
Climate Dynamics (Summer Semester 2017)
J. Mülmenstädt

Today’s Lecture (Lecture 4): Atmosphere – the role of water

Reference
I Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5



Thermodynamics of the moist atmosphere

Why is the presence of water in the atmosphere important?

I Phase changes of water
I Latent heat release→ effect on dynamics
I Cloud formation→ effect on radiation
I Precipitation and evaporation→ coupling to land and ocean



Chemical equilibrium
In an open system with multiple species (air, water, . . . ), the internal energy for the system is U = U(S, V , n1, . . . , nc),
where nk is the number of moles of species k, and the combined first and second law is

dU = T dS − p dV +
c∑

k=1

µk dnk, where µk =
∂U
∂nk

∣∣∣∣
S,V,nj 6=k

is called the chemical potential. (2.50)

Now consider multiple phases (ϕ) in equilibrium. The extensive variables U, S, V , nk are additive, so

U =
∑
ϕ

U(ϕ), S =
∑
ϕ

S(ϕ), V =
∑
ϕ

V (ϕ), nk =
∑
ϕ

n(ϕ)

k (2.51)

Equilibrium is reached when the total internal energy of the system is minimized, i.e., any small change in the independent
variables δS(ϕ), δV (ϕ), δn(ϕ)

k leads to

δU =
∑
ϕ

T (ϕ)δS(ϕ) − p(ϕ)δV (ϕ) +
∑

k

µ
(ϕ)

k δn(ϕ)

k

 ≥ 0 subject to
∑
ϕ

δS(ϕ) =
∑
ϕ

δV (ϕ) =
∑
ϕ

δn(ϕ)

k = 0

(2.52)
In the two-phase case (denoted by ′ and ′′), this requires

(T ′′ − T ′) δS′′ − (p′′ − p′) δV ′′ +
∑

k

(µ′′k − µ
′
k) δµ′′k ≥ 0 (2.53)

which can only be satisfied for arbitrary independent δS′′, δV ′′, δµ′′k if the phases satisfy

T ′′ = T ′ (thermal), p′′ = p′ (mechanical), µ′′k = µ′k (chemical equilibrium) (2.54)



Phase transition
Consider what happens if we boil water by adding heat to the system; S and V increase while T and p are constant. We
can therefore calculate the entropy increase as

∆S =
∆H
T

or intensively ∆s =
∆h
T

=
L
T

(2.55)

L is the latent heat of the phase change:

ice↔ liquid latent heat of fusion, Lil

liquid↔ vapor latent heat of vaporization, Llv

ice↔ vapor latent heat of sublimation, Liv

Phase equilibria
Now consider two phases in equilibrium (vapor over ice or vapor over liquid) while heat is being added to the system.
Invoking the intensive form of the Gibbs–Duhem relation (2.63, derived on the next slide) and making use of the phase
equilibrium conditions (2.54) for the two phases (again denoted by ′ and ′′), we have

s′dT − α′dp + dµ = 0 (2.56)

s′′dT − α′′dp + dµ = 0 (2.57)

or
s′dT − α′dp = s′′dT − α′′dp (2.58)



Derivation of the Gibbs–Duhem relation
U, S, V , nk are extensive, T , p, µk are intensive. Therefore, for an arbitrary constant λ,

U(λS, λV , λn1, . . . , λnc) = λU(S, V , n1, . . . , nc) (2.59)

Denoting the extensive variables by xi and the intensive variables by yi = ∂U/∂xi,

U(x1, x2, . . . ) =
d

dλ
U(λx1, λx2, . . . ) =

∑
i

∂U(λx1, λx2, . . . )

∂λxi
xi =

∑
i

yixi (2.60)

so that

U(S, V , n1, . . . , nc) = TS − pV +
c∑

k=1

µknk + additive constant (2.61)

Formally,

dU = d(TS)− d(pV) +
c∑

k=1

d(µknk) = T dS + S dT − p dV − V dp +
c∑

k=1

µk dnk +
c∑

k=1

nk dµk (2.62)

However, (2.62) is only consistent with the combined first and second law (2.50) if

S dT − V dp +
c∑

k=1

nk dµk = 0 (Gibbs–Duhem relation), (2.63)

that is, the state variables cannot all be independent of each other.



Clausius–Clapeyron equation

(2.58) can be transformed to the Clapeyron equation

dp
dT

=
s′′ − s′

α′′ − α′
=

∆s
∆α

=
∆h

T∆α
=

L
T∆α

(2.64)

For the case of water vapor over liquid water or ice, αv � αl or αi so that ∆α ≈ αv . The equilibrium pressure p is the
saturation water vapor pressure es; if e > es, water vapor condenses to restore equilibrium, if e < es liquid water
evaporates to restore equilibrium. Substituting for αv using the equation of state for water vapor, we find the
Clausius–Clapeyron equation

d ln es

dT
=

L
RvT2

(2.65)

Approximating L ≈ const, (2.65) can be integrated:

es = es,0 exp
[

L
Rv

(
1
T0
−

1
T

)]
≈ es,0 exp

(
L

Rv

T − T0

T2
0

)
(2.66)



