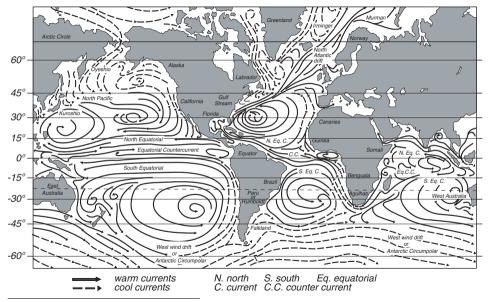
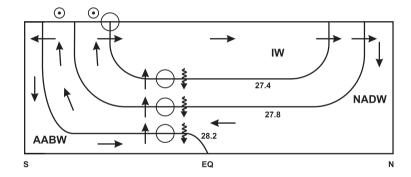
Today's Lecture (Lecture 8): General circulation of the oceans

Reference

Hartmann, *Global Physical Climatology* (1994), Ch. 2, 3, 6 Peixoto and Oort, Ch. 4, 6, 7, 14, 15 Kuhlbrodt et al. (2007), linked from course webpage

5.3 – General circulation of the oceans



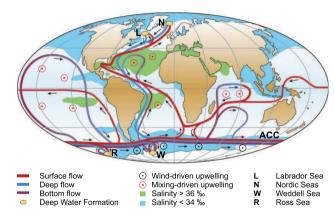

Figure: Stewart 2008

Meridional overturning circulation

- Definition: meridional–vertical circulation ("meridional overturning circulation" or "thermohaline circulation")
- ► Function:

meridional heat transport vertical heat storage (also CO₂ storage)

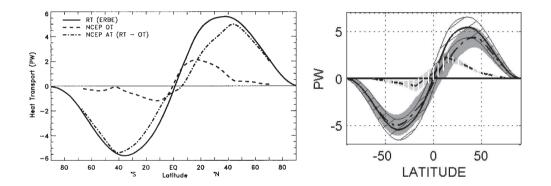
- Structure:
 - Upwelling processes that transport volume from depth to near the ocean surface
 - Surface currents that transport relatively light water toward high latitudes
 - Deepwater formation regions where waters become denser and sink
 - Deep currents closing the loop
- Timescales: millennial


The global conveyor belt

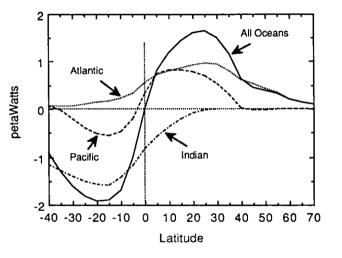
Meridional overturning circulation

- Upwelling processes that transport volume from depth to near the ocean surface
- Surface currents that transport relatively light water toward high latitudes
- Deepwater formation regions where waters become denser and sink
- Deep currents closing the loop

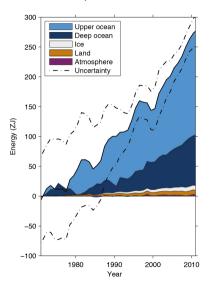
Deepwater formation


- Density dictates vertical motion
- Temperature of all oceans is approximately -2°C at the poleward boundary (ice formation)
- Whether water is dense enough to sink is decided mainly by salinity
- Sufficient salinity is reached in the north Atlantic and under the Antarctic ice sheets (due to brine production during freezing)

▲□▶▲母▶▲글▶▲글▶ 글 のQへ


Figure: Kuhlbrodt et al., 2007

Partitioning between atmospheric and oceanic transport


▲□▶▲圖▶★≧▶★≧▶ ≧ の�?

Partitioning of meridional transport between oceans

Note the anomalous equatorward transport in the South Atlantic Ocean

Oceanic heat uptake

- Ocean warming dominates the global energy uptake
- Warming of the ocean accounts for about 93% of the energy uptake between 1971 and 2010
- Warming of the upper (0 to 700 m) ocean accounts for about 64% of the total
- \blacktriangleright Energy uptake is equivalent to 0.4 W m $^{-2}$ (global average), or 0.55 W m $^{-2}$ (ocean average)

6 - Internal variability

1. Introduction

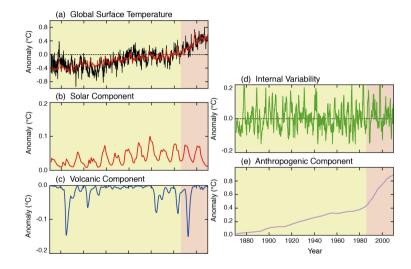
2. Atmosphere

3. Ocean

4. Land, biosphere, cryosphere

5. The climate system

6. Internal variability
6.1 Departures from temporal average
6.2 Modes of internal variability
6.3 El Niño-Southern Oscillation
6.4 Modeling ENSO


7. Forcing and feedbacks

8. Anthropogenic climate change

Reference

IPCC AR5, Ch. 14 Holton, Ch. 11 COMET Introduction to tropical meteorology, linked from course webpage

6.1 – Departures from temporal average

Classification of fluctuations about the climatological mean:

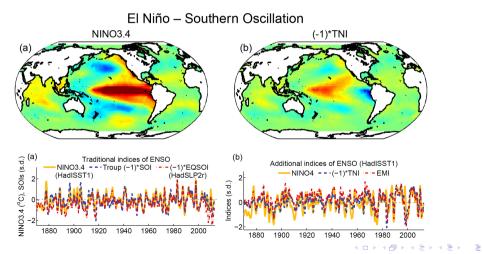
- Time scale: for example, diurnal, annual cycles in solar forcing
- Periodic or trend?
- Natural or anthropogenic?
- Forcing or internal variability?

Forcing or internal variability?

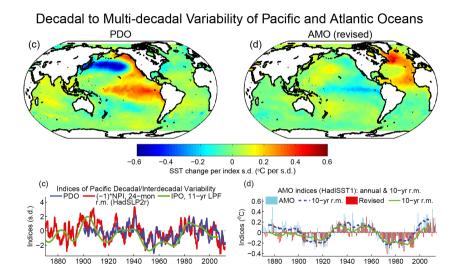
Forcing

- Change in net energy exchange between the climate system and the environment
- Examples:
 - Solar intensity cycles
 - Orbital parameter cycles
 - Volcanic eruptions
 - Anthropogenic emissions of greenhouse gases, aerosols

Internal variability


- Many aspects of the climate system
 - are described by nonlinear differential equations
 - couple systems with different time scales
 - have positive feedback
- This leads to transitions between states (example: the attractors in the Lorenz system) on various time scales

- Examples (with time scales):
- Days-weeks Midlatitude storm systems
 - Months Madden-Julian oscillation (MJO)
- Interannual El Niño-southern oscillation (ENSO)
 - Decadal Pacific decadal oscillation (PDO)
- Multidecadal Atlantic multidecadal oscillation (AMO)


6.2 - Modes of internal variability

What is a mode?

A *mode* describes the space-time structure of the variability. Often it is defined as a product of a characteristic spatial *pattern* (of one or more variables) and a time-varying *index*. In next week's homework, we will look at two methods for determining modes.

Modes of internal variability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