Arctic Amplification

Climate Dynamics

27.06.2018

UNIVERSITAT

i
LEIPZIG | ML Leipzig Institute for

w00 [
M@l Meteorology

Jan Kretzschmar Arctic Amplification 1



"The" Arctic Amplification Plot

Recent warming twice as strong in the Arctic as globally = Arctic Amplification

12-month zonal mean anomalies vs 1951-1980
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tic Amplification - Seasonal stren

Strongest in winter and spring
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Arctic Amplification - History

o Svante Arrhenius (1896) hypothesized that changes in the concentration of carbon dioxide in
Earth’s atmosphere could alter surface temperatures
— He suggested that changes would be especially large at high latitudes due to melting of
seaice

o Even the first climate models show (Arctic) Polar Amplification
(Manabe and Stouffer, 1980)

@ Reduction in sea ice extend in recent decades
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— He suggested that changes would be especially large at high latitudes due to melting of
seaice

o Even the first climate models show (Arctic) Polar Amplification
(Manabe and Stouffer, 1980)

@ Reduction in sea ice extend in recent decades

Average Monthly Arctic Sea Ice Extent
April 1979 - 2018
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Arctic Amplification in climate models

Multi model mean of 4x CO» simulations (Pithan and Mauritsen, 2013):
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Why is warming strongest in the Arctic?

Feedback mechanism in the climate system control the strength of warming/cooling due to a
radiative forcing

temperature response

~ =
AR = A ATs + F
~~ ~~ ~~
radiative imbalance feedback parameter forcing
F
AT, =——
A
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Why is warming strongest in the Arctic?

Feedback mechanism in the climate system control the strength of warming/cooling due to a
radiative forcing

temperature response

~ =
AR = A ATs + F
~~ ~~ ~~
radiative imbalance feedback parameter forcing
F
AT, =——
A

Feedbacks acting on the climate system:
o Cloud feedback

Lapse rate feedback

Planck Feedback

Surface albedo feedback

Water vapor feedback

Which of those feedbacks contributes most to Arctic Amplification?
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Arctic Feedbacks - lce-Albedo Feedback

Change in the area of ice caps, glaciers, and sea ice alters the albedo

O O

90% 6%
snow and ice water without
covered water snow and ice

"Albedo change, by Sam Ca 0, )
for A ewsggotom 10% 94%

o Decreased albedo cause an increase in absorption of incoming solar radiation during summer
o Increased heat flux into the ocean during summer

o Excess heat and the missing insulation effect of the sea ice lead to warmer temperature in
fall and winter

= The ice-albedo is a positive feedback and acts to reinforce the initial alteration in ice area
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Arctic Feedbacks - Ice-Albedo Feedback

Ice Age Distribution During Week Nine in 1984 and 2018 Average Monthly Arctic Sea Ice Extent
EASE Grid Sea lce Age (nrt) April 1979 - 2018
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= Younger and less thicker ice is more prone to melting in summer which causes a further
decrease in albedo of the Arctic ocean
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Arctic Feedbacks - lce-Albedo Feedback

Projections of Arctic sea ice extend

Decline in Arctic Sea Ice Extent
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= Essentially ice-free in late summer by the end of the century in almost all emission scenarios

Jan Kretzschmar Arctic Amplification 9



Arctic Feedbacks - Aqua Planet

Aqua planet simulations — planet completely ocean covered, no sea ice
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= Arctic amplification does occur in models without surface albedo feedback
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Arctic Feedbacks - Temperature Feedbacks

The total temperature feedback can be decomposed into Planck feedback and lapse-rate
feedback:

@ Planck feedback (Ap) corresponds to the increase in outgoing longwave radiation caused by
a vertically uniform warming (due to a ATs)

o Lapse-rate feedbacks (A g) corresponds to a warming that deviates from this vertically
uniform profile
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Arctic Feedbacks - Planck Feedback

Planck feedback (Ap) corresponds to the increase in outgoing longwave radiation caused by a
vertically uniform warming (due to a AT)

Temperature Difference to Offset a Radiative Forcing of 1 Wm-2
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As the Arctic is colder than the tropics, the Planck feedback in itself contributes to Arctic
Amplification
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Arctic Feedbacks - Lapse rate Feedback

