Weight vs. weight, tone vs. tone: Affix blocking in featural affixation systems

Jochen Trommer
jtrommer@uni-leipzig.de

Department of Linguistics
University of Leipzig

LAGB - September 18 2015

Featural Affixation: The Dinka Benefactive (Andersen 1995a)

a. \(\text{tè}:\text{t} \Rightarrow \text{tè}:\text{t} \) ‘dust:B’ \(\text{L} \Rightarrow \text{F} \) (HL)

b. \(\text{lè}:\text{r} \Rightarrow \text{lè}:\text{r} \) ‘roll:B’

c. \(\text{tè}:\text{m} \Rightarrow \text{tè}:\text{m} \) ‘cut:CP’ \(\text{H} \Rightarrow \text{H} \)

d. \(\text{wè}:\text{c} \Rightarrow \text{wè}:\text{c} \) ‘kick:CP’

Nonsegmental Blocking in Leggbó (Hyman 2013:332-333)

Irrealis ≻ Negative ≻ Habitual ≻ Other

L-L/M-L H-M/M-M L-L/M-L

Blocking in Segmental Affixation: Guaraní (Gregores & Suárez 1967)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-</td>
<td>ro-</td>
<td></td>
</tr>
<tr>
<td>re-</td>
<td>pe-</td>
<td></td>
</tr>
<tr>
<td>o-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1sg</th>
<th>1pl</th>
<th>2sg</th>
<th>2pl</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>je-</td>
<td>ore-</td>
<td>po-</td>
<td>a-</td>
<td>ro-</td>
</tr>
<tr>
<td>re-</td>
<td>pe-</td>
<td>o-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transitive Abs.

Nom.

<table>
<thead>
<tr>
<th>1sg</th>
<th>1pl</th>
<th>2sg</th>
<th>2pl</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ro-</td>
<td>pe-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>po-</td>
<td>a-</td>
<td>re-</td>
<td>pe-</td>
<td>o-</td>
</tr>
</tbody>
</table>
Segmental+Tonal Blocking (Jumjum Agreement)

<table>
<thead>
<tr>
<th></th>
<th>1sg</th>
<th>2sg</th>
<th>3</th>
<th>1di</th>
<th>1pi</th>
<th>1pe</th>
<th>2pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1sg wèeg-λ</td>
<td>-</td>
<td>-</td>
<td>-èn</td>
<td>-</td>
<td>-è</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2sg wèeg-λ</td>
<td>-já</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-jáñ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3sg wèek</td>
<td>-à</td>
<td>-èγ</td>
<td>-è</td>
<td>-í</td>
<td>-íñ</td>
<td>-è</td>
<td></td>
</tr>
<tr>
<td>1di</td>
<td>-</td>
<td>-</td>
<td>-ì</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1pi wèek-i</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1pe wèek-in</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2pl wèeg-è</td>
<td>-gá</td>
<td>-gí</td>
<td>-gá</td>
<td>-gí</td>
<td>-gí</td>
<td>-gá</td>
<td>-gè</td>
</tr>
</tbody>
</table>

Jumjum Tone Agreement

<table>
<thead>
<tr>
<th>1SG</th>
<th>2SG</th>
<th>3</th>
<th>1DI</th>
<th>1PI</th>
<th>1PE</th>
<th>2PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SG</td>
<td>H</td>
<td>-</td>
<td>- (H)</td>
<td>H</td>
<td>-L</td>
<td>-</td>
</tr>
<tr>
<td>2SG</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>-</td>
</tr>
<tr>
<td>3SG</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L-</td>
<td>H</td>
<td>L-</td>
</tr>
<tr>
<td>1DI</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>-L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1PI</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>-L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1PE</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>-L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2PL</td>
<td>H</td>
<td>L</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>-L</td>
</tr>
<tr>
<td>3PL</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Complex Nonsegmental Affixation (Dinka Centripetal)

1. **Lengthening** (Andersen 1995b:9,28)
 a. wèc ⇒ wèc ‘kick:CP’ V ⇒ V:
 b. tèŋ ⇒ tèŋ ‘dust:CP’ V ⇒ V:
2. **L-Tone Shift** (Andersen 1995b:9,28-29)
 a. tèŋ ⇒ tèŋ ‘dust:CP’ L ⇒ L
 b. tè:m ⇒ tè:m ‘cut:CP’ H ⇒ L
3. **Breathy Shift** (Andersen 1995b:9,10,28,35-36)
 a. bòk ⇒ bòk ‘throw:CP’ V ⇒ V
 b. pìk ⇒ pìk ‘push:CP’ V ⇒ V

