Satellite-derived warm rain fraction as constraint on the cloud lifetime effect

Johannes Mülmenstädt,¹ Amund Søvde,² Gunnar Myhre,² Shipeng Zhang,³ Minghuai Wang,³ Toshi Takemura,⁴ Kenta Suzuki,⁵ Philip Stier,⁶ Stefan Kinne,⁷ Johannes Quaas¹

¹ Universität Leipzig ² CICERO ³ Nanjing University ⁴ Kyushu University ⁵ University of Tokyo ⁶ University of Oxford ⁷ MPI Meteorology

23 January 2017

Precipitation

High radar reflectivity of rain drops

→ CloudSat CPR via 2C-PRECIP-COLUMN or DARDAR MASK

Liquid-topped clouds

High lidar backscatter at cloud top from liquid droplets

→ CALIOP via

DARDAR MASK

Ice clouds

High radar reflectivity of ice particles

→ CPR via DARDAR_MASK

Rain from pure liquid clouds ("warm rain") is very rare over the extratropical continents

Hypothesis: warm-rain fraction can serve as an observational constraint on the cloud lifetime effect

- Aerosol influence mainly acts on autoconversion in liquid-water clouds in current models
- ► The more precipitating warm clouds are simulated in a model, the more opportunity aerosols have to influence the precipitation microphysics
- We hypothesize that the strength of the cloud lifetime effect in models is therefore related to the warm-rain fraction
- ▶ This hypothesis can be tested in GCMs with parameterized cloud lifetime effect
- Comparing warm-rain fraction in models against satellites may provide an observational constraint on the cloud lifetime effect

Outline

Motivation

Warm-rain fraction in observations and GCMs

Tuning the warm-rain fraction in ECHAM-HAN

Interactions between the warm-rain fraction and ERF_{ac}

Compare satellite climatology to CMIP5 cfSites

Compare satellite climatology to CMIP5 cfSites

Compare satellite climatology to CMIP5 cfSites

Modeled warm-rain fraction is diverse

Outline

Motivation

Warm-rain fraction in observations and GCMs

Tuning the warm-rain fraction in ECHAM-HAM

nteractions between the warm-rain fraction and ERFac

Scale factor on autoconversion rate: $10^{-4} \times Q_{aut}$ reproduces observations

Threshold on autoconversion: $r_{\rm e} > 17~\mu{\rm m}$

These modifications are related

Khairoutdinov and Kogan (2000):

$$\frac{\partial q_r}{\partial t} \propto q_l^{\alpha} N^{\beta}, \quad \alpha = 2.47, \beta = -1.79$$

Since

$$q_l \propto r_e^3 N$$
 (2)

the autoconversion rate can be rewritten as a function of r_e and either of q_l or N:

$$\frac{\partial q_r}{\partial t} \propto \begin{cases} r_e^{3\alpha} N^{\alpha+\beta} \\ r_e^{-3\beta} q_l^{\alpha+\beta} \end{cases} \tag{3}$$

Under the simplifying assumption that $r_{\rm e}$ is uncorrelated with either of $q_{\rm l}$ or N, we expect the autoconversion rate to scale with $r_{\rm e}^{5.5\sim7.5}$, which effectively sets an $r_{\rm e}$ threshold.

Effect on energy fluxes

- Reducing the warm-rain fraction significantly detunes the TOA energy balance → retuning is required (primarily SW)
- (Reducing warm-rain fraction increases large-scale precipitation)

Effect on precipitation intensity distribution

- Reducing the warm-rain fraction also increases the intensity spectrum
- Shown here are large-scale precipitation intensity spectra at different latitude bands
- Decreasing the warm-rain fraction increases the probability of intense large-scale precipitation

Tuning the warm rain fraction in ECHAM-HAM: conclusions

- Satellite warm-rain fraction can be reproduced in ECHAM−HAM by multiplying the Khairoutdinov and Kogan (2000) autoconversion rate by 10⁻⁴ (default ECHAM−HAM tuning factor: 4)
- Alternative to this drastic scale factor: $r_e > 17 \mu m$ threshold on autoconversion
- Effect on radiative balance is large (large increase in cloud lifetime)
- Reducing the warm-rain fraction to match the satellite climatology also increases the intensity spectrum
- ► (Some remaining uncertainty on these numbers because of parameter choices in diagnosis of warm-rain fraction)

