Homework 3
Due 10 May 2017

Problem 1 Saturation water vapor pressure

Consider the Clausius-Clapeyron equation, (2.65):

$$
\begin{equation*}
\frac{d \ln e_{s}}{d T}=\frac{L}{R_{v} T^{2}} \tag{1}
\end{equation*}
$$

(a) Show that e_{s} increases by approximately $7 \% \mathrm{~K}^{-1}$ for typical values of the near-surface air temperature.
(b) Approximately how large of a temperature increase is required for e_{s} to double?

Problem 2 Diabatic heating

Starting with the thermodynamic energy equation (2.46),

$$
\begin{equation*}
c_{p} \frac{d T}{d t}=T \frac{d s}{d t}+\alpha \frac{d p}{d t}=Q+\alpha \omega, \tag{2}
\end{equation*}
$$

show that an equivalent formulation (involving the static stability $\partial \theta / \partial p$) is

$$
\begin{equation*}
c_{p d} \frac{T}{\theta}\left(\frac{\partial \theta}{\partial t}+\vec{v} \cdot \nabla_{p} \theta+\omega \frac{\partial \theta}{\partial p}\right)=Q \tag{3}
\end{equation*}
$$

Problem 3 Averaging operators

The temporal mean of an arbitrary field A over a time period τ is defined as

$$
\begin{equation*}
\bar{A}=\bar{A}(\lambda, \phi, p)=\frac{1}{\tau} \int_{-\tau / 2}^{\tau / 2} A(\lambda, \phi, p, t) d t \tag{4}
\end{equation*}
$$

The zonal mean (over all longitudes) is defined as

$$
\begin{equation*}
[A]=[A](\phi, p, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} A(\lambda, \phi, p, t) d \lambda \tag{5}
\end{equation*}
$$

The instantaneous value of A is given by

$$
\begin{equation*}
A=\bar{A}+A^{\prime} \tag{6}
\end{equation*}
$$

Climate Dynamics

Summer Semester 2017

UNIVERSITAT LEIPZIG

where A^{\prime} is called the fluctuating component of A. Likewise

$$
\begin{equation*}
A=[A]+A^{*} \tag{7}
\end{equation*}
$$

where A^{*} is the departure from the zonal mean.
Show that for arbitrary fields A and B
(a) $A=[\bar{A}]+\left[A^{\prime}\right]+\bar{A}^{*}+A^{\prime *}$
(b) $[\overline{A B}]=[\bar{A}][\bar{B}]+\left[\overline{A^{*}} \bar{B}^{*}\right]+\left[\overline{A^{\prime} B^{\prime}}\right]$

Problem 4 Thermodynamic structure of the atmosphere

ERA Interim reanalysis air temperature data is available in the file
/home_local/quaas/data/ERA__Interim__T_GDSO_ISBL_123__1.5x1.5xL37__198901-200712.nc. Calculate zonal and temporal means of the following quantities and plot them as contour lines in the $\phi-p$ plane:
(a) T
(b) θ
(c) q_{s}; you may use the empirical approximation

$$
\begin{equation*}
e_{s}(T)=6.1094 \exp \left(\frac{17.625 T}{T+243.04}\right) \tag{8}
\end{equation*}
$$

for T in Celsius.
(d) θ_{e}