Complex Nonsegmental Affixation (Dinka NTS)

4. **Lengthening** (Andersen 1995b:18,28)
 a. wèc ⇒ wèc ‘kick:NTS’ V ⇒ V:
 b. tèŋ ⇒ tèŋ ‘dust:NTS’ V ⇒ V:
5. **Shift to H-Tone** (Andersen 1995b:9,28-29)
 a. tè:m ⇒ tè:m ‘cut:NTS’ H ⇒ H
 b. tèŋ ⇒ tèŋ ‘cut:NTS’ L ⇒ H
6. **No Breathy Shift** (Andersen 1995b:18,28,35-36)
 a. pìk ⇒ pìk ‘push:NTS’ V ⇒ V
 b. wèc ⇒ wèc ‘kick:NTS’ V ⇒ V

(Andersen 2004)
Basic Claims of this Talk

- Featural affix blocking (in Dinka) is phonological
- The only necessary reference to morphological information are morphological colors (boundaries) and strata
- Featural affixes at different autosegmental tiers interact independently

Dinka

- Western Nilotic language of the Dinka-Nuer sub-branch
- spoken by more than 2.000.000 speakers in Southern Sudan
- Rich non-concatenative morphology crowded on monosyllabic stems (tone, vowel quality, segmental features of Cs, length)
- All data in this talk from the detailed paper by Anderson (1985)
Dinka Phonology

- Complex two-tone system (systematically neglected here)
- Three-way vowel-length contrast: V, Vː, Vːː
- Canonical shape of lexical roots: (C)VC
 Canonical shape of suffixes: -(C)V or subsegmental
Intro

Theoretical Assumptions

<table>
<thead>
<tr>
<th>Morphological association relations</th>
<th>Epenthetic association relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>phonetically visible:</td>
<td>phonetically invisible:</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Representation of Association
(Zimmermann & Trommer 2011)

Axiom of Phonetic Visibility
(Zimmermann & Trommer 2011)

A phonological node is visible to phonetics if and only if it is dominated by the designated ancestor node of the structure through an uninterrupted path of phonetic association lines.

The Cloning Hypothesis

Every markedness constraint exists in 2 incarnations:

- The **general clone** refers to all structure in I

- The **phonetic clone** refers only to structure in P

(cf. Doubling in Correspondence Theory, McCarthy & Prince 1995)

The Morphology-Syntax Interface

The Concatenativist Hypothesis

Morphological Exponence = Concatenation + Phonological Alternations

The Color Map Hypothesis:

Morphological color is the only morphological information visible to phonological constraints.
The Color Map Hypothesis

Representation of the Benefactive Affix

\[\text{Benefactive} \leftrightarrow H^- \oplus \mu^- \oplus -\mu \oplus \ldots \]
Dinka Length Morphology

Central Phenomena:
- Morphologically distinctive additive and templatic lengthening
- Blocking of cumulative lengthening

Analysis (Trommer 2011)
- Additive lengthening is mora suffixation (-µ)
- Templatic lengthening is mora circumfixation (µ- -µ)
- Cumulative lengthening is blocked by a constraint against morphophonological complexity

Additive Lengthening in the 3SG (Andersen 1995:16,28)

\[V \Rightarrow V: \]
\[V: \Rightarrow V:: \]

a. \(wèc \Rightarrow wèc \) ‘kick:3SG’
\(tèŋ \Rightarrow tèŋ \) ‘dust:3SG’

b. \(lèr \Rightarrow lè:r \) ‘roll:3SG’
\(mìt \Rightarrow mì:t \) ‘pull:3SG’

Additive Lengthening in the Centrifugal (Andersen 1995:16,28)

\[V \Rightarrow V: \]
\[V: \Rightarrow V:: \]

a. \(wèc \Rightarrow wèc \) ‘kick:CF’
\(tèŋ \Rightarrow tèŋ \) ‘dust:CF’

b. \(lèr \Rightarrow lè:r \) ‘roll:CF’
\(mìt \Rightarrow mì:t \) ‘pull:CF’