Lapse-rate feedbacks (A g) corresponds to a warming that deviates from vertically uniform profile
(due to a ATs)

Tropics:

-

o Stronger warming aloft due to release
of latent heat by convection

@ Smaller increase in surface
temperatures is required to offset a
given TOA imbalance

o \Mr<0O
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Arctic Feedbacks - Lapse rate Feedback

Lapse-rate feedbacks (A g) corresponds to a warming that deviates from vertically uniform profile
(due to a ATs)

Tropics: Arctic:

>
T

o Stronger surface warming due to stably

o Stronger warming aloft due to release >
stratified that prevents mixing

of latent heat by convection

o Larger increase in surface temperatures
is required to offset a given TOA
imbalance

e \ig>0

@ Smaller increase in surface
temperatures is required to offset a
given TOA imbalance

o \Mr<0O
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Arctic Feedbacks - Lapse rate Feedback

Lapse-rate feedbacks (A g) corresponds to a warming that deviates from vertically uniform profile
(due to a ATs)

Mean: -0.47  Lapse rate feedback Wm2K!

180 120w  60W 0 60E  120E 180

= Positive in the Arctic (high latitudes) negative in the Tropics (low latitudes) which enhances
warming in the Arctic
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Arctic Feedbacks - Water vapor feedback

Water Vapor & CO2 Effect on OLR
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o Water vapor is a greenhouse gas
— change in opacity of the clear-sky
atmosphere
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10% increase in CO2 has the same effect
onOLR as a 1.80% increase in watervapor.
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o Water vapor feedback stronger in the
Tropics than in the Arctic due to this gon Jrean: 1.91
exponential increase
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Arctic Feedbacks - Cloud Feedback
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Arctic Feedbacks - Cloud Feedbac

ARM:-site Barrow, Alaska

o Clouds warm the Arctic almost the
whole year (due to the high surface
albedo and the low solar zenith angle),
except a short period in summer

o Two preferred radiative states in the
Arctic: cloudy- and clear-state

@ Quantification of the cloud feedback is
especially complicated in the Arctic as
climate models struggle to simulate
low-level mixed phase cloud and
therefore also the two radiative states

@ Climate models suggest that it might

not contribute the Arctic amplification,
but this is uncertain
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Arctic Feedbacks - Conclusion

i . ) . . lean: -1.28 Total feedback wm?K!
o Main contributors to Arctic Amplfication 90N L L L e
are Lapse rate, Planck and Albedo 60N
feedback 30N
o Effects of transports 0
(atmospheric/oceanic) and clouds are 808
rather uncertain 608
L . 90S
o Total feedback positive in the Arctic 180 120W 60W 0 B0E  120E 180
I T [ [ [ [ [ [T T T
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Arctic Feedbacks - Conclusion
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Arctic Feedbacks - Conclusion
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Effects of Arctic Warming

Locally (changes in cryosphere) Remote (changes in weather patterns)

Climate change is altering global air
currents - increasing droughts,
heatwaves and floods

@ Reduced sea ice (shipping, resources) o Modification of atmospheric circulation

o Melting of the Greenland ice sheet
(sea-level rise)

o Thawing of permafrost (release of
methane)
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Effects of Arctic Warming - Reduced sea ice

o Reduction in summer sea ice up to 90%
until the end of 21. century

o Opened up water will cause enhanced
human activity in the Arctic

North-West/East Passage will reduce
distance to East Asia by approx. 3000 nm
(5000 km) which results in a time gain of
7 days (depending on the ice conditions)

@ Nevertheless, it is unclear as to whether
the North-West/East Passage can be

operated efficiently and economically Y &
(remoteness, weather, ice conditions, A
territorial claims, etc.) 5 (e
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Effects of Arctic Warming - Reduced sea ice

Undiscovered deposits, probability of il and /or gas iel 2008 estimtes, %
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o Large oil and gas deposits in Arctic that can be exploited as sea ice retreats
@ Increasing geopolitical interest in the Arctic, but disputed territorial situation

o Pollution of Arctic ecosystem due to human activity
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Effects of Arctic Warming - Melting of the Greenland ice sheet

Mass loss of Greenland ice sheet due to
Arctic warming

Increased snow fall in central Greenland
due to greater moisture content of the
atmosphere at warmer

Mass gain through enhanced precipitation
is more than offset by the higher velocity
of glaciers

Mass loss of approx. 4000 billion tons
since 2000 which is equivalent to an sea
level rise of about 12 mm (approx.

