Formale Grundlagen (Logik) Modul 04-006-1001

Statement Logic III

Leipzig University

December 19th, 2024

Fabian Heck

(Slides by Imke Driemel & Sandhya Sundaresan, based on Partee, ter Meulen und Wall 1990 "Mathematical Methods in Linguistics")

Recap: Statement logic

• we will assume an infinite vocabulary of atomic statements

Statement logic

A formal system where the primitives are all statements.

- (1) Basic expressions of statement logic
 - a p, q, r, s, p', p'', ...
- (2) Syntax of statement logic
 - An atomic statement is a well-formed formula.
 - b. If ϕ is a well-formed formula, then $(\neg \phi)$ is a well-formed formula.
 - c. If ϕ and ψ are well-formed formulas, then $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, and $(\phi \leftrightarrow \psi)$ are well-formed formulas.
 - d. Nothing else is a formula.

Recap: Statement logic

- we wrote down the semantic rules like the syntactic rules
- this is an alternative to truth tables
- read $[\![\,]\!]^M$ as interpreted in relation to model M
 - (3) Semantics of statement logic
 - a. If ϕ is a formula, then $[(\neg \phi)]^M = 1$ iff $[\![\phi]\!]^M = 0$.
 - b. If ϕ and ψ are formulas, then $[\![(\phi \wedge \psi)]\!]^M = 1$ iff both $[\![\phi]\!]^M = 1$ and $[\![\psi]\!]^M = 1$.
 - c. If ϕ and ψ are formulas, then $[\![(\phi \lor \psi)]\!]^M = 1$ iff at least one of $[\![\phi]\!]^M$, $[\![\psi]\!]^M = 1$.
 - d. If ϕ and ψ are formulas, then $[\![(\phi \to \psi)]\!]^M = 1$ iff either $[\![\phi]\!]^M = 0$ or $[\![\psi]\!]^M = 1$.
 - e. If ϕ and ψ are formulas, then $[\![(\phi \leftrightarrow \psi)]\!]^M = 1$ iff $[\![\phi]\!]^M = [\![\psi]\!]^M$.

Recap: Tautologies, contradictions & contingencies

 a tautological statement is always true: the final column in its truth table contains only the values 1/True, regardless of what the truth values of its atomic statements are

(4)
$$p (p \to p)$$

1 1
0 1

 a logically contradictory statement is always false: the final column of its truth table only contains the values 0/False, regardless of what the truth values of its atomic statements are

(5)
$$p (\neg p) (p \land (\neg p))$$

1 0 0
0 1 0

 all other statements, with both 1/True and 0/False in the final column of their truth table are called logical contingencies

Logical equivalence & logical consequence

- if a biconditional statement (P ↔ Q) is a logical tautology, then the two constituent statements on either side of the biconditional arrow are logically equivalent
- to denote logical equivalence between two arbitrary expressions P and Q we write $P \Leftrightarrow Q$
- if a conditional statement $(P \rightarrow Q)$ is a logical tautology, we say that the consequent is a logical consequence of the antecedent
- alternatively, we say that the antecedent logically implies the consequent; in both cases, we write $P \Rightarrow Q$

Logical equivalence: exercise

let us prove another logical equivalence!

(6)
$$(p \rightarrow q) \Leftrightarrow ((\neg p) \lor q)$$

Logical equivalence: exercise

let us prove another logical equivalence!

(7)
$$(p \rightarrow q) \Leftrightarrow ((\neg p) \lor q)$$

(8) $\begin{array}{c|cccc}
p & q & (p \to q) \\
\hline
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}$

Formal components of a proof

- we will turn to one of the central uses of statement logic: constructing a proof/argument
- it consists of two parts
 - 1 a number of statements, called **premises**: these are just statements that we, for the sake of argument, assume to be True
 - 2 a conclusion, whose truth is demonstrated to necessarily follow from the assumed truth of the premises

- a proof is called valid iff there is no uniform assignment of truth values to its atomic statements which makes all its premises true and its conclusion false
- a proof is called invalid iff there is at least one uniform assignment of truth values to its atomic statements which makes all its premises true and its conclusion false

Formal components of a proof

- premises and conclusion of a proof are related by the conditional →
 (antecedent → conclusion)
- the premises are the antecedent of the conditional
- the conclusion is the consequent of the conditional
 - (11) For a given proof X, if p_1, p_2, \ldots, p_n are premises of X and q the conclusion of X, then:
 - a. X is valid iff: $((p_1 \land p_2 \land \cdots \land p_n) \rightarrow q)$ is a tautology (i.e. always true)
 - b. X is invalid iff: $((p_1 \land p_2 \land \cdots \land p_n) \rightarrow q)$ is not a tautology (i.e. not always true)
- an example for a simple natural language proof:
 - (12) If Marie eats another pizza, she will get sick. Marie eats another pizza.
 - :. Marie gets sick.