Morphological Exponents

a. 3SG \(\leftrightarrow -µ \)

b. Centrifugal \(\leftrightarrow -µ \)
Primitive Constraints on Autosegmental Association

- a. Assign * to every mora which does not dominate at least 1 segmental root node in I
- b. Assign * to every mora which is not dominated by at least 1 σ-node in I

Faithfulness Constraints on Autosegmental Association

- a. Assign * to every pair of nodes which is associated in M but is not associated in P
- b. Assign * to every pair of nodes which is associated in P but is not associated in M

1µ-Suffixation to 1µ-Base (Centrifugal)

<table>
<thead>
<tr>
<th>Input: = b.</th>
<th>σ</th>
<th>μ</th>
<th>μ</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. V</td>
<td>σ</td>
<td>μ</td>
<td>-μ</td>
<td>**</td>
</tr>
<tr>
<td>b. V</td>
<td>σ</td>
<td>μ</td>
<td>-μ</td>
<td>!</td>
</tr>
</tbody>
</table>

1µ-Suffixation to 2µ-Base (Centrifugal)

<table>
<thead>
<tr>
<th>Input: = b.</th>
<th>σ</th>
<th>μ</th>
<th>μ</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. V</td>
<td>σ</td>
<td>μ</td>
<td>μ</td>
<td>!</td>
</tr>
<tr>
<td>b. V</td>
<td>σ</td>
<td>μ</td>
<td>μ</td>
<td>!</td>
</tr>
</tbody>
</table>
Additive 2-µ-Lengthening in the Causative/Frequentative

\[V \Rightarrow V:: \]

a. bôk \(\Rightarrow \) bôːk 'throw:FQ'

b. dêk \(\Rightarrow \) dêːk 'drink:CAUS'

(Andersen 1995:37-38)

2µ-Suffixation to 1µ-Base (Causative)

Prediction: Cumulative Lengthening by Suffixation

\[V \Rightarrow V:: \]

a. wèc \(+ \) µ CF \(+ \) µ 3SG \(\Rightarrow \) wèːc (*wèːc) 'kick:3SG:CF'

b. lèːr \(+ \) µ CF \(+ \) µ 3SG \(\Rightarrow \) lèːːr (*lèːːr) 'roll:3SG:CF'

(V::)

(Andersen 1995:16,28)

Blocking of Cumulative Lengthening (Centrifugal + 3SG)

\[V \Rightarrow V:: \]

a. wèc \(+ \) µ CF \(+ \) µ 3SG \(\Rightarrow \) wèːc (*wèːc) 'kick:3SG:CF'

b. lèːr \(+ \) µ CF \(+ \) µ 3SG \(\Rightarrow \) lèːːr (*lèːːr) 'roll:3SG:CF'

(V::)

(Andersen 1995:16,28)
Constraints on Moraic Binarity

a. $*V^{3\mu}$ Assign $*$ to every V-node which is dominated by more than two moras in I

b. $*\sigma^{3\mu}$ Assign $*$ to every σ-node which dominates more than two moras in I

Blocking of Cumulative Lengthening

(Centrifugal + 3SG)

<table>
<thead>
<tr>
<th>Input: $= c.$</th>
<th>$*V^{3\sigma}$</th>
<th>$*\sigma^{3\sigma}$</th>
<th>$\sigma \uparrow \mu$</th>
<th>$\mu \downarrow$</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. σ</td>
<td>$\downarrow \mu$</td>
<td>$\downarrow \mu$</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>b. σ</td>
<td>$\downarrow \mu$</td>
<td>$\downarrow \mu$</td>
<td>$\downarrow \mu$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>c. V</td>
<td>$\uparrow \mu$</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

Constraints on Chromatic Binarity

a. $*V^{3\sigma}$ Assign $*$ to every V which is dominated by (moras of) more than two colors in I

b. $*\sigma^{3\sigma}$ Assign $*$ to every σ-node which dominates (moras of) more than two colors in I

Templatic Lengthening
Templatic Lengthening in the Benefactive (Andersen 1995:16,28)

