Numerical simulation of middle atmosphere dynamics at LIM

AT LIM, numerical simulation of the middle atmosphere is performed using mechanistic circulation models including dynamics, radiative processes and energy and momentum sources connected with middle and upper atmosphere processes.

Models used are global scale and cover the atmosphere from the ground to the thermosphere. Gravity wave parameterisation is included, and planetary waves are forced included through direct forcing at the lower boundary, or through assimilation of global datasets in the troposphere/stratosphere.

MUAM (Middle and Upper Atmosphere)

RSHU, St. Petersburg
IEM Obninsk

Zonal mean zonal winds as simulated with COMMA-LIM

Zonal mean meridional winds

Publications related to the project:

Lilienthal, F., Ch. Jacobi, T. Schmidt, A. de la Torre, and P. Alexander, 2017: On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation, Ann. Geophys., accepted 1.6.2017.

Jacobi, Ch., F. Lilienthal, C. Geißler, and A. Krug, 2015: Long-term variability of mid-latitude mesosphere-lower thermosphere winds over Collm (51°N, 13°E), J. Atmos. Sol.-Terr. Phys., 136, B, 174–186, doi:10.1016/j.jastp.2015.05.006.

Merzlyakov, E.G., Ch. Jacobi, and T.V.Solovjova, 2015: The year-to-year variability of the autumn transition dates in the mesosphere/lower thermosphere wind regime and its coupling with the dynamics of the stratosphere and troposphere, J. Atmos. Sol.-Terr. Phys., 122, 9-17, doi:10.1016/j.jastp.2014.11.002.

Fytterer, T., C. Arras, P. Hoffmann, and Ch. Jacobi, 2014: Global distribution of the migrating terdiurnal tide seen in sporadic E occurrence frequencies obtained from GPS radio occultations, Earth, Planets and Space, 66:79, doi:10.1186/1880-5981-66-79.

Jacobi, Ch., K. Fröhlich, Y. Portnyagin, E. Merzlyakov, T. Solovjova, N. Makarov, D. Rees A. Fahrutdinova, V. Guryanov, D. Fedorov, D. Korotyshkin, J. Forbes, A. Pogoreltsev, and D. Kürschner, 2009: Semi-empirical model of middle atmosphere wind from the ground to the lower thermosphere. Adv. Space Res., 43, 239-246.

Pogoreltsev, A.I., A.A. Vlasov. K. Fröhlich, and Ch. Jacobi, 2007: Planetary waves in coupling the lower and upper atmosphere. J. Atmos. Solar-Terr. Phys. 69, 2083-2101.

Fröhlich, K., T. Schmidt, M. Ern, P. Preusse, A. de la Torre, J. Wickert, and Ch. Jacobi, 2007: The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: attempt and challenges. J. Atmos. Solar-Terr. Phys. 69, 2238–2248.

Jacobi, Ch., N. Jakowski, A. Pogoreltsev, K. Fröhlich, P. Hoffmann, and C. Borries, 2007: The CPW-TEC project: Planetary waves in the middle atmosphere and ionosphere. Adv. Radio Sci. 5, 393–397.

Fröhlich, K., A. I. Pogoreltsev, Ch. Jacobi and L.A. Nechaeva, 2007: The influence of NCEP-data assimilated into COMMA-LIM on the 16-day wave. Wiss. Mitt. Inst. Meteorol. Univ. Leipzig 41, 37-45. (pdf)

Jacobi, Ch., A.I. Pogoreltsev, and K. Fröhlich, 2006: Middle atmosphere background climatology from a simple circulation model. Adv. Space Res., 38, 2470-2474.

Jacobi, Ch., K. Fröhlich, and A. Pogoreltsev, 2006: Quasi two-day-wave modulation of gravity wave flux and consequences for the planetary wave propagation in a simple circulation model. J. Atmos. Solar-Terr. Phys., 68, 283-292.

Fröhlich, K., Ch. Jacobi, und A.I. Pogoreltsev, 2005: Planetary wave transience effects on the zonal mean flow. Adv. Space Res., 35, 1900-1904.

Jacobi, Ch., M. Lange and D. Kürschner, 2003: Influence of anthropogenic climate gas changes on the summer mesospheric/lower thermospheric meridional wind.  Meteorol. Z., N.F. 12, 37-42.

Last update 28 June 2017 by Ch. Jacobi