A kind of proof: Modus Ponens

- this proof is called Modus Ponens
 - (13) If Marie eats another pizza, she will get sick.

 Marie eats another pizza.

 ∴ Marie gets sick.
- we can translate this argument into statement logic:
 - (14) a. p = Marie eats another pizza.b. q = Marie gets sick.
- thus, we get the following:

$$(15) \qquad (p \to q)$$

$$p$$

$$\therefore q$$

A kind of proof: Modus Ponens

Modus Ponens:

$$(16) \qquad (p \to q)$$

$$p$$

$$\therefore q$$

we can show that the proof is valid with a truth table

	p	q	(p o q)	$((p ightarrow q) \wedge p)$	$(((p o q) \wedge p) o q)$
	1	1	1	1	1
	1	0	0	0	1
	0	1	1	0	1
İ	0	0	1	0	1

premises are connected via \wedge , the conclusion is a logical consequence (\Rightarrow) if the proof is valid, i.e. if the implication (\rightarrow) is a tautology

More proofs: Modus Tollens

- the following proof is called Modus Tollens
 - (18) If Jack drinks beer, he will get drunk.

 Jack doesn't get drunk.
 - ∴ Jack doesn't drink beer.

$$(19) \qquad \begin{array}{c} (p \to q) \\ \hline (\neg q) \\ \hline \therefore (\neg p) \end{array}$$

again, we can show the validity of the proof by means of a truth table

More proofs: Hypothetical Syllogism

- the following proof is called Hypothetical Syllogism
 - (21) If Jack drinks, he falls asleep.

 If Jack sleeps, Sue gets angry.

 ∴ If Jack drinks, Sue gets angry.

(22)
$$(p \rightarrow q)$$
$$(q \rightarrow r)$$
$$\therefore (p \rightarrow r)$$

convince yourself of the validity of the proof in the tutorials (or at home) by constructing a truth table!

More proofs: Disjunctive Syllogism

• the next proof is called Disjunctive Syllogism

$$(24) \qquad (p \lor q) \\ \hline (\neg p) \\ \hline \vdots \qquad q$$

• the validity of the proof is illustrated by the following truth table

(25)

p	q	(¬ <i>p</i>)	$(p \lor q)$	$((p \lor q) \land (\neg p))$	$(((p\lor q)\land (\lnot p))\to q)$
1	1	0	1	0	1
1	0	0	1	0	1
0	1	1	1	1	1
0	0	1	0	0	1

More proofs: Simplification

- the next proof is called Simplification
 - (26) Bill is short and Marie is tall.

 ∴ Bill is short.

$$(27) \quad \frac{(p \wedge q)}{\therefore \quad p}$$

show the validity of the proof with a truth table (solution on next page)

More proofs: Simplification

here is the truth table that shows the validity of the proof for simplification:

(28)

p	q	$(p \wedge q)$	$((p \land q) \to p)$
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	1

More proofs: Conjunction

- here is a proof called Conjunction
 - (29) Bill is short.

 Marie is tall.

 ∴ Bill is short and Marie is tall.

$$(30) \qquad p \\ q \\ \therefore (p \land q)$$

the validity of the proof by means of a truth table is as follows

More proofs: Addition

• the next proof is called Addition

$$(33) \quad \frac{p}{\therefore \quad (p \lor q)}$$

show the validity of the proof with a truth table (solution on next page)

More proofs: Addition

• here is the truth table that shows the validity of the proof for addition:

	p	q	$(p \lor q)$	$(p \to (p \lor q))$
	1	1	1	1
(34)	1	0	1	1
	0	1	1	1
	0	0	0	1

- the proof below is an invalid argument!
- this particular logical fallacy is called: fallacy of affirming the consequent

$$(35) \qquad (p \to q)$$

$$q$$

$$\sqrt{p}$$

- we can show that the proof is invalid with a truth table
- construct the truth table for this invalid proof. what would we expect as truth values in the last column (solution on next page)?

- an invalid proof is defined as a conditional that does not always result in True
- this is illustrated by the following truth table for the fallacy of affirming the consequent

(36)

p	q	(p o q)	$((p ightarrow q) \wedge q)$	$(((p o q) \wedge q) o p)$
1	1	1	1	1
1	0	0	0	1
0	1	1	1	0
0	0	1	0	1

fallacy of affirming the consequent:

$$(37) \qquad (p \to q)$$

$$q$$

$$\frac{q}{\sqrt{p}}$$

- it is easy to see why the proof is invalid: the truth of *q* does not necessarily entail/imply the truth of the conclusion
- take the following natural language equivalent!
 - (38) If Marie eats another pizza, she will get sick.