V ⇒ V:

a. wéc ⇒ wéːc 'kick:BEN'
 tèːj ⇒ tēːj 'dust:BEN'

V: ⇒ V:

b. lèːr ⇒ lēːr *lēː:r 'roll:BEN'
 mìːt ⇒ mǐːt *mǐː:t 'pull:BEN'

Moraic Representation of the Benefactive Exponent

BEN ↔ µ- -µ

Chromatic µ-Contiguity

□Contiguity_µ:
Assign * to every triple of µ-nodes (M₁,M₂,M₃) such that:
(i) M₁ ≺ M₂ ≺ M₃ and
(ii) Color(M₁) = Color(M₃) ≠ Color(M₂) in P

(cf. Landman 2003 on Chromatic Contiguity for Segments)
Overwriting by Circumfixation (Benefactive)

<table>
<thead>
<tr>
<th>Input: = c.</th>
<th>CONT</th>
<th>σ</th>
<th>μ</th>
<th>DEP</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>= c.</td>
<td>CONT</td>
<td>σ</td>
<td>μ</td>
<td>DEP</td>
<td>MAX</td>
</tr>
<tr>
<td>= c.</td>
<td>CONT</td>
<td>σ</td>
<td>μ</td>
<td>DEP</td>
<td>MAX</td>
</tr>
<tr>
<td>= c.</td>
<td>CONT</td>
<td>σ</td>
<td>μ</td>
<td>DEP</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Benefactive 3SG Forms (Andersen 1995:16, 28)

a. tèŋ ⇒ tè:ŋ 'dust:BEN'
tèŋ ⇒ tè:ŋ 'dust:3SG'
tèŋ ⇒ tè:ŋ *tè::ŋ 'dust:BEN:3SG'
b. mít ⇒ mǐːt 'pull:BEN'
mít ⇒ mǐːt 'pull:3SG'
mít ⇒ mǐːt *mǐ::t 'pull:BEN:3SG'
Verbal Tone in Dinka

<table>
<thead>
<tr>
<th></th>
<th>CVC/H</th>
<th></th>
<th>CVC/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø B CP BAP AP</td>
<td>Ø B CP BAP AP</td>
<td></td>
</tr>
<tr>
<td>FIN</td>
<td>L H L F F</td>
<td>FIN</td>
<td>L F L F F</td>
</tr>
<tr>
<td>1/3S</td>
<td>L H L F F</td>
<td>1/3S</td>
<td>L F L F F</td>
</tr>
<tr>
<td>PL</td>
<td>H H L F F</td>
<td>PL</td>
<td>H F L F F</td>
</tr>
<tr>
<td>NF</td>
<td>F H L F L</td>
<td>NF</td>
<td>L F L F F</td>
</tr>
<tr>
<td>NTS</td>
<td>H H H H H</td>
<td>NTS</td>
<td>H H H H H</td>
</tr>
<tr>
<td>CT</td>
<td>F F F F F</td>
<td>CT</td>
<td>F F F F F</td>
</tr>
<tr>
<td>PAS</td>
<td>H F F F F</td>
<td>PAS</td>
<td>H F F F F</td>
</tr>
<tr>
<td>2SG</td>
<td>L L H L L</td>
<td>2SG</td>
<td>L L H L L</td>
</tr>
</tbody>
</table>

Observations
- No paradigm cell consistently shows the underlying form of a verb.
- Tonal affixation is either fully replacive or additive.
- Tonal affixes don’t cumulate: Every verb expones maximally 1 τ-affix.
- Three morphophonological types of affixes:
 - Outer Inflection: blocks all other tonal inflection
 - Derivational affixes: block inner inflection
 - Inner Inflection: Only emerges in verbs with no other tonal morphology.

