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Precipitation Liquid-topped clouds Ice clouds

High radar reflectivity of rain High lidar backscatter at cloud High radar reflectivity of ice
drops top from liquid droplets particles
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DARDAR_MASK

affer Rosenfeld et al. (2008), Science



Rain from pure liquid clouds (“warm rain”) is very rare over the
extratropical continents
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Hypothesis: warm-rain fraction can serve as an observational constraint
on the cloud lifetime effect

» Aerosol influence mainly acts on autoconversion in liquid-water clouds in current models

» The more precipitating warm clouds are simulated in a model, the more opportunity aerosols
have to influence the precipitation microphysics

» We hypothesize that the strength of the cloud lifetime effect in models is therefore related to
the warm-rain fraction

» This hypothesis can be tested in GCMs with parameterized cloud lifetime effect

» Comparing warm-rain fraction in models against satellites may provide an observational
constraint on the cloud lifetime effect
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Warm-rain fraction in observations and GCMs



Compare satellite climatology to CMIPS cfSites




Compare satellite climatology to CMIP5 cfSites
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Compare satellite climatology to CMIP5 cfSites
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Modeled warm-rain fraction is diverse

SPRINTARS
o

60°N 1
30°N 4

O_
30°S A
60°S 4

fwarm

60°E 120°E  180° 120°W 60°W

0.05 01 02 04 06 08 1

60°E 120°E




Outline

Tuning the warm-rain fraction in ECHAM-HAM



Scale factor on autoconversion rate: 107 x Qg reproduces observations
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Threshold on autoconversion: ro > 17 um
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These modifications are related

Khairoutdinov and Kogan (2000): losoa oo
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Effect on energy fluxes

» Reducing the warm-rain fraction ceraut
significantly detunes the TOA .
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Effect on precipitation intensity distribution

» Reducing the warm-rain 0<|d<30 30<|g/<60 60<|g<90
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Tuning the warm rain fraction in ECHAM-HAM: conclusions

» Satellite warm-rain fraction can be reproduced in ECHAM-HAM by multiplying the
Khairoutdinov and Kogan (2000) autoconversion rate by 1074
(default ECHAM-HAM tuning factor: 4)

» Alternative fo this drastic scale factor: r, > 17um threshold on autoconversion
» Effect on radiative balance is large (large increase in cloud lifetime)

» Reducing the warm-rain fraction to match the satellite climatology also increases the intensity
spectrum

» (Some remaining uncertainty on these numbers because of parameter choices in diagnosis of
warm-rain fraction)
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Interactions between the warm-rain fraction and ERFq;



Influence of the warm-rain fraction on ERFge,

Results for ECHAMG.1-HAM2.2, AeroCom Il 1850/2000 emissions
SWPD — Pl (Wm~2) | IWPD — PI (Wm~2) | SW + LW PD — PI (W m~2)
Reference —-2.1 1.0 —-1.1



Influence of the warm-rain fraction on ERFge,
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Influence of the warm-rain fraction on ERFge,

Results for ECHAM6.1-HAM?2.2, AeroCom Il 1850/2000 emissions
SW PD — PI (W m—2) | LW PD — PI (W m~2)
2.1 1.0
—-1.6 0.72

Reference
Reduced warm rain

-1.1
—0.86

» As hypothesized, the configuration with lower warm-rain fraction has a smaller ERF,,

» The change is —0.5 W m~2 SW offset by 0.3 W m~2 LW = plausible that ERF,; change is
a large contribution

> (Low-ccraut configuration has not been retuned and ERF,; has not been diagnosed
separately from ERF, yet)

SW + LW PD — PI (W m~2)



Comparison to Golaz et al. (2011)

» In GFDL AM3, higher critical r, leads to stronger ERF, in contrast to our results
» In AM3, the decrease in g; due to autoconversion during a time step is limited to
4

Al = Qerit = 3™ P cmNd (4)
» In practice, this limit almost always applies, so that q; & gerir
» The anthropogenic perturbation to Ny therefore results in a change in g; is therefore

Ag) ~ 4 AN, (5)
=~ 3 p crlf ds

i.e., the perturbation grows with the threshold r,

v

In ECHAM-HAM, the combined autoconversion and accretion can deplete g; without such a
restriction, so that (5) does not apply

Golaz et al. (2011), J. Climate



Preliminary conclusions on the relationship between warm-rain fraction
and aerosol effects

» Changing the warm-rain fraction (in ECHAM-HAM|) changes the ERF;
= As anticipated, aerosol effects are sensitive to the warm-rain fraction

» Lots of model diversity; this observable has not been tuned to death
= May be useful as an observational constraint

» Next step: investigate relationship between warm-rain fraction and ERF,; across models

= Multiple CAM flavors, SPRINTARS, IFS, ECHAM-HAM, HadGEM are on board
(potentially as part of an AeroCom intercomparison)

» Participation by other models welcomel!
= Required output: snow and rain mixing ratio/flux/path, non-accumulated field,
ideally 3h; preferably for a model configuration with known ERFq;
(protocol will be sent to AeroCom mailing list soon)



Summary

» Warm-rain fraction is very low over continents (especially extratropical NH); details:
Milmenstadt et al. (2015), Geophys. Res. Lett. 42 (15), 6502-6509,
doi:10.1002/2015GL064604

» Warm-rain fraction can be diagnosed in GCMs and may serve as an observational
constraint on precipitation-related processes (including aerosol cloud lifetime effect)

» In ECHAM-HAM, agreement with satellite warm-rain fraction can be achieved with either a
drastic rescaling of KK2000 autoconversion or a less drastic r, threshold

» Either method of tuning the warm-rain fraction intensifies the precipitation intensity spectrum
and decreases the ERF;

» Space-borne active remote sensing is essential for (this and other) studies trying to derive
observational constraints on parameterized convection


http://doi.org/10.1002/2015GL064604
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