedure
Evaluate(PARSE F,R). R stands for an arbi-
trary RE and FR for a RE denoting a finite set.

1. Truncate(R): Return a copy of R with all oc-
currences of ”*” replaced by ”?”.

2. Optimal(FR): Return a RE denoting all can-
didates from FR which are optimal for
PARSE F.

3. Ext(FR): Return a RE which contains the
set of all extensions of strings in FR =

(C1|C2| . . . |Cn). Return R′ which is formed
by replacing each VI V in each candidate
Ci, 1 ≤ i ≤ n by ”. ∗ V .∗”.

4. Evaluate(PARSE F, R): Return
R ∩ Ext(Optimal(Truncate(R)))

References

Bloomfield, L. (1962). The Menomini Language.
New Haven: Yale University Press.

Eisner, J. (1997). Efficient generation in primitive
Optimality Theory. In ACL’97.

Ellison, T. M. (1994). Phonological derivation
in Optimality Theory. In COLING ’94, pages
1007–1013.

Halle, M. and Marantz, A. (1993). Distributed
Morphology and the pieces of inflection. In
Hale, K. and Keyser, S. J., editors, The View
from Building 20, pages 111–176. Cambridge
MA: MIT Press.

Karttunen, L. (1998). The proper treatment of op-
timality in computational phonology. In Pro-
ceedings of FSMNLP’98.

McCarthy, J. and Prince, A. (1993). Generalized
alignment. Yearbook of Morphology, pages 79–
153.

McCarthy, J. and Prince, A. (1995). Faithful-
ness and reduplicative identity. University of
Massachusetts Occasional Papers in Linguis-
tics, pages 249–384.

Prince, A. and Smolensky, P. (1993). Optimal-
ity theory: Constraint interaction in generative
grammar. Technical reports of the Rutgers Uni-
versity Center of Cognitive Science.

Trommer, J. (1999). Generation and parsing in
OT-based morphology. In Proceedings of 5th
Formal Grammar Conference, Utrecht, August,
1999.

Trommer, J. (2002). Hierarchy-based competi-
tion. Ms., available under http://www.ling.uni-
osnabrueck.de/trommer/hbc.pdf.

Trommer, J. (2003). The interaction of morphol-
ogy and syntax in affix order. In Booij, G. and
van der Marle, J., editors, Yearbook of Morphol-
ogy 2002, pages 283–324. Dordrecht: Kluwer.