Consequences of the Clausius–Clapeyron equation

Exponential increase of saturation pressure with temperature
(×2 for every 10 K) combined with

High L of water result in efficient latent heat transport in
convection

Liv > Llv results in lower saturation pressure over
ice than supercooled water
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Convection
Dry adiabatic convection
Consider a parcel of rising air. While the water vapor pressure is below saturation water vapor pressure, adiabatic
expansion cools the parcel according to (2.47, with cpd indicating the dry air heat capacity)

cpd d ln T = Rd d ln p (2.67)

which, upon substitution of hydrostatic equilibrium, yields the dry adiabatic lapse rate

Γd = −
∂T
∂z

=
g

cpd
= const (2.68)

Saturated adiabatic convection
Once the parcel reaches saturation, further expansion results in condensation of water vapor, which releases latent heat:

(cpd + qscpv) dT + Llv dqs = (Rd + qsRv)
T
p

dp, where qs is the mixing ratio (2.16) corresponding to es (2.69)

The resulting saturated adiabatic lapse rate, neglecting qscpv � cpd and qsRv � Rd , is

Γs = −
∂T
∂z
≈

g
cpd + Llv(dqs/dT)

= f (T) 6= const (2.70)

which is always smaller than the dry adiabatic lapse rate and decreases with increasing temperature.



Thermodynamic variables for saturated atmospheres
Equivalent potential temperature
From the adiabatic energy balance equation (2.69), this time retaining qscpv � cpd and qsRv � Rd , we see that the
equivalent potential temperature

θe = θd exp

(
Llvqs

cpdT

)
(2.71)

is conserved in saturated convection.

Static stability
Depending on the environmental lapse rate Γ, a parcel of air of a certain water vapor mixing ratio will be stable or
unstable against vertical perturbation:

Γ > Γd unconditionally unstable: the lifted parcel will always be more buoyant than the ambient air

Γd > Γ > Γs conditionally unstable depending on lifting condensation level and entrainment

Γ < Γs unconditionally stable: the lifted parcel will always be less buoyant than the ambient air

Static energy
Static energy is the sum of potential and thermal energy, including the latent heat released in the condensation of water
vapor (“static” because it does not include the macroscopic kinetic energy):

h = cpT + gz + Llvql (2.72)



The radiative–convective (–advective) equilibrium thermodynamic state of the tropical troposphere
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The radiative–convective equilibrium in the tropics results in nearly constant θe. Why is this? θe is conserved in saturated
adiabatic ascent (the rising branch of convection); that is a strong hint that deep clouds play a role. But what about the
clear-sky areas?

Figure: ERA Interim reanalysis data 1989–2007



Balance between vertical motion, radiative cooling and convective heating

Ascending motion (saturated convection)

θe = θ exp

(
Llvqs

cpdT

)
= const (2.73)

Subsiding motion (dry convection)

cp
dT
dt

= T
ds
dt

+ α
dp
dt

= Q + αω,

using the definition θ = T(p0/p)(Rd/cp),

cp
T
θ

(
∂θ

∂t
+~v · ∇θ + ω

∂θ

∂p

)
= Q (2.74)

Steady-state (∂/∂t = 0), neglecting horizontal advection:

cp
T
θ
ω
∂θ

∂p
= Qrad (2.75)

Figure: Hartmann and Larson (2002)



Balance between vertical motion, radiative cooling and convective heating

Ascending motion (saturated convection)

I QLH ∼ 10 K day−1

I ω large, area fraction small

Subsiding motion (dry convection)

I Qrad ∼ −1 K day−1

I ω small, area fraction large

Figure: Hartmann and Larson (2002)



Exchange processes of the atmosphere with land and ocean

I Radiative fluxes from surface into
atmosphere

I Momentum dissipation (= momentum
source for ocean)

I Fluxes of sensible heat, latent heat (∝
moisture flux)

I Orography also influences general
circulation

Radiative energy balance of the atmosphere (sign convention: downwelling positive) is

Ra = FTOA − Fs + RTOA − Rs = (340− 100)− 160 + (−239)− (342− 398) W m−2

= O(−100 W m−2), (2.73)

balanced by fluxes of sensible and latent heat into the atmosphere

Figure: Wild et al., 2015



Boundary layer – the dynamic view

Viscous layer Friction by molecular viscosity: relative motion
at the surface is zero, and viscous media resist
shearing

Mixed layer Friction by turbulent mixing: momentum
transport against the gradient

Ekman layer Both Coriolis force and turbulent friction are
important; mean wind speed increases with
height, mean wind direction becomes
increasingly geostrophic

Free troposphere Geostrophic balance in (mostly) non-turbulent
flow

Figure: Peixoto and Oort



Viscous transport
z Velocity

Wall

Viscous friction is due to molecular effects that resist shear in flow. At the
surface, the wind velocity must be zero, while in the free stream, the wind
velocity will have some arbitrary magnitude. Since random motion of air
molecules results in exchange of mass between the low-momentum layers
and the high-momentum layers, resulting in the velocity profile shown on
the left. The macroscopic friction is the result of the molecular-scale
transport of momentum from the free stream into the boundary layer.