Analysis
- Stratal OT: Derivation and Inner Inflection are Stem-Level. Outer Inflection is Word-Level.
- Blocking between Stem-Level tones works simultaneously and in parallel to μ-blocking in length affixation.
- Stem-Level Tone overwrites lexical tone. Word-Level tone overwrites Stem-Level tone.
Stem-Level Tone (Andersen 1995a, Trommer 2011)

<table>
<thead>
<tr>
<th></th>
<th>CVC/H</th>
<th></th>
<th>CVC/L</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN</td>
<td>L H L F</td>
<td>FIN</td>
<td>L F L F</td>
<td></td>
</tr>
<tr>
<td>1/3S</td>
<td>L H L F</td>
<td>1/3S</td>
<td>L F L F</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>H H L F</td>
<td>PL</td>
<td>H F L F</td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>F H L F</td>
<td>NF</td>
<td>L F L F</td>
<td></td>
</tr>
</tbody>
</table>

Additive Tone: Benefactive

\[(7)\] Lexical H

\[\text{Input: } = b. \hspace{1cm} \text{Max } | \hspace{1cm} \text{Dep} |\]
\[
\begin{array}{c|c|c|c}
\sigma & \uparrow & \tau & \text{max} \\
\hline
H & H & * & \ast \\
\end{array}
\]

\[\text{Input: } = b. \hspace{1cm} \text{Max } | \hspace{1cm} \text{Dep} |\]
\[
\begin{array}{c|c|c|c}
\sigma & \uparrow & \tau & \text{max} \\
\hline
H & L & * & \ast \\
\end{array}
\]

Overwriting Tone: 3SG

\[\text{Input: } = c. \hspace{1cm} \text{Max } | \hspace{1cm} \text{Dep} |\]
\[
\begin{array}{c|c|c|c}
\sigma & \uparrow & \tau & \text{max} \\
\hline
L & H & * & \ast \\
\end{array}
\]

Stem-Level: Blocking of Double Affixation

\[\text{Input: } = c. \hspace{1cm} \text{Max } | \hspace{1cm} \text{Dep} |\]
\[
\begin{array}{c|c|c|c}
\sigma & \uparrow & \tau & \text{max} \\
\hline
L & H & H & * \\
\end{array}
\]

L- ↔ 3SG \hspace{1cm} H- ↔ BEN
Stem-Level: Derivation Blocks Inner Inflection

<table>
<thead>
<tr>
<th>Input: = c.</th>
<th>NoSkip</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>L H H</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>a. σ</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. H</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>c. H</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

NoSkip: Assign * to every unassociated tone which intervenes between two tones associated to the same TBU

Word-Level: Outer Inflection Overwrites Derivation

<table>
<thead>
<tr>
<th>BEN</th>
<th>2SG</th>
<th>BEN:2SG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem Level</td>
<td>H</td>
<td>–</td>
</tr>
<tr>
<td>Word Level</td>
<td>–</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Intermediate Summary of the Analysis

- Blocking either by phonological competition at the Stem Level or by Overwriting at the Word Level
- Competition is resolved by purely phonological factors (and morphological colors/boundaries)
- ⇒ predicts that blocking at different phonological tiers is independent of blocking at other tiers
Alternatives

Morphological Competition and Resolution (Hyman 2013)

Irrealis \succ Negative \succ Habitual \succ Other
L-L/M-L H-M/M-M L-L/M-L

Problem: Crossover Exponence and Blocking

Alternatives

Crossover Exponence in Dinka (Andersen 1995a, Trommer 2011)

<table>
<thead>
<tr>
<th>Inflectional Category</th>
<th>Derivational Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>CP</td>
</tr>
<tr>
<td></td>
<td>CF</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>BAP</td>
</tr>
</tbody>
</table>

- **a. CVC/H**
 - FIN: L L L F
 - 1/3S: L H L F
 - PL: H H L F
 - NF: F H L F

- **b. CVC/L**
 - FIN: L F L F
 - 1/3S: L F L F
 - PL: H F L F
 - NF: L F L F

Segmental vs. Tonal Affixes

Crossover Blocking in Dinka (Andersen 1995a, Trommer 2011)

<table>
<thead>
<tr>
<th>Inflectional Category</th>
<th>Derivational Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>BAP</td>
</tr>
<tr>
<td></td>
<td>AP</td>
</tr>
</tbody>
</table>

- **a. CVC/H**
 - NTS: +µ +µ +µ +µ
 - CT: +µ +µ +µ +µ
 - 2SG: +µ +µ +µ +µ

- **b. CVC/L**
 - NTS: H H H H
 - CT: F F F F
 - 2SG: L L L L

Tonal vs. Length Affixation

Arbitrary Rule Blocks (Anderson 1992, Stump 2001)

(1) \(\mu - \mu \leftrightarrow \text{BEN} \)
(2) \(-\mu \leftrightarrow \text{CT}\)