0.8 mm/y)

If the entire 2850000 km?3 of ice were to
melt, global sea levels would rise 7.2 m

How fast this melt would eventually occur
is a matter of discussion (at leat an order
of multiple centuries)
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Effects of Arctic Warming - Thawing of permafros

o Soil in large areas of the Arctic
perennially frozen (permafrost)

o Warming will thaw permafrost and

accelerates methane release, due to both

release of methane from existing stores

(frozen biomass, methane-hydrates), and

from methanogenesis in rotting biomass

o Methane is an extremely efficient
Greenhouse gas (24 time more potent
than CO») which will further enhance
global warming (positive feedback)
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Jet-Stream Modifications due to Arctic Amplification

Thermal wind relationship (zonal component):
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Simple atmospheric model, with thermal forcing in the Arctic:

Response in
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= Equatorward shift and weakening (reduced eddy momentum flux) of polar jetstream
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Jet-Stream Modifications due to ¢ Amplification

o Weakening and equatorward shift of Polar
Jet-Stream

o Increase of undulations (wavier),
amplification of wave amplitude
— Flag in the wind
@ More blocking situations
@ Intensification of meridional transports
o More extreme winters in

mid-latitudes/warm air intrusions in the
Arctic
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amplification of wave amplitude
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o Weakening and equatorward shift of Polar
Jet-Stream

o Increase of undulations (wavier),
amplification of wave amplitude
— Flag in the wind

@ More blocking situations
@ Intensification of meridional transports

o More extreme winters in
mid-latitudes/warm air intrusions in the
Arctic

Tug-of-War (Tauziehen) in Climate Models:

o Arctic warming
— weaker westerlies

o Tropical warming through enhanced latent
heat release aloft (due to enhanced
convection)
— stronger westerlies
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Jet-Stream Modifications due to Arctic Amplification

@ Increased Eurasian snow cover (in autumn)
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Jet-Stream Modifications due to Arctic Amplification

@ Increased Eurasian snow cover (in autumn)
@ Enhanced Siberian High, larger

amplitudes/undulations of planetary Rossby
waves
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Jet-Stream Modifications due to Arctic Amplification

@ Increased Eurasian snow cover (in autumn)

@ Enhanced Siberian High, larger
amplitudes/undulations of planetary Rossby
waves

© Increased vertical propagation of wave energy
into stratosphere, wave breaking
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Jet-Stream Modifications due to Arctic Amplification

@ Increased Eurasian snow cover (in autumn)

@ Enhanced Siberian High, larger
amplitudes/undulations of planetary Rossby
waves

© Increased vertical propagation of wave energy
into stratosphere, wave breaking

@ Slowing/weakening of the stratospheric polar
vortex (in early winter), this can trigger
stratospheric warming events.
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Increased Eurasian snow cover (in autumn)

Enhanced Siberian High, larger
amplitudes/undulations of planetary Rossby
waves

Increased vertical propagation of wave energy
into stratosphere, wave breaking
Slowing/weakening of the stratospheric polar
vortex (in early winter), this can trigger
stratospheric warming events.

This causes circulation anomalies (usual
westwind, may turn to East), which vertically
propagate back down to the troposphere

Arctic Amplification

Jet-Stream Modifications due to Arctic Amplification
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Increased Eurasian snow cover (in autumn)

Enhanced Siberian High, larger
amplitudes/undulations of planetary Rossby
waves

Increased vertical propagation of wave energy
into stratosphere, wave breaking

Slowing/weakening of the stratospheric polar
vortex (in early winter), this can trigger
stratospheric warming events.

This causes circulation anomalies (usual
westwind, may turn to East), which vertically
propagate back down to the troposphere

High pressure pauses down, stronger undulation

and slowing of Polar Jet-Stream, persistent
negative NAO/AO (in late winter).

Arctic Amplification

Jet-Stream Modifications due to Arctic Amplification
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Factors controlling mid-latitude weather

Both theories are highly disputed!