The shear stress in the fluid in the viscous layer is

τzx = −µ
∂u
∂z

(2.74)

(and similarly for τzy and v), where the subscripts denote the stress is in
the x direction in the z = const plane. The friction in the x direction is

Fx = −
1
ρ

(
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z

)
(2.75)

≈
1
ρ

∂

∂z

(
µ
∂u
∂z

)
= ν

∂2u
∂z2

(2.76)

ν = O
(
10−5 m2 s−1), so the depth of the viscous layer is� 1 m.

Fig. 1.4 The component of the vertical shearing stress on a fluid element.

Figures: Stewart 2008, Holton 2004



Turbulent transport
A more efficient method of momentum transport is turbulence. Here the transport is accomplished by small-scale
disturbances (u′, v′,w′, θ′) in the mean flow (ū, v̄, w̄, θ̄ ). The turbulent motions span greater length scales than molecular
motion and can support deeper boundary layers. For a vertically sheared layer, the turbulent transport terms take the form
u′w′, v′w′ for the vertical transport of horizontal momentum, θ′w′ for the vertical transport of potential temperature (and
thus buoyancy). The transport is against the gradient.

Gradient-flux ansatz
Unlike in the case of viscosity, there is no theoretically well founded way to derive u′, v′,w′, θ′. The best we can do is
make a reasonable guess and see how well it works. The English expression for this is “ansatz”. In the gradient-flux
ansatz, the turbulent transport is assumed to be proportional to the gradient:

1
ρ

(
τzx
τzy

)
= ~v′w′ = −Km

∂~v
∂z

and θ′w′ = −Kh
∂θ̄

∂z
(2.77)

with constant turbulent diffusion coefficients for mass and heat Km and Kh. This formulation is by analogy to viscous
friction, but with much larger “viscosity”: Km = O

(
10−1 m2 s−1). However, a constant Km and Kh do not represent the

atmospheric boundary layer well because the turbulent length scale grows with distance from the surface.

Mixing-length approach
The next-better refinement is the mixing-length approach, where Km is itself a function of the gradient and a characteristic
length scale for mixing. The surface–atmosphere interaction can then be formulated in terms of coefficients of transfer for
momentum, sensible heat and water vapor (latent heat)

τ = −ρCD |~v(z)|~v(z), FSH = −ρcpCH |~v(z)| {θ(z)− θ(0)}, E = −ρCW |~v(z)| {q(z)− q(0)} (2.78)



Boundary layer – the cloud-process view

Vertical structure
Boundary layer is well mixed and capped by a . . .

Cloud layer which maintains a temperature
inversion by cloud-top cooling and
is weakly coupled to the . . .

Free troposphere by an entrainment layer

Processes
Sensible and latent heat flux at the surface and . . .

Radiative cooling at cloud top destabilize the airmass;
this results in . . .

Convection which mixes the layer vertically and
horizontally

Figure: Wood 2012



Appendix: Why does dry air have cv = 5
2RT?

Recall the partition function (Zustandssumme) of the canonical ensemble from statistical mechanics, which is the sum over
all microstates weighted by the (Boltzmann) probability of occupying each microstate:

Z =
∏

i

∫
exp(−βH(pi, qi)) dpi dqi, β =

1
kT

(2.79)

where qi are the canonical positions and pi the canonical momenta, and H is the hamiltonian of the system. The
expectation value of the internal energy U is

U = 〈H〉 =
1
Z

∏
i

∫
H(pi, qi) exp(−βH(pi, qi)) dpi dqi, (2.80)

which can be calculated from the partition sum:

U = −
1
β

∂ ln Z
∂β

. (2.81)

For degrees of freedom that enter the hamiltonian as quadratic terms H =
∑

i(Aiq2
i + Bip2

i ) (for example
H = 1

2m (p2
x + p2

y + p2
z )),

Z =
∏

i

∞∫
−∞

exp
(
−βAiq2

i

)
dqi

∞∫
−∞

exp(−βBip2
i ) dpi =

∏
i

√
π

βAi

√
π

βBi
(2.82)



Since

−
1
β

∂

∂β

√
π

βAi
=

1
2

1
β

=
1
2

kT ∀Ai, Bi (2.83)

the total internal energy is 1
2 NkT for each degree of freedom that enters quadratically into the hamiltonian. This is the

equipartition theorem.
How many degrees of freedom does dry air have? At the 99% level, air is a diatomic gas (N2, O2). A diatomic molecule
has three translational

Htrans =
1

2m
(p2

x + p2
y + p2

z )

two rotational

Hrot =
1
2

(I1ω2
1 + I2ω2

2)

and one vibrational

Hvib =
1
2

k∆x2

degrees of freedom. Although the energy levels are quantized, the translational and rotational energy levels are closely
enough spaced that the classical continuum limit is valid. The vibrational energy levels are much higher than atmospheric
temperatures [O(103) K]; the vibrational degree of freedom contributes negligibly to the internal energy.
Therefore,

U =
5
2

NkT and cv =

(
∂u
∂T

)
V

=
5
2

Rd (2.84)