(1) \(H- -L \leftrightarrow \text{CT}\)
(2) \(H- \leftrightarrow \text{BEN}\)

Problem: doesn’t capture the fact that:
- Tone blocks tone
- Length blocks length
- Affixes block affixes

but neither blocks necessarily the other ones

Cyclic Overwriting: Inkelas (2014) on Hausa

- Every affix induces a morphophonological cycle
 - Ventive: \(\text{LH } \text{fitá} \Rightarrow \text{H } \text{fit-ó}; \text{ ‘go out’}\)
 - Imperative: \(\text{H } \text{kwázná} \Rightarrow \text{LH } \text{kwázná}; \text{ ‘spend the night’}\)

- Outer construction (imperative) overwrites inner one (ventive):

Problem I: Blocked Cumulative Lengthening

<table>
<thead>
<tr>
<th>3SG</th>
<th>3SG:BEN</th>
<th>CF:3SG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>(\mu)</td>
<td>(\mu)</td>
</tr>
</tbody>
</table>

Due to locality (‘Bracket Erasure’) a \(\mu\)-adding operation cannot distinguish a simplex from a derived \(\mu\ \mu\)-base

Problem II: Blocking of two Additive Tones

Benefactive: \(H-\)
- a. \(\text{tēn} \Rightarrow \text{tēn}; \text{ ‘dust:B’} \ L \Rightarrow \text{F}\)
- b. \(\text{wēc} \Rightarrow \text{wēc}; \text{ ‘kick:B’} \ H \Rightarrow \text{H}\)

Nonfinite: \(-L\)
- a. \(\text{tēn} \Rightarrow \text{tēn}; \text{ ‘dust:NF’} \ L \Rightarrow \text{L}\)
- b. \(\text{wēc} \Rightarrow \text{wēc}; \text{ ‘kick:NF’} \ H \Rightarrow \text{F}\)

Benefactive Nonfinite: \(H-\)
- a. \(\text{tēn} \Rightarrow \text{tēn}; \text{ ‘dust:B’} \ L \Rightarrow \text{F}\)
- b. \(\text{wēc} \Rightarrow \text{wēc}; \text{ ‘kick:B’} \ H \Rightarrow \text{H}\)
Problem II: Blocking of two Additive Tones

<table>
<thead>
<tr>
<th>Variant 1:</th>
<th>Lexical Tone</th>
<th>L</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefactive</td>
<td>H-L</td>
<td>H-H</td>
<td></td>
</tr>
<tr>
<td>Nonfinite</td>
<td>H-L-L</td>
<td>H-H-L</td>
<td></td>
</tr>
<tr>
<td>Output:</td>
<td>F</td>
<td>F°</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variant 2:</th>
<th>Lexical Tone</th>
<th>L</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonfinite</td>
<td>L-L</td>
<td>H-L</td>
<td></td>
</tr>
<tr>
<td>Benefactive</td>
<td>H-L-L</td>
<td>H-H-L</td>
<td></td>
</tr>
<tr>
<td>Output:</td>
<td>F</td>
<td>F°</td>
<td></td>
</tr>
</tbody>
</table>

Correct Output: F H

Abbreviations

- B,BEN: Benefactive
- CP: Centripetal
- CF: Centrifugal
- CT: Passive Circumstantial Topic
- FIN: Finite
- PAS: Passive
- NF: Nonfinite
- NTS: Non-Topic Subject

Summary

- Featural Affix Blocking (in Dinka) is phonological
- The only necessary reference to morphological information are morphological colors (boundaries) and strata
- Featural affixes at different autosegmental tiers interact independently
- Phonological Exponents of the same morphosyntactic affix might behave differently wrt phonological strata

References

Overview

1. Intro
 - Dinka
 - Theoretical Assumptions

2. Length
 - Additive Lengthening
 - Additive 1µ-Lengthening
 - Additive 2µ-Lengthening
 - Blocking of Cumulative Lengthening
 - Templatic Lengthening
 - Simple Templatic Lengthening
 - Blocking of Cumulative Lengthening

3. Tone

4. Alternatives
 - Morphological Competition and Resolution
 - Arbitrary Rule Blocks
 - Cyclic Overwriting

5. Summary