 Marie gets sick.

 // Marie eats another pizza.
- ./. Marie eats another pizza.
- · Marie could have gotten sick for a million different reasons

- here is another invalid argument
- this particular logical fallacy is called: fallacy of denying the antecedent

$$(39) \qquad (p \to q) \\ (\neg p) \\ \hline \cancel{/}. \quad (\neg q)$$

- show that the proof is invalid with a truth table (solution on next page)
- recall that an invalid proof is defined as a conditional that does not always result in True

• the truth table for showing the fallacy of denying the antecedent:

(40)

р	q	$(\neg p)$	$(\neg q)$	(p o q)	$((p \to q) \land (\neg p))$	$(((p ightarrow q) \wedge (\neg p)) ightarrow (\neg q))$
1	1	0	0	1	0	1
1	0	0	1	0	0	1
0	1	1	0	1	1	0
0	0	1	1	1	1	1

• fallacy of denying the antecedent:

$$(41) \qquad (p \to q) \\ (\neg p) \\ \hline \cancel{/}. \quad (\neg q)$$

- again, it is easy to see why the proof is invalid: denying the truth of p does not necessarily entail/imply the falsity of the conclusion
- let us think of a natural language equivalent!
 - (42) If Marie eats another pizza, she will get sick.

 Marie doesn't eat another pizza.

 // Marie will not get sick.
- Marie can get sick nevertheless, for different reasons, e.g. too many cocktails

Simple proofs

(43) Modus Ponens

Modus Tollens

(44)

$$(p o q) \over q$$

(47) Simplification

$$\frac{(p \wedge q)}{\therefore p}$$

(48) Conjunction

$$\frac{(p \to q)}{(\neg q)} \\ \hline \therefore (\neg p)$$

 $\begin{array}{c}
p\\
q\\
\hline
\vdots \quad (p \wedge q)
\end{array}$

(49) Addition (45) Hypothetical Syllogism

$$\frac{(p \to q)}{(q \to r)}$$

$$\therefore (p \to r)$$

 $\frac{p}{\therefore (p \vee q)}$

(46) Disjunctive Syllogism

$$\begin{array}{c} (p \lor q) \\ \hline (\neg p) \\ \hline \therefore \quad q \end{array}$$

Given the premises 1.-5. we can prove the atomic statement *t*!

(50) simple proof:

1.
$$(p \rightarrow q)$$

2.
$$(p \lor s)$$

3.
$$(q \rightarrow r)$$

4.
$$(s \rightarrow t)$$

5.
$$(\neg r)$$

6.
$$(\neg q)$$

7.
$$(\neg p)$$

Complex proofs

- (51) **Modus Ponens** $(p \rightarrow q)$
 - (p
 ightarrow q)
- (52) Modus Tollens $(p \to q)$ $\frac{(\neg q)}{(\neg p)}$
- (53) **Hyp. Syll.** $(p \rightarrow q)$ $(q \rightarrow r)$ $\therefore (p \rightarrow r)$
- (54) **Dis. Syll.** $(p \lor q)$ $(\neg p)$
- (55) **Simplification** $\frac{(p \land q)}{p}$

- (56) Identity Laws:
 - a. $x \lor False \Leftrightarrow x$
 - b. $x \land False \Leftrightarrow False$
 - c. $x \lor True \Leftrightarrow True$
 - d. $x \wedge True \Leftrightarrow x$
- (57) Conditional Laws:
 - a. $(p \rightarrow q) \Leftrightarrow ((\neg p) \lor q)$
 - b. $(p \rightarrow q) \Leftrightarrow ((\neg q) \rightarrow (\neg p))$
- (58) Commutative Laws:
 - a. $(p \lor q) \Leftrightarrow (q \lor p)$
 - b. $(p \wedge q) \Leftrightarrow (q \wedge p)$
- (59) Associative Laws:
 - a. $((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$
 - b. $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$

Given the premises 1.-2. we can prove the implication $(p \rightarrow q)$!

- (60) complex proof:
 - 1. $(p \rightarrow (q \lor r))$
 - 2. $(\neg r)$
 - 3. $((\neg p) \lor (q \lor r))$ 1 Cond
 - 4. $(((\neg p) \lor q) \lor r)$ 3 Ass
 - 5. $(((\neg p) \lor q) \lor F)$ 4 Neg
 - 6. $(((\neg p) \lor q))$ 5 Ident
 - 7. $(p \rightarrow q)$ 6 Cond
 - 6 Con