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Precipitation
High radar reflectivity of rain
drops
→ CloudSat CPR via

2C-PRECIP-COLUMN or
DARDAR_MASK

Liquid-topped clouds
High lidar backscatter at cloud
top from liquid droplets
→ CALIOP via

DARDAR_MASK

Ice clouds
High radar reflectivity of ice
particles
→ CPR via DARDAR_MASK

after Rosenfeld et al. (2008), Science



Rain from pure liquid clouds (“warm rain”) is very rare over the
extratropical continents

180° 120°W 60°W 0 60°E 120°E 180°

60
°S

30
°S

0
30

°N
60

°N

Phase fraction

0 0.2 0.4 0.6 0.8 1

Mülmenstädt et al. (2015), Geophys. Res. Lett.



Hypothesis: warm-rain fraction can serve as an observational constraint
on the cloud lifetime effect

I Aerosol influence mainly acts on autoconversion in liquid-water clouds in current models

I The more precipitating warm clouds are simulated in a model, the more opportunity aerosols
have to influence the precipitation microphysics

I We hypothesize that the strength of the cloud lifetime effect in models is therefore related to
the warm-rain fraction

I This hypothesis can be tested in GCMs with parameterized cloud lifetime effect

I Comparing warm-rain fraction in models against satellites may provide an observational
constraint on the cloud lifetime effect
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Compare satellite climatology to CMIP5 cfSites
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Compare satellite climatology to CMIP5 cfSites
ARM SGP BERMS (CliC) Miami Chilbolton Lindenberg
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Compare satellite climatology to CMIP5 cfSites
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Modeled warm-rain fraction is diverse

CAM5.3_CLUBB Satellite

SPRINTARS IFS
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Scale factor on autoconversion rate: 10−4 ×Qaut reproduces observations

Qaut × 1 Qaut × 4 Satellite

Qaut × 1e−05 Qaut × 1e−04 Qaut × 0.01
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Threshold on autoconversion: re > 17 µm

re > 17 µm re > 20 µm Satellite

re > − 1 µm re > 12 µm re > 15 µm
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These modifications are related
Khairoutdinov and Kogan (2000):

∂qr

∂t
∝ qαl Nβ , α = 2.47, β = −1.79

(1)
Since

ql ∝ r3
e N (2)

the autoconversion rate can be rewritten as
a function of re and either of ql or N:

∂qr

∂t
∝

{
r3α
e Nα+β

r−3β
e qα+βl

(3)

Under the simplifying assumption that re is
uncorrelated with either of ql or N, we
expect the autoconversion rate to scale with
r5.5∼7.5
e , which effectively sets an re

threshold.
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Effect on energy fluxes
I Reducing the warm-rain fraction

significantly detunes the TOA
energy balance→ retuning is
required (primarily SW)

I (Reducing warm-rain fraction
increases large-scale
precipitation)
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Effect on precipitation intensity distribution

I Reducing the warm-rain
fraction also increases the
intensity spectrum

I Shown here are large-scale
precipitation intensity spectra
at different latitude bands

I Decreasing the warm-rain
fraction increases the
probability of intense
large-scale precipitation

0 < |φ| < 30 30 < |φ| < 60 60 < |φ| < 90

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

prl
prl

frac.occ
frac.pr

[0
.0

1,
0.

1)

[0
.1

,1
)

>
1

[0
.0

1,
0.

1)

[0
.1

,1
)

>
1

[0
.0

1,
0.

1)

[0
.1

,1
)

>
1

Intensity (mm h−1)

F
ra

ct
io

n

0

1e−07

1e−06

1e−05

1e−04

0.01

1

4

mm h−1

[0.01,0.1)

[0.1,1)

>1



Tuning the warm rain fraction in ECHAM–HAM: conclusions

I Satellite warm-rain fraction can be reproduced in ECHAM–HAM by multiplying the
Khairoutdinov and Kogan (2000) autoconversion rate by 10−4

(default ECHAM–HAM tuning factor: 4)

I Alternative to this drastic scale factor: re > 17µm threshold on autoconversion

I Effect on radiative balance is large (large increase in cloud lifetime)

I Reducing the warm-rain fraction to match the satellite climatology also increases the intensity
spectrum

I (Some remaining uncertainty on these numbers because of parameter choices in diagnosis of
warm-rain fraction)
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Influence of the warm-rain fraction on ERFaer

Results for ECHAM6.1–HAM2.2, AeroCom II 1850/2000 emissions
SW PD − PI (W m−2) LW PD − PI (W m−2) SW + LW PD − PI (W m−2)

Reference −2.1 1.0 −1.1

Reduced warm rain −1.6 0.72 −0.86

I As hypothesized, the configuration with lower warm-rain fraction has a smaller ERFaer

I The change is −0.5 W m−2 SW offset by 0.3 W m−2 LW⇒ plausible that ERFaci change is
a large contribution

I (Low-ccraut configuration has not been retuned and ERFaci has not been diagnosed
separately from ERFaer yet)
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Comparison to Golaz et al. (2011)
I In GFDL AM3, higher critical re leads to stronger ERF, in contrast to our results

I In AM3, the decrease in ql due to autoconversion during a time step is limited to

ql ≥ qcrit =
4
3
π
ρl

ρ
r3
critNd (4)

I In practice, this limit almost always applies, so that ql ≈ qcrit

I The anthropogenic perturbation to Nd therefore results in a change in ql is therefore

∆ql ≈
4
3
π
ρl

ρ
r3
crit∆Nd , (5)

i.e., the perturbation grows with the threshold re
I In ECHAM-HAM, the combined autoconversion and accretion can deplete ql without such a

restriction, so that (5) does not apply

Golaz et al. (2011), J. Climate



Preliminary conclusions on the relationship between warm-rain fraction
and aerosol effects

I Changing the warm-rain fraction (in ECHAM–HAM) changes the ERFaci

⇒ As anticipated, aerosol effects are sensitive to the warm-rain fraction

I Lots of model diversity; this observable has not been tuned to death
⇒ May be useful as an observational constraint

I Next step: investigate relationship between warm-rain fraction and ERFaci across models
⇒ Multiple CAM flavors, SPRINTARS, IFS, ECHAM-HAM, HadGEM are on board

(potentially as part of an AeroCom intercomparison)

I Participation by other models welcome!
⇒ Required output: snow and rain mixing ratio/flux/path, non-accumulated field,

ideally 3h; preferably for a model configuration with known ERFaci
(protocol will be sent to AeroCom mailing list soon)



Summary

I Warm-rain fraction is very low over continents (especially extratropical NH); details:
Mülmenstädt et al. (2015), Geophys. Res. Lett. 42 (15), 6502–6509,
doi:10.1002/2015GL064604

I Warm-rain fraction can be diagnosed in GCMs and may serve as an observational
constraint on precipitation-related processes (including aerosol cloud lifetime effect)

I In ECHAM–HAM, agreement with satellite warm-rain fraction can be achieved with either a
drastic rescaling of KK2000 autoconversion or a less drastic re threshold

I Either method of tuning the warm-rain fraction intensifies the precipitation intensity spectrum
and decreases the ERFaci

I Space-borne active remote sensing is essential for (this and other) studies trying to derive
observational constraints on parameterized convection

http://doi.org/10.1002/2015GL064604
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