Outline

Motivation

Warm-rain fraction in observations and GCMs

Tuning the warm-rain fraction in ECHAM-HAN

Interactions between the warm-rain fraction and ERF_{aci}

Influence of the warm-rain fraction on ERF_{aer}

Results for ECHAM6.1-HAM2.2, AeroCom II 1850/2000 emissions

$ \text{SW PD} - \text{PI (W m}^{-2}) \text{LW PD} - \text{PI (W m}^{-2}) \text{SW} + \text{LW PD} - \text{PI (W m}^{-2})} $					
	\mid SW PD $-$ PI (W m $^{-2}$)	$LW PD - PI (W m^{-2})$	$ SW + LW PD - PI (W m^{-2}) $		
Reference	-2.1	1.0	-1.1		

Influence of the warm-rain fraction on ERF_{aer}

Results for ECHAM6.1-HAM2.2, AeroCom II 1850/2000 emissions

	\mid SW PD $-$ PI ($\stackrel{\checkmark}{W}$ m $^{-2}$)	LW PD $-$ PI (W m $^{-2}$)	$ $ SW $+$ LW PD $-$ PI (W m $^{-2}$)
Reference	-2.1	1.0	-1.1
Reduced warm rain	-1.6	0.72	-0.86

Influence of the warm-rain fraction on ERFaer

Results for ECHAM6.1-HAM2.2, AeroCom II 1850/2000 emissions

	SW PD $-$ PI (W m $^{-2}$)	LW PD $-$ PI (W m $^{-2}$)	$SW + LW \; PD - PI \; (W \; m^{-2})$
Reference	-2.1	1.0	-1.1
Reduced warm rain	-1.6	0.72	-0.86

- As hypothesized, the configuration with lower warm-rain fraction has a smaller ERF_{aer}
- ▶ The change is $-0.5~\rm W~m^{-2}~\rm SW$ offset by 0.3 W m⁻² LW \Rightarrow plausible that ERF_{aci} change is a large contribution
- (Low-ccraut configuration has not been retuned and ERF_{aci} has not been diagnosed separately from ERF_{acr} yet)

Comparison to Golaz et al. (2011)

- ▶ In GFDL AM3, higher critical r_e leads to stronger ERF, in contrast to our results
- \triangleright In AM3, the decrease in q_l due to autoconversion during a time step is limited to

$$q_l \ge q_{\text{crit}} = \frac{4}{3}\pi \frac{\rho_l}{\rho} r_{\text{crit}}^3 N_d$$
 (4)

- lacktriangle In practice, this limit almost always applies, so that $q_lpprox q_{
 m crit}$
- ▶ The anthropogenic perturbation to N_d therefore results in a change in q_l is therefore

$$\Delta q_l \approx \frac{4}{3} \pi \frac{\rho_l}{\rho} r_{\text{crit}}^3 \Delta N_d,$$
 (5)

i.e., the perturbation grows with the threshold r_e

▶ In ECHAM-HAM, the combined autoconversion and accretion can deplete q_i without such a restriction, so that (5) does not apply

Preliminary conclusions on the relationship between warm-rain fraction and aerosol effects

- Changing the warm-rain fraction (in ECHAM–HAM) changes the ERF_{aci}
 - ⇒ As anticipated, aerosol effects are sensitive to the warm-rain fraction
- Lots of model diversity; this observable has not been tuned to death
 - ⇒ May be useful as an observational constraint
- ▶ Next step: investigate relationship between warm-rain fraction and ERF_{aci} across models
 - → Multiple CAM flavors, SPRINTARS, IFS, ECHAM-HAM, HadGEM are on board (potentially as part of an AeroCom intercomparison)
- Participation by other models welcome!
 - ⇒ Required output: snow and rain mixing ratio/flux/path, non-accumulated field, ideally 3h; preferably for a model configuration with known ERF_{aci} (protocol will be sent to AeroCom mailing list soon)

Summary

- Warm-rain fraction is very low over continents (especially extratropical NH); details: Mülmenstädt et al. (2015), Geophys. Res. Lett. 42 (15), 6502–6509, doi:10.1002/2015GL064604
- Warm-rain fraction can be diagnosed in GCMs and may serve as an observational constraint on precipitation-related processes (including aerosol cloud lifetime effect)
- In ECHAM-HAM, agreement with satellite warm-rain fraction can be achieved with either a drastic rescaling of KK2000 autoconversion or a less drastic r_e threshold
- ► Either method of tuning the warm-rain fraction intensifies the precipitation intensity spectrum and decreases the ERF_{aci}
- ► Space-borne active remote sensing is essential for (this and other) studies trying to derive observational constraints on parameterized convection