Northern Hemisphere cryosphere changes
« Summer and early fall Arctic sea-ice loss
« Fall Eurasian snow cover increase

- Late fall and winter Arctic sea-ice loss

Changes in:
Arctic | + Storm tracks

amplification + Jet stream

+ Planetary waves

Global climate
change

o Mid-latitude variability is always the sum of internal variability + external influences
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Factors controlling mid-latitude weather

Both theories are highly disputed!

i Polar vortex
Northern Hemisphere cryosphere changes

« Summer and early fall Arctic sea-ice loss L

« Fall Eurasian snow cover increase

- Late fall and winter Arctic sea-ice loss

Changes in: Natural variability
Arctic + Storm tracks « Internal climate modes
amplification + Jet stream = Solar cycle

+ Planetary waves

« Volcanic eruptions

e

Global climate
change

o Mid-latitude variability is always the sum of internal variability + external influences
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Factors controlling mid-latitude weather

Both theories are highly disputed!

_ Polar vortex
Northern Hemisphere cryosphere changes

- Summer and early fall Arctic sea-ice loss C L

« Fall Eurasian snow cover increase

« Late fall and winter Arctic sea-ice loss

Changes in: Natural variability
Avrctic « Storm tracks « Internal climate modes
amplification « Jet stream « Solar cycle
+ Planetary waves = Voleanic eruptions

i

Global climate
change

o Mid-latitude variability is always the sum of internal variability + external influences
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Factors controlling mid-latitude weather

Both theories are highly disputed!

§ Polar vortex
Northern Hemisphere cryosphere changes

- Summer and early fall Arctic sea-ice loss C L

« Fall Eurasian snow cover increase

« Late fall and winter Arctic sea-ice loss

Changes in: Natural variability
Avrctic « Storm tracks « Internal climate modes
amplification « Jet stream « Solar cycle
« Planetary waves « Volcanic eruptions.
Global climate Northern Hemisphere
change atitude weather

o Mid-latitude variability is always the sum of internal variability + external influences

o No consensus on whether significant effects in mid-latitude jet stream have actually been
detected or not (it is nearly impossible to distinguish forced signal from background
variability)
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Factors controlling mid-latitude weather

Both theories are highly disputed!

§ Polar vortex
Northern Hemisphere cryosphere changes

- Summer and early fall Arctic sea-ice loss C L

« Fall Eurasian snow cover increase

« Late fall and winter Arctic sea-ice loss

Changes in: Natural variability
Avrctic « Storm tracks « Internal climate modes
amplification « Jet stream « Solar cycle
« Planetary waves « Volcanic eruptions.
Global climate Northern Hemisphere
change atitude weather

o Mid-latitude variability is always the sum of internal variability + external influences

o No consensus on whether significant effects in mid-latitude jet stream have actually been
detected or not (it is nearly impossible to distinguish forced signal from background
variability)

@ Natural variability, observational limitations, and model shortcomings make this judgement a
difficult problem
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Factors controlling mid-latitude weather

Both theories are highly disputed!

Polar vortex

Northern Hemisphere cryosphere changes
- Summer and early fall Arctic sea-ice loss C L
« Fall Eurasian snow cover increase
« Late fall and winter Arctic sea-ice loss I
Changes in: Natural variability
Avrctic « Storm tracks « Internal climate modes
amplification « Jet stream « Solar cycle
« Planetary waves « Volcanic eruptions.

Global climate
change mid-latitude weather

o Mid-latitude variability is always the sum of internal variability + external influences

o No consensus on whether significant effects in mid-latitude jet stream have actually been
detected or not (it is nearly impossible to distinguish forced signal from background
variability)

@ Natural variability, observational limitations, and model shortcomings make this judgement a
difficult problem

It might also be that mid-latitudes drive the Arctic warming through oceanic/atmospheric
transport (Hen or Egg?)
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Conclusion

@ Warming in the Arctic is twice as strong as on global average
o Several feedback mechanism are the reason for this enhanced warming
o Temperature and surface albedo feedback are the main contributors to Arctic warming

@ Local and remote effects of Arctic warming

Jan Kretzschmar Arctic Amplification